Let’s Study Law: Kepler Would Be So Proud!

Mars and Saturn Meet - Shevill Mathers

Just a couple of days ago we took a look at the splendid conjunction of Mars, Saturn and Regulus which occurred on July 6, 2008. Now, four days later, the position of everything has changed drastically. We watch it occur in the sky. We accept that it’s natural. We even know it’s celestial mechanics! But exactly what laws govern these movements and how do we understand them? Let’s take a look…

Johannes KeplerOnce upon a time, a very cool dude named Johannes Kepler was born just two days after Christmas in 1571. Like most of us, he had a pretty rough life. His dad died when he was 5, but he had a great mom who was not only a waitress, but a herbalist as well. One of the best things she ever did for her son was to take him out to watch the “Great Comet of 1577” and a lunar eclipse in 1580. Even though she ended up being later tried for witchcraft, the love of astronomy that she inspired in her son would shape the way we now understand planetary motion.

Even though smallpox crippled Kepler’s vision and hands, he excelled at studying planetary motion in the astrological sense and kept himself busy being a math teacher. In his spare time, he also liked to play around with lenses, too… and write letters to his friend Galileo Galilei. Even though he ran the risk of losing his job and getting in trouble with the church, Kepler defended Copernican theory of a sun-centered system and went on to devise some formulae of his own. At age 24, he was teaching a class about the conjunction of Saturn and Jupiter when he realized that regular polygons bound one inscribed and one circumscribed circle at definite ratios, which, he reasoned, might be the geometrical basis of the universe. Thankfully, his school supported him and published his work as the “Mysterium Cosmographicum” (The Cosmographic Mystery).

Fortunately, that was a good move and it landed Kepler a part time job helping out an astronomer named Tycho Brahe. To make a long story short, that was his introduction into the real world of astronomy and many long years and bad political times kept things from progressing. However, the astronomers of the time respected his work in their own ways and continued to test out Kepler’s theories – right down to his predictions when Venus and Mercury would transit the Sun. Yep. It would be long after Kepler died before his ideas were finally recognized, but these three principles withstood the test of time:

Kepler's Laws

1. The orbit of every planet is an ellipse with the sun at one of the foci.

2. A line joining a planet and the sun sweeps out equal areas during equal intervals of time. (Suppose a planet takes one day to travel from point A to B. The lines from the Sun to A and B, together with the planet orbit, will define a (roughly triangular) area. This same amount of area will be formed every day regardless of where in its orbit the planet is. This means that the planet moves faster when it is closer to the Sun.) This is because the sun’s gravity accelerates the planet as it falls toward the Sun, and decelerates it on the way back out, but Kepler did not know that reason.

3. The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits. Thus, not only does the length of the orbit increase with distance, the orbital speed decreases, so that the increase of the orbital period is more than proportional.

So what does studying these laws have to do with what we see? Let’s take a three day time lapse look…

Planetary Motion - July7-9, 2008 - Shevill Mathers

The observable distance between Saturn and Regulus hasn’t changed much has it? But the motion of Mars has been huge! When skies permit, make your own nightly observations of planetary motions and try studying Kepler’s law. We’ve watched Mars travel from points A to B. If we drew an imaginary line, from the Sun to the planet, it would sweep out a roughly triangular area and the same amount of area will be swept every day. As Mars progresses in its elliptical orbit, its distance from the Sun changes. As an equal area is swept during any period of time and the distance from Mars to the Sun varies, we can then plainly see that for the changes to remain constant that Mars must also vary in speed! Yep. It’s the second law.

Kepler would be so proud…

Many thanks to AORAIA member Shevill Mathers whose dedication and photographs helped make this article possible!

StarGazer’s Telescope – Last Dance With Mars

StarGazer's Scope

Have you ever wondered what it was like to look through a real telescope? Tired of being clouded out night after night and would be happy with a look through any telescope? After all the exciting news we’ve heard about Mars, I thought it might be fun to let you take a look through a small telescope and see what Mars really looks like – flaws and all.

Step right up here to the eyepiece and have a look! Remember this is just a small telescope, so what you see isn’t going to look like images taken with the Hubble – or still images that have been processed to bring out details. This is just pure and natural…

Mars is very low on the horizon right now and the skies are turbulent. This makes getting a very clear image of Mars difficult in any telescope. If you can at least see the dark notch that looks different from the rest of the planet then you’re spotting Sytris Major. Sure, it doesn’t look like the media likes to show it, but a long time ago in 1649, an astronomer named Christiaan Huygens was the very first person to resolve a surface feature on another planet. It probably looked very much like it does here!

I don’t care how many times I look at Mars, I still enjoy it’s red color. Yeah, I know Mars is red because it has such a thin atmosphere, which cannot hold the blue like the Earth’s atmosphere can. But Mars is also red because of all of the rusted iron dust surrounding the planet and all the rusted iron on the planet. Of course, I’m a firm believer that it’s better to burn out than it is to rust… But then I’m old, too.

Did you catch a twinge of blue around the edge? That’s another thing that fascinates me about Mars. Every time I see that, I know I’m seeing the carbon dioxide from the polar caps and that’s just too cool to me. And now your peek through the StarGazer’s Telescope has ended.

Move over, because it’s my turn.

Planetary Alignment Dazzles Weekend SkyWatchers

July 6: Saturn, Mars, Regulus and Moon - Richard McCoy

We warned you it was about to happen! Even though you may have been clouded out of viewing this weekend’s awesome alignment of Regulus, Mars and Saturn dancing with the Da Vinci Moon, our friendly photographers around the world were happy to share the view with us. Unlike the many erroneous myths that often surround such occurrences, planetary alignments are nothing more than the visible clockwork mechanism of our natural skies.

While Saturn and Mars descend through the “Sacred Hoop”, we have to remember that such alignments are not rare – just natural. Rumors and myths of calamities and catastrophe have abounded since the beginning or oral history when they occur, and it is amazing just how quickly these stories dissipate once the alignment has passed and nothing happened! Without rehashing doomsday prophecies, we need to take a closer look at alignments for just what they are…

An awesome display of celestial mechanics.

July 6 Alignment by Shevill Mathers

Each and every planetary alignment holds an opportunity to expand awareness about astronomy. It is a proven fact that the human eye follows the Gestalt Laws of Organization – the study of how people perceive visual components as organized patterns or wholes, instead of many different parts. We develop a fixation on such patterns when we see them. Ask yourself if your own eye is not drawn to this image of the alignment! The parallax is so far and so slow, that we simply cannot attach anything more than a mystical sense of wonder at the visualization. And that is not a bad thing… It draws people to require an explanation for what they see.

Be a good astronomer and stop misinformation in its tracks. When people you know ask about what they have seen in the sky, tell them! Explain how the stars and planets work just like a clock, each following their gear and routine. Alignments happen every hour… 1:05 and five seconds… 8:40 and 40 seconds.. and the sky is no different. If our eyes were sensitive enough, just think of all the deep sky alignments that occur each month as the Moon and planets traverse the ecliptic plane! How many stars hidden behind blue skies does our own Sun align with each and every second of the day?

And stay tuned for the next awe inspiring event…

The two incredible images of this weekend’s planetary alignment belong to Advanced Optical and Radio Astronomers International Associates members, Richard McCoy (panoramic image) and Shevill Mathers (closeup). We appreciate the time and energy you put into these photos and thank you for sharing with us!

The 16″ Meade LightBridge – That’s What I Like About You…

Dobsonian Telescope
The Meade 16" LightBridge

At around $2000, this “light bucket” telescope isn’t for everyone, but if you are interested in big, big aperture and have a little practical knowledge of how to correct some design flaws, then step inside and check out the Meade 16″ LightBridge Truss Tube Dobsonian…

Affordable Big Aperture Telescopes

Affordable aperture – that’s the catch phrase for all dobsonian style telescopes. You trade in drive motors, GoTo systems and the slow motion controls of an equatorial mount for the ease and simplicity of the altaz dobsonian design. Once upon a time, these monsters were all solid tube construction, but new lines of thinking have introduced the truss tube over several telescope models and Meade was one of the first to make it affordable. However, $2000 is a significant amount of money… Is what you get for the buck worth it?
Other Truss Tube Dobsonian Telescopes to choose from:

Inside the Design of a Truss Tube Dobsonian…

Make no mistake. It might resemble two other very notable manufacturer’s truss tube telescopes – but it isn’t. There is a reason the Meade 16″ LightBridge costs about half the price of the competitor models. It has a few design flaws. Let’s address these issues:

According to Meade: “It’s a big telescope that goes anywhere. New LightBridge truss-dobs from Meade take down and set up quickly. So you can take one of these massive windows on the universe out to your favorite dark sky locations with ease.” Maybe YOU can, but for most of us, the near 70 lbs. of the primary mirror cell isn’t going to be easy to to wrestle in and out of a car… and even left fully assembled at home, close to 130 lbs. isn’t going to be easy to move in and out. But, let’s be fair here. Part of the beauty of this telescope design is that it can be dismantled with ease. Yes. That part is true. It can be assembled and reassembled. But even most experienced hands will find that the upper optical tube assembly is very unstable with a narrow lip and one set of hands to work with – it requires two people to feel secure. The mounting hardware isn’t the greatest and should be replaced. Once assembled, I think you’ll find yourself reluctant to take it apart again, and therefore a good telescope dolly is required.

The next thing you’re going to find is the interior non-reflective coatings can use some help. Again, for experienced telescope users, this isn’t a problem – just an inconvenience. Now that it’s together, protection becomes an issue… And another expense. Meade no longer makes their own brand shroud and cover for the 16″ LightBridge, so you’re off and looking for after market accessories. Hey. No problem. It’s little things like this that a telescope user knows and expects. Now, let’s take it out and use it!

Using the Meade 16″ LightBridge…

“Steel RA Roller Bearings make movements smooth and effortless.” Yep. They sure do. The Meade 16″ LightBridge moves just as smooth as silk. So smooth, in fact, that the included altitude and azimuth tension adjustment knobs won’t stop it from gently drifting its way down to level when aiming at anything lower than about 30 degrees. Again, we have a slight design flaw – felt roller bearings instead of teflon. Again, it is something that can be corrected, but requires a little knowledge of telescope workings. (And don’t be too shocked when you remove them to find that one is even thicker than the other!) Even with the change, the supplied Meade 26mm QX Wide Angle 2″ Eyepiece will make it slowly drop when aiming low. Correction? You got it. Add weight to the back end.

Final Thoughts on the Meade 16″ LightBridge…

And now that all of these changes have been made, just what do I think about the Meade 16″ LightBridge?

Over the years I’ve come to expect things not to be perfect when ordering a telescope that costs a little less – so I don’t fault Meade. These are all minor issues that will work themselves out with time and tender loving care. What I can tell you is Meade’s boast of “Prepare to cross the universe.” is being modest. Prepare yourself to be blown away! As always, Meade mirrors are single-handedly some of the finest optics I’ve ever had the pride and joy to own. There is no coma. There is no issue. Knife edge test?: More like a razor. The mirror on this telescope is absolutely optically perfect. What’s more, the Meade 16″ LightBridge was sweet and easy to collimate. Aluminum coated with magnesium fluoride over coat on both primary and secondary mirrors have withstood the test of time on my other large Meade dobsonian telescopes, and I expect the same performance from this one. The focuser works like a charm and is welcome upgrade from Meade’s original 2″ focusers. The finder leaves a bit to be desired, but hey… I’m an optical finder kinda’ person. You might like the illuminated bullseye.

All in all? The Meade 16″ LightBridge is a great telescope. Since first light it has collected countless open clusters and resolved double handfuls of globular clusters. It has made its way to the distant galaxies, and shown me spiral arms, dustlanes and stellar cores. It has walked across the central star in the Ring Nebula, blasted the blue right out of the Saturn Nebula, and revealed the braiding in the ring of the Helix. The Meade 16″ LightBridge has shown the Casinni Division of Saturn’s rings as wide as a highway, and Jupiter’s Red Spot and black holes of galiean transits.

What’s more, the Meade 16″ LightBridge is one helluva comet hunter… And that’s what I like about you.

The Cosmic Cocoon: IC 5146 by Tom V. Davis

IC 5146: The Cocoon Nebula by Tom V. Davis

Out in the deep reaches of space, a cocoon has formed. Here on Earth, a cocoon represents the casing of a pupae – the child/insect which is about to undergo a magnificent transformation into a beautiful moth or butterfly. So what does the cosmic cocoon, IC 5146, hide inside? Let’s take a look…

Roughly 4000 light years away in some of the richest star fields in the northern Cygnus Milky Way, lies IC 5146. Discovered by Thomas Espin, it has often been referred to as the “Cocoon” because it lay at the end of a long and fairly starless trail – like the proverbial worm who ate its way to the end of the leaf before time for change. Although IC 5146’s fanciful name fits wonderfully with its visual appearance, what you may not know is the moniker is also very indicative of the star-birth process going on inside!

Deep within the folds and rifts of the bright nebula are many regions of emission, absorption and reflection. According to studies done by Kramer (et al), “A submillimeter dust continuum study of a molecular ridge in IC 5146 consists of at least four dense cores which are likely to be prestellar in nature. A map of dust temperatures, constructed from the continuum flux ratios, shows strong temperature gradients. Several cores appear isothermal, while two have inwardly decreasing temperatures profiles, which is expected if the cores are externally heated. We find an inverse correlation which we interpret as signature of grain coagulation and the formation of ice mantles, in accordance with models of dust evolution in dense prestellar cores.”

The embryo is emerging stars.

According to recent measurements, the massive star in the center of the Cocoon opened its way into the existing molecular cloud – the flowing and glowing region also known as Caldwell 19. Even though the central star is perhaps 100,000 years old, it still provides the major energy source of the visible light – but what about what is invisible?

According to W.B. Samson: “The very young star cluster IC 5146 is studied using star counts, with a view to determining the distribution of interstellar matter in a region where star formation recently occurred. IC 5146 is embedded in a dark nebula which is very dense near its center.” A dense center which hides magnetic properties! “Polarization of starlight in IC 5146 is found to be very variable in both magnitude and direction, indicating the presence of complex magnetic fields within the cluster.”

While the dark dust trail of Barnard 168 may appear to be full of nothing – nothing could be further from the truth. According to Lada and Elmegreen: Millimeter-wave observations of the dark cloud complex immediately surrounding the young open cluster IC 5146 show two unusually intense oxygen sources… suggesting the presence of two or more obscured newly formed stars embedded in molecular gas at the periphery. The total mass of the dark cloud complex is estimated to be 2500 solar masses, and the origin of the star-forming molecular shell around IC 5146 is considered. It is noted that IC 5146 is located at the tip of an elongated filamentary molecular cloud and, in this respect, is similar to Rho Oph and M17, where regions of active star formation are also located in dense cores at the tips of elongated molecular cloud complexes.”

IC 5146 Locator ChartThe 10th magnitude Cocoon is easily revealed in mid-sized telescopes and can be found near Pi Cygni (RA 21 53 6 Dec. +47 16) and M39. Capturing this rare transformation is definately worth your time, for open cluster Collinder 470 is also ‘involved’ with IC 5146. Take the time to look it up! Small reflection nebula Van den Bergh 147 is also nearby and adds another treat to this comsic chrysalis!

This week’s awesome image was contributed by Advanced Optical / Radio Astronomers and International Associates member Tom Davis. Thanks for the spectacular image!

WeekEnd SkyWatcher’s Forecast: July 4 – 6, 2008

Artist Impression of Deep Impact - Credit: NASA

Greetings, fellow SkyWatchers! If you’re enjoying a holiday weekend where you live, then start the fireworks off as we begin by remembering Deep Impact and journey towards a nearby star approaching the supernova phase. As things heat up towards one of the most spectacular conjunctions of the year, we’ll also take a look at another globular cluster study, lunar features and a binocular deep sky treat! Are you ready to step in the realm of a Barnard dark nebula? The grab your optics and let’s head out into the night…

Friday, July 4 – On this date in 2005, the Deep Impact mission entered the history books as its probe impacted Comet Tempel 1 successfully. The spacecraft relayed back to Earth a wealth of information about the material released from the surface. Thanks to this incredible mission (a collaboration between JPL, the University of Maryland, and Ball Aerospace Technologies), we’ve learned much more about the nature of comets and the protosolar nebula in which they formed.

This date in history also marks the 1947 founding of the Astronomical League – a worldwide organization with almost 15,000 members!

And did you know that celestial fireworks occurred in 1054, also on this day? It is believed the bright supernova recorded by Chinese astronomers happened at this point in history, and today we know its remnants as the Crab Nebula (M1).

Palomar Observatory, courtesy of CaltechBut could such an event happen again in our own celestial “backyard?” Look no further than HR 8210 (RA 21 26 26 Dec +19 22 32). It may be nothing more than a white dwarf star hiding out in late night Capricornus, but it’s a star that’s almost run out of fuel. This rather ordinary binary system has a companion white dwarf star that’s 1.15 times the mass of our Sun. As the companion also expends its fuel, it will add mass to HR 8210 and push it over the Chandrasekhar limit – the point of no return in mass. This will someday result in a supernova event located only 150 light-years away from our solar system…

And that’s 50 light-years too close for comfort!

470 light-years away in the Gould Belt, and roughly 1.5 million years ago, a similarly massive star exploded in the Upper Scorpius association. No longer able to fuel its mass, it unleashed a supernova event which left its evidence as a layer of iron here on Earth, and may have caused a certain amount of biological extinction when its gamma rays directly affected our ozone layer.

Take a long look at Antares tonight – for it is part of that association of stars and is no doubt also a star poised on the edge of extinction. At a safe distance of 500 light-years, you’ll find this pulsating red variable equally fascinating to the eye as well as to the telescope. Unlike HD 8210, Alpha Scorpii also has a companion which can be revealed to small telescopes under steady conditions. Discovered on April 13, 1819 during a lunar occultation, this 6.5 magnitude green companion isn’t the easiest to split from such a bright primary – but it’s certainly fun to try! And the best is yet to come, because Antares will be occulted again in a matter of days…

Saturday, July 5– Tonight the Moon has returned in a position to favor a bit of study. Start by checking IOTA information for a possible visible occultation of Regulus, and also look for Saturn quite nearby as the slender crescent graces the early evening skies.

Although poor position makes study difficult during the first few lunar days, be sure to look for the ancient impact crater Vendelinus just slightly south of central. Spanning approximately 150 kilometers in diameter and with walls reaching up to 4400 meters in height, lava flow has long ago eradicated any interior features. Its old walls give mute testimony to later impact events, which you can see when viewing crater Holden on the south shore; much larger Lame on the northeast edge; and sharp Lohse northwest. Mark your challenge list!

For all observers, let’s take a closer look at the fascinating constellation of Lupus southwest of brilliant Antares. While more northern latitudes will see roughly half of this constellation, it sits well at this time of year for those in the south. So why bother?

Cutting through our Milky Way galaxy at a rough angle of about 18 degrees is a disc-shaped zone called Gould’s Belt. Lupus is part of this area whose perimeter contains star forming regions which came to life about 30 million years ago when a huge molecular cloud of dust and gas was compressed – much like in the Orion area. In Lupus we find Gould’s Belt extending above the plane of the Milky Way!

Palomar Observatory, courtesy of CaltechReturn again to the beautiful Theta and head around five degrees west for NGC 5986 (RA 15 46 03 Dec 37 47 10), a 7th magnitude globular cluster which can be spotted with binoculars with good conditions. While this Class VII cluster is not particularly dense, many of its individual stars can be resolved in a small telescope.

Now sweep the area north of NGC 5986 (RA 17 57 06 Dec 37 05 00) and tell me what you see. That’s right! Nothing. This is dark nebula B 288 – a cloud of dark, obscuring dust which blocks incoming starlight. Look carefully at the stars you can see and you’ll notice they appear quite red. Thanks to B 288, much of their emitted light is absorbed by this region, providing us with a pretty incredible on-the-edge view of something you can’t see – a Barnard dark nebula.

NASASunday, July 6 – Celestial scenery alert! SkyWatchers… Mark your calendar and be sure to make this date with the western skyline as sunset marks one of the most picturesque views of the year! Regulus, Mars and Saturn will all dance with the da Vinci Moon. No special equipment is needed to see this event, and thanks to Leonardo da Vinci we can see the ghostly effect on the Moon as quite logical. He was the first to theorize that sunlight was reflecting off the Earth and illuminating the portion of the Moon not lit by the Sun. We more commonly refer to this as “Earthshine” – but no matter how scientific the explanations are for this phenomena, its appearance remains beautiful.

Today in 1687, Isaac Newton’s monumental Principia was published by the Royal Society with the help of Edmund Halley. Although Newton was indeed a very strange man with a highly checkered history, one of the keys to Newton’s work with the theory of gravity was the idea that one body could attract another across the expanse of space.

Now let’s have a look at some things gravitationally bound as we start at Eta Lupi, a fine double star which can even be resolved with binoculars. Look for the 3rd magnitude primary and 8th magnitude secondary separated by a wide 15″. You’ll find it by starting at Antares and heading due south two binocular fields to center on bright H and N Scorpii – then one binocular field southwest (RA 16 00 07 Dec 38 23 48).

Palomar Observatory, courtesy of CaltechWhen you are done, hop another roughly five degrees southeast (RA 16 25 18 Dec 40 39 00) to encounter the fine open cluster NGC 6124. Discovered by Lacaille and known to him as object I.8, this 5th magnitude open cluster is also known as Dunlop 514, as well as Melotte 145 and Collinder 301. Situated about 19 light-years away, it will show as a fine, round, faint spray of stars to binoculars and be resolved into about 100 stellar members to larger telescopes. While NGC 6124 is on the low side for northern observers, it’s worth the wait for it to hit its best position. Be sure to mark your notes, because this delightful galactic cluster is a Caldwell object and a southern skies binocular reward!

Wishing you an awesome weekend…

This week’s photos are courtesy of: Deep Impact Mission – Credit: JPL/NASA, HR 8210 – Credit: Palomar Observatory courtesy of Caltech, NGC 5986 – Credit: Palomar Observatory courtesy of Caltech, Da Vinci Moon – Credit: NASA and NGC 6124 – Credit: Palomar Observatory courtesy of Caltech.

Cosmic Mystery: NGC 7008 by Dietmar Hager

NGC 7008 by Dietmar Hager

Over the weeks we’ve taken a look at some very curious objects which have often raised some wonderful questions. One such question dealt with what could be observed should a supernova event involve a planetary system. In this case, it’s not quite the explosive mass destruction scenario – but a planetary nebula that consumed its planets…

Veteran sky observers have long been aware of the unique structure of planetary nebula NGC 7008. Located about 2800 light years distant in the constellation of Cygnus, report after report shows even amateur telescopes easily resolve out the central star and unusual bright areas in the outer shell. We might wonder about it when we see it, but what lay within is quite unique.

Because the central star of NGC 7008 is so prominent, the original lines of thinking on this nebula’s formation focused around the central star itself. Says Francesco Pala: “Much of the recent attention on primordial stars has focused on the properties of massive objects, considered the natural outcome of first structure formation. While there are reasons to believe that massive stars were common, but not unique, in the early universe, the question of their actual formation is still not adequately understood…. how unique must have been the physical conditions in primordial clouds to yield such an unusual distribution of stellar mass.”

In 1995, the Hubble Telescope was pointed towards NGC 7008. The primary aim of the survey was to find close, resolved main-sequence companions of the central stars, which through main-sequence fitting would provide excellent distance estimates for the nebulae. What they found was only the beginning of the end.

Scientist Mario Perniotto studies planetary nebulae and their gas dynamics. “I first recall the history of PNe which are generated from low and intermediate mass stars through successive mass loss processes starting in the Red Giant phase of evolution and continuing also after the termination of the pulsed AGB phase, where most of the nebular mass is believed to be ejected. The corresponding stellar winds are the ingredients of the nebula. Their initial properties and subsequent mutual interactions, under the action of the evolving stellar radiation field, are responsible for the properties of the nebula.” Through studies with the Hubble, the kinetic structure of NGC 7008 has been observed to have another unusual feature – Fast Low Ionization Emitting Regions.

Says Perinotto: “Attention is focused on FLIERs and on the proposed mechanisms to interpret them. Recent observations with the Hubble Space Telescope have provided us with a wealth of detailed (subarcsec) information on the nebular structures. The inner structure of FLIERs is here illustrated to consist of substructures of various shapes with an high degree of individually from object to object, also within the same planetary nebula. These new data call for deeper theoretical efforts to solve the problems of cosmic gas dynamics, posed by their observed properties.”

But the motions of the gas aren’t all that’s being observed – the dust itself plays an important role. According to studies done by Klaas and Walker, some of NGC 7008’s dynamic structure comes from dual layers of radically different dust which originated from two different sources. Could this be the result of a binary star taking its last twin breath? First the older star… And then the younger? Says Tylenda and Gorny: “Therefore we can conclude that the H-poor layers in these stars have been exposed shortly after the PN formation at the tip of AGB. This excludes, from our considerations, scenaria like that of a final helium shell flash which produced a H-poor, He-burning nucleus surrounded by an old, large nebula.”

But astronomer Noam Soker wasn’t taking that for an answer. “For NGC 7008, a deviation from symmetry is expected and indeed a departure is observed, but the main signature is on the outskirts of the nebula, and hence an interaction with the ISM (interstellar medium) is possible. If the companion is associated with the PN central star, as claimed… I put a question mark, since it is not clear if the morphology is compatible with the claimed companion or is solely due to an interaction with the ISM.”

Close-up on NGC 7008 - Dietmar Hager

Enter the Instituto de Astronomía in México. “We suggest that some of the structures observed in the envelopes of planetary nebulae are caused by the interaction of central star wind and radiation with preplanetary nebula debris: planets, moons, minor objects and ring and ring arcs. Recently considerable amount of planetary material has been reported to exist around solar type stars, this debris could be evaporated during the envelope ejection and alter the chemical abundance and produce some of the envelope inhomogeneities. If there are massive enough rings of material surrounding the progenitor and planets in their vicinity, arc rings could be formed. If the rings are viewed pole on when the envelope is detached from the central star, it will interact with the arc ring material and produce ansae and pedal and garden-hose-shape structures observed in some planetaries.”

Next time you visit NGC 7008 – take a closer look like Dr. Dietmar Hager did. There’s something more to this story than just another pretty cosmic face. Something he recognized and asked me to investigate. Not only does his image reveal the presence of FLIERS and the well resolved central region, but a structure that’s made scientists look again and again over the years. Of all the explanations and science that I’ve researched, I like Noam Soaker’s answer best:

“I propose that the destruction of brown dwarfs and massive planets inside the envelopes of asymptotic giant branch stars can lead to the formations of jets and ansae in elliptical planetary nebulae. Thick disks with jets on their two sides are the plausible outcome of this process. The process is likely to occur at late states of the AGB, and the jets push their way out of the envelopes in the course of a number of year. The Roche lobe overflow continues for several hundred years and destroys the secondaries. This scenario predicts that the same material will be contaminated by two sources. Once source is the AGB cores, from which material can be mixed into the jets and the other consists of the destroyed secondaries.”

Always look twice and think about what you’re observing… Because there is so much more there than what meets the eye!

These awesome images were done by Avanced Optical/ Radio Astronomers and International Associates member Dr. Dietmar Hager from StarGazer Observatory. Many thanks for the investigative challenge!

The Weekend SkyWatcher’s Forecast: June 27-29, 2008

Greetings, fellow SkyWatchers! It’s that time again and darker skies are in our favor for this weekend. Are you working towards Astronomical League studies? Then tag along as we seek out one of the most difficult of all targets – Palomar 5. But don’t despair – there’s just slightly easier ones to study, too! Come along for the double galaxy ride and the peak of two minor meteor showers as we head out into the night…

Friday, June 27 – As with all astronomical projects, there are sometimes difficult ones needed to complete certain fields of study – such as challenging globular clusters. Tonight we’ll take a look at one such cluster needed to complete your list and you’ll find it by using M5 as a guide.

Palomar Observatory, courtesy of CaltechPalomar 5 is by no stretch of the imagination easy. For those using GoTo systems and large telescopes, aiming is easy…but for star hoppers a bit of instruction goes a long way. Starting at M5 drop south for the double star 5 Serpentis and again south and slightly west for another, fainter double. Don’t confuse it with 6 Serpentis to the east. About half a degree west you’ll encounter an 8th magnitude star with 7th magnitude 4 Serpentis a half degree south. Continue south another half degree where you will discover a triangle of 9th magnitude stars with a southern one at the apex. This is home to Palomar 5 (RA 15 16 05 Dec 00 06 41).

Discovered by Walter Baade in 1950, this 11.7 magnitude, Class XII globular is anything but easy. At first it was believed to be a dwarf elliptical and possibly a member of our own Local Group of galaxies due to some resolution of its stars. Later studies showed Palomar 5 was indeed a globular cluster – but one in the process of being ripped apart by the tidal forces of the Milky Way.

75,000 light-years away from us and 60,000 light-years from the galactic center, Palomar 5’s members are escaping and leaving trails spanning as much as 13,000 light-years…a process which may have been ongoing for several billion years. Although it is of low surface brightness, even telescopes as small as 6″ can distinguish just a few individual members northwest of the 9th magnitude marker star – but even telescopes as large as 31″ fail to show much more than a faint sheen (under excellent conditions) with a handful of resolvable stars. Even though it may be one of the toughest you’ll ever tackle, be sure to take the time to make a quick sketch of the region to complete your studies. Good luck!

While you’re out, keep a watch for a handful of meteors originating near the constellation of Corvus. The Corvid meteor shower is not well documented, but you might spot as many as ten per hour.

Saturday, June 28 – Before you start hunting down the faint fuzzies and spend the rest of the night drooling on the Milky Way, let’s go globular and hunt up two very nice studies worthy of your time. Starting at Alpha Librae, head five degrees southeast for Tau, and yet another degree southeast for the splendid field of NGC 5897 (RA 15 17 24 Dec -21 00 36).

Palomar Observatory, courtesy of CaltechThis class XI globular might appear very faint to binoculars, but it definitely makes up for it in size and beauty of field. It was first viewed by William Herschel on April 25, 1784 and logged as H VI.8 – but with a less than perfect notation of position. When he reviewed it again on March 10, 1785 he logged it correctly and relabeled it as H VI.19. At a distance of a little more than 40,000 light-years, this 8.5 magnitude globular will show some details to the larger telescope, but remain unresolved to smaller ones. As a halo globular cluster, NGC 5897 certainly shows signs of being disrupted, and has a number of blue stragglers, as well as four newly-discovered variables of the RR Lyrae type.

Now let’s return to Alpha Librae and head about a fistwidth south across the border into Hydra and two degrees east of star 57 for NGC 5694 – also in an attractive field (RA 14 39 36 Dec 26 32 18).

Palomar Observatory, courtesy of CaltechAlso discovered by Herschel, and cataloged as H II.196, this class VII cluster is far too faint for binoculars at magnitude 10, and barely within reach of smaller scopes. As one of the most remote globular clusters in our galaxy, few telescopes can hope to resolve this more than 113,000 light-year distant ball of stars. Its brightest member is only of magnitude 16.5, and it contains no known variables. Traveling at 190 kilometers per second, metal-poor NGC 5694 will not have the same fate as NGC 5897…for this is a globular cluster which is not being pulled apart by our galaxy – but escaping it!

George E. HaleSunday, June 29 – Today we celebrate the birthday of George Ellery Hale, who was born in 1868. Hale was the founding father of the Mt. Wilson Observatory. Although he had no education beyond his baccalaureate in physics, he became the leading astronomer of his day. He invented the spectroheliograph, coined the word astrophysics, and founded the Astrophysical Journal and Yerkes Observatory. At the time, Mt. Wilson dominated the world of astronomy, confirming what galaxies were and verifying the expanding universe cosmology, making Mt. Wilson one of the most productive facilities ever built. When Hale went on to found Palomar Observatory, the 5-meter (200″) telescope was named for him, and was dedicated on June 3, 1948. It continues to be the largest telescope in the continental United States.

Tonight, while we have plenty of dark skies to go around, let’s go south in Libra and have a look at the galaxy pairing NGC 5903 and NGC 5898. You’ll find them about three degrees northeast of Sigma, and just north of a pair of 7th magnitude stars.

Palomar Observatory, courtesy of CaltechWhile northernmost NGC 5903 seems to be nothing more than a faint elliptical with a brighter concentration toward the center and an almost identical elliptical – NGC 5898 – to the southwest, you’re probably asking yourself… Why the big deal over two small ellipticals? First off, NGC 5903 is Herschel III.139 and NGC 5898 is Herschel III.138…two more to add to your studies. And second? The Very Large Array has studied this galaxy pair in the spectral lines of neutral hydrogen. The brighter of the pair, NGC 5898, shows evidence of ionized gas which has been collected from outside its galactic realm – while NGC 5903 seems to be running streamers of material toward its neighbor. A double-galaxy, double-accretion event!

But there’s more…

Look to the southeast and you’ll double your pleasure and double your fun as you discover two double stars instead of just one! Sometimes we overlook field stars for reasons of study – but don’t do it tonight. Even mid-sized telescopes can easily reveal this twin pair of galaxies sharing “their stuff,” as well as a pair of double stars in the same low power field of view. (Psst…slim and dim MCG 043607 and quasar 1514-241 are also here!) Ain’t it grand?

After the black of midnight and out of the blue comes a meteor shower! Keep watch tonight for the June Draconids. The radiant for this shower will be near handle of Big Dipper – Ursa Major. The fall rate varies from 10 to 100 per hour, and lack of lunacy means a great time for the offspring of comet Pons-Winnecke. On a curious note, today in 1908 was when the great Tunguska impact happened in Siberia. A fragment of a comet, perhaps?

Good luck and have a terrific weekend!

This week’s awesome image credits are: Palomar 5 (center of image) – Credit: Palomar Observatory, courtesy of Caltech, NGC 5897 – Credit: Palomar Observatory, courtesy of Caltech, NGC 5694 – Credit: Palomar Observatory, courtesy of Caltech, and the field of NGC 5903 and NGC 5898 – Credit: Palomar Observatory, courtesy of Caltech

Reaching for the Ring: M57 by Dietmar Hager

M57 Close-up - Dr. Dietmar Hager

For those of us old enough to remember riding on an old fashioned carousel, there was once a quaint custom where the operator would hold a brass ring out and the lucky contestant who captured it could ride again for free. Before you dismiss this astrophotograph as just another colorful look at a Messier, perhaps you better step inside the workings of the merry-go-round to learn more about what you’re really seeing here… Because this ring is pure gold.

Discovered by Antoine Darquier de Pellepoix in January of 1779 and independently discovered and cataloged by Charles Messier just a few days later, the famous comet hunter himself described it as being “a dull nebula, but perfectly outlined; as large as Jupiter and looks like a fading planet.” Perhaps it was that very description which coaxed Uranus’ discoverer – Sir William Herschel – to have a look for himself and class such objects as “planetary nebula“. Fortunately, Herschel’s telescope resolved M57 to a far greater degree and his descriptions were “a perforated ring of stars… none seems to belong to it.” Since that time, astronomers have been turning an eye towards this “curiosity of the heavens” in a great effort to not only understand its cause – but to capture it as well.

In 1800, German astronomer Friedrich von Hahn was the first to resolve out the Ring’s central star – a planet-sized white dwarf variable star which has an average magnitude of 15. At one point in its Mira-like life, it began shedding its outer layers in what we now believe to be a cylindrical shape and what we see is the bright torus of light from our point of view. Of course, none of this is particularly new news about the 2,300 light year distant M57. Nor is the knowledge when we are looking down this tunnel of expelled gas that we are seeing a decreasing ionization level as the distance from the central star increases. For all who have seen the Ring with their own eyes the innermost region appears dark – the result of only ultra-violet radiation. What we can capture visually is the inner ring, glowing brightly with the greenish forbidden light of doubly ionized oxygen and nitrogen. Where the true prize lay is much like a carousel – it’s just outside where only the red light of hydrogen can be excited.

In 1935 an astronomer named J.C. Duncan discovered something a bit more about the Ring than we knew – an extended halo of material which is all the remains of the star’s earlier stellar winds. It took the power of the Hubble telescope to resolve out dust filaments and globules, but now I invite you to take a closer look at which took 40,000 years in the making and spans 500 times the size of our own solar system.

M57 Closeup - Dr. Dietmar Hager

It took Dr. Dietmar Hager a full month of work to compile some 12 hours of exposure time to reveal what you see here, but the results from StarGazer Observatory are nothing less than amazing. Like the Hubble Telescope images of M57, this image reveals small clouds of dark dust which have flowed out from the central star and are captured in silhouette against the glowing walls of the planetary shell. According to what we know, “These small, dense dust clouds are too small to be seen with ground-based telescopes, but are easily revealed by Hubble.” What’s more, the outer filaments only recently came to public light as ” The Spitzer Space Telescope’s powerful infrared vision detected this material expelled from the withering star.”

Congratulations, Dr. Hager. You have managed with a 9″ Earth-based refractor to capture for us what took two space telescopes to first reveal – along with a distant background galaxy in the full sized image. At least in my book, that means you’ve done far more than just reach for the brass ring…

You’ve captured pure gold.

NGC 6302 by Don Goldman

NGC 6302 by Don Goldman

Over the weeks we’ve looked at a lot of curious objects and today is no exception. NGC 6302 is often called the “Bug Nebula”, but its resemblance to an insect isn’t what makes it unique – it’s the complex structure. Deep inside this bipolar planetary nebula lay an unseen star… One of the hottest objects in the galaxy.

Residing about 4,000 light years away in the constellation of Scorpius, NGC 6302 is the end remains of an enormous dying star. With a surface temperature of an estimated 200,000 K, its central star exceeds our own Sun’s mean temperature output by nearly 35 times – yet has never been observed. Why? Because it is shielded from view at all wavelengths by an impossibly dense equatorial disc composed of gas and dust… One that may have restricted the star’s outflow into the unusual bipolar structure we can see.

But the hidden central star isn’t what’s bugging scientists, it’s the chemical composition!

Filled with ionization walls, edges and lobes, this dust is both oxygen and carbon-rich – a dual chemistry which means it has undergone recent changes and alternate formation processes in its 10,000 year life. Studies done by the European Space Agency’s Infrared Space Observatory (ISO) have shown that the dusty torus contains hydrocarbons, carbonates such as calcite, as well as water ice and iron. If the word carbonates made you raise an eyebrow, it should because carbonates form when carbon dioxide dissolves in liquid water and forms sediments.

Says Albert Zijlstra from UMIST: “What caught our interest in NGC 6302 was the mixture of minerals and crystalline ice – hailstones frozen onto small dust grains. Very few objects have such a mixed composition.”

Yet NGC 6302 is even more complex, displaying evidence that a second pair of lobes may have formed during a previous phase of the star’s mass loss. The visible northwest lobe is believed to have been created some 1,900 years ago and shows some signs that it may have once collided with pre-existing globules of gas which changed its outflow. According to studies done by Groves, Doptia, Williams and Hua; “We find that for NGC 6302, the visible to IR extinction law is indistinguishable from `standard’ interstellar reddening, but that the UV extinction curve is much steeper than normal, suggesting that more small dust grains had been ejected into the nebula by the PN central star.”

Kinematical studies done by Minkowski and Johnson suggest that NGC 6302 originated in some type of explosive event. It exhibits a rich spectrum of lines, indicating rich deposits of helium and nitrogen – far more than an ordinary planetary nebula. What the Bug Nebula seems to lack in its diet, however, is iron and calcium – two elements which may very well be tied up as solid grains.

So what’s next for this extreme, high-excitation planetary nebula? According to Wright, Barlow, Ercolano and Rauch; “We use the 3D photoionisation code to model the emission from the gas and dust. We have produced a good fit to the optical emission-line spectrum, from which we derived a density distribution for the nebula. A fit to the infrared coronal lines places strong constraints on the properties of the unseen ionising source. We find the best fit comes from using a 220,000 K hydrogen-deficient central star model atmosphere, indicating that the central star of this PN may have undergone a late thermal pulse.”

ngc 6302 mapBut don’t you be late observing the Bug Nebula yourself! NGC 6302 is located in Scorpius (RA 17 13 44 Dec -37 06 15). At around magnitude 9, this surprisingly bright planetary is well within the reach of a mid-size telescope and a treat to larger aperture. NGC 6302 was discovered by James Dunlop in 1826 with a handmade reflecting telescope he had constructed himself and the earliest known study of NGC 6302 is Edward Emerson Barnard who, in 1907, drew and described it.

Seek it out… And enjoy!

This week’s awesome image was taken by Don Goldman from Macedon Ranges Observatory.