Higgs Boson Threatened The Early Universe, But Gravity Saved The Day

Image Credit: Science/AAAS

All the physical properties of our Universe – indeed, the fact that we even exist within a Universe that we can contemplate and explore – owe to events that occurred very early in its history. Cosmologists believe that our Universe looks the way it does thanks to a rapid period of inflation immediately before the Big Bang that smoothed fluctuations in the vacuum energy of space and flattened out the fabric of the cosmos itself.

According to current theories, however, interactions between the famed Higgs boson and the inflationary field should have caused the nascent Universe to collapse. Clearly, this didn’t happen. So what is going on? Scientists have worked out a new theory: It was gravity that (literally) held it all together.

The interaction between the curvature of spacetime (more commonly known as gravity) and the Higgs field has never been well understood. Resolving the apparent problem of our Universe’s stubborn existence, however, provides a good excuse to do some investigating. In a paper published this week in Physical Review Letters, researchers from the University of Copenhagen, the University of Helsinki, and Imperial College London show that even a small interaction between gravity and the Higgs would have been sufficient to stave off a collapse of the early cosmos.

The researchers modified the Higgs equations to include the effect of gravity generated by UV-scale energies. These corrections were found to stabilize the inflationary vacuum at all but a narrow range of energies, allowing expansion to continue and the Universe as we know it to exist… without the need for new physics beyond the Standard Model.

This new theory is based on the controversial evidence of inflation announced by BICEP2 earlier this summer, so its true applicability will depend on whether or not those results turn out to be real. Until then, the researchers are hoping to support their work with additional observational studies that seek out gravitational waves and more deeply examine the cosmic microwave background.

At this juncture, the Higgs-gravity interaction is not a testable hypothesis because the graviton (the particle that handles all of gravity’s interactions) itself has yet to be detected. Based purely on the mathematics, however, the new theory presents an elegant and efficient solution to the potential conundrum of why we exist at all.

The Origins of Life Could Indeed Be “Interstellar”

This image shows a star-forming region in interstellar space. A new study used AI and radiotelescope data to find 140,000 regions in the Milky Way that will eventually form stars like this region. Image credit: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration

Some of science’s most pressing questions involve the origins of life on Earth. How did the first lifeforms emerge from the seemingly hostile conditions that plagued our planet for much of its history? What enabled the leap from simple, unicellular organisms to more complex organisms consisting of many cells working together to metabolize, respire, and reproduce? In such an unfamiliar environment, how does one even separate “life” from non-life in the first place?

Now, scientists at the University of Hawaii at Manoa believe that they may have an answer to at least one of those questions. According to the team, a vital cellular building block called glycerol may have first originated via chemical reactions deep in interstellar space.

Glycerol is an organic molecule that is present in the cell membranes of all living things. In animal cells this membrane takes the form of a phospholipid bilayer, a dual-layer membrane that sandwiches water-repelling fatty acids between outer and inner sheets of water-soluble molecules. This type of membrane allows the cell’s inner aqueous environment to remain separate and protected from its external, similarly watery world. Glycerol is a vital component of each phospholipid because it forms the backbone between the molecule’s two characteristic parts: a polar, water-soluble head, and a non-polar, fatty tail.

Many scientists believe that cell membranes such as these were a necessary prerequisite to the evolution of multicellular life on Earth; however, their complex structure requires a very specific environment – namely, one low in calcium and magnesium salts with a fairly neutral pH and stable temperature. These carefully balanced conditions would have been hard to come by on the prehistoric Earth.

Icy bodies born in interstellar space offer an alternative scenario. Scientists have already discovered organic molecules such as amino acids and lipid precursors in the Murchison meteorite that landed in Australia in 1969. Although the idea remains controversial, it is possible that glycerol could have been brought to Earth in a similar manner.

The Murchison Meteorite. Image credit: James St. John
The Murchison Meteorite.
Image credit: James St. John

Meteors typically form from tiny crumbs of material in cold molecular clouds, regions of gaseous hydrogen and interstellar dust that serve as the birthplace of stars and planetary systems. As they move through the cloud, these grains accumulate layers of frozen water, methanol, carbon dioxide, and carbon monoxide. Over time, high-energy ultraviolet radiation and cosmic rays bombard the icy fragments and cause chemical reactions that enrich their frozen cores with organic compounds. Later, as stars form and ambient material falls into orbit around them, the ices and the organic molecules they contain are incorporated into larger rocky bodies such as meteors. The meteors can then crash into planets like ours, potentially seeding them with building blocks of life.

In order to test whether or not glycerol could be created by the high-energy radiation that typically bombards interstellar ice grains, the team at the University of Hawaii designed their own meteorites: small bits of icy methanol cooled to 5 degrees Kelvin. After blasting their model ices with energetic electrons meant to mimic the effects of cosmic rays, the scientists found that some molecules of methanol within the ices did, in fact, transform into glycerol.

While this experiment appears to be a success, scientists realize that their laboratory models do not exactly replicate conditions in interstellar space. For instance, methanol traditionally makes up only about 30% of the ice in space rocks. Future work will investigate the effects of high-energy radiation on model ices made primarily of water. High-energy electrons fired in a lab are also not a perfect substitute for true cosmic rays and do not represent effects on ice that may result from ultraviolet radiation in interstellar space.

More research is necessary before scientists can draw any global conclusions; however, this study and its predecessors do provide compelling evidence that life as we know it truly could have come from above.

Tracing Dark Matter with Ripples in the Whirlpool Galaxy

M51
The distribution of HI hydrogen in the Whirlpool Galaxy (M51) as determined by the THINGS VLA survey extends far beyond the visible stars in the galaxy and its satellite NGC 5195 (marked by cross), which is situated in the short arm of the spiral. Analysis of perturbations in the hydrogen distribution can be used to predict the location of such satellites, in particular, those satellites that are composed primarily of dark matter and are thus too faint to be detected easily. (Click image for hi-res version.) (Sukanya Chakrabarti/UC Berkeley)

[/caption]A new paper presented at this week’s American Astronomical Society conference promises to shine some light, so to speak, on the pursuit of dark matter in individual galaxies. The current model of cold dark matter in the Universe is extremely successful when it comes to mapping the mysterious substance on large scales, but not on galactic and sub-galactic scales. Earlier today, Dr. Sukanya Chakrabarti of Florida Atlantic University described a new way to map dark matter by observing ripples in the hydrogen disks of large galaxies. Her work may finally allow astronomers to use their observations of ordinary matter to probe the distribution of dark matter on smaller scales.

Spiral galaxies are typically composed of a disk, which is made of normal (baryonic) matter and contains the central bulge and spiral arms, and a halo, which surrounds the disk and contains dark matter. In recent years, surveys such as THINGS (conducted by the NRAO Very Large Array) have been undertaken to analyze the distribution of hydrogen in nearby galactic disks. Last year, Dr. Chakrabarti used such surveys to investigate the way that small satellite galaxies affect the disks of larger galaxies such as M51, the Whirlpool Galaxy. But the real prize lies in investigating what astronomers cannot see. Chakrabarti remarked, “Since the 70s, we’ve known from observations of flat rotation curves that galaxies have massive dark matter halos, but there are very few probes that allow us to figure out how it’s distributed.” She has now broadened her research to do just that.

Astronomers believe that the density distribution of dark matter relies on a parameter called its scale radius. As it turns out, varying this parameter visibly affects the shape of the galaxy’s hydrogen disk when the influence of passing dwarf galaxies is accounted for.

“Ripples in outer gas disks serve to act like a mirror of the underlying dark matter distribution,” said Chakrabarti. By varying the scale radius of M51’s dark matter halo, Chakrabarti was able to see how it would affect the shape and distribution of atomic hydrogen in its disk. She found that large scale radii give rise to galaxies with a dark matter halo that becomes gradually more diffuse as it extends along the length of the disk. This causes the hydrogen in the disk to be very loosely wrapped around the central bulge of the galaxy. Conversely, small scale radii have density profiles that fall off much more steeply.

“Steeper density profiles are more effective at holding onto their ‘stuff’,” explained Chakrabarti, “and therefore they have a much more tightly wrapped spiral planform.”

Chakrabarti’s map of the distribution of dark matter in the halo of M51 is consistent with existing theoretical models, leading her to believe that this method may be extremely useful for astronomers trying to probe the elusive, invisible substance that makes up almost a quarter of our Universe. A preprint of her paper is available on the ArXiv.

Unlocking Cosmology With Type 1a Supernovae

New research shows that some old stars known as white dwarfs might be held up by their rapid spins, and when they slow down, they explode as Type Ia supernovae. Thousands of these "time bombs" could be scattered throughout our Galaxy. In this artist's conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet. Credit: David A. Aguilar (CfA)

[/caption]Let’s face it, cosmologists catch a lot of flack. It’s easy to see why. These are people who routinely publish papers that claim to ever more finely constrain the size of the visible Universe, the rate of its breakneck expansion, and the distance to galaxies that lie closer and closer to the edges of both time and space. Many skeptics scoff at scientists who seem to draw such grand conclusions without being able to directly measure the unbelievable cosmic distances involved. Well, it turns out cosmologists are a creative bunch. Enter our star (ha, ha): the Type 1a Supernova. These stellar fireballs are one of the main tools astronomers use in order to make such fantastic discoveries about our Universe. But how exactly do they do it?

First, let’s talk physics. Type 1a supernovae result from a mismatched marriage gone wrong. When a red giant and white dwarf (or, less commonly, two white dwarfs) become trapped in a gravitational standoff, the denser dwarf star begins to accrete material from its bloated companion. Eventually the white dwarf reaches a critical mass (about 1.4 times that of our own Sun) and the natural pressure exerted by its core can no longer support its weight. A runaway nuclear reaction occurs, resulting in a cataclysmic explosion so large, it can be seen billions of light years away. Since type 1a supernovae always result from the collapse of a white dwarf, and since the white dwarf always becomes unstable at exactly the same mass, astronomers can easily work out the precise luminosity of such an event. And they have. This is great news, because it means that type 1a supernovae can be used as so-called standard candles with which to probe distances in the Universe. After all, if you know how bright something is and you know how bright it appears from where you are, you can easily figure out how far away it must be.

A Type Ia supernova occurs when a white dwarf accretes material from a companion star until it exceeds the Chandrasekhar limit and explodes. By studying these exploding stars, astronomers can measure dark energy and the expansion of the universe. CfA scientists have found a way to correct for small variations in the appearance of these supernovae, so that they become even better standard candles. The key is to sort the supernovae based on their color. Credit: NASA/CXC/M. Weiss

Now here’s where cosmology comes in. Photons naturally lose energy as they travel across the expanding Universe, so the light astronomers observe coming from type 1a supernovae will always be redshifted. The magnitude of that redshift depends on the amount of dark energy that is causing the Universe to expand. It also means that the apparent brightness of a supernova (that is, how bright it looks from Earth) can be monitored to determine how quickly it is receding from our line of view. Observations of the night sky will always be a function of a specific cosmology; but because their distances can be so easily calculated, type 1a supernovae actually allow astronomers to draw a physical map of the expansion of the Universe.

Spotting a type 1a supernova in its early, explosive throes is a rare event; after all, the Universe is a pretty big place. But when it does happen, it offers observers an unparalleled opportunity to dissect the chaos that leads to such a massive explosion. Sometimes astronomers are even lucky enough to catch one right in our cosmic backyard, a feat that occurred last August when Caltech’s Palomar Transit Factory (PTF) detected a type 1a supernova in M101, a galaxy just 25 million light years away. By the way, it isn’t just professionals that got to have all the fun! Amateur and career astronomers alike were able to use this supernova (the romantically named PTF11kly) to probe the inner workings of these precious standard candles. Want to learn more about how you can get in on the action the next time around? Check out UT’s podcast, Getting Started in Amateur Astronomy for more information.

Testing the Multiverse… Observationally!

Seven Year Microwave Sky (Credit: NASA/WMAP Science Team)

[/caption]The multiverse theory is famous for its striking imagery. Just imagine our own Universe, drifting among a veritable sea of spontaneously inflating “bubble universes”, each a self-contained and causally separate pocket of higher-dimensional spacetime. It’s quite an arresting picture. However, the theory is also famous for being one of the most criticized in all of cosmology. Why? For one, the idea is remarkably difficult, if not downright impossible, to test experimentally. But now, a team of British and Canadian scientists believe they may have found a way.

Attempts to prove the multiverse theory have historically relied upon examination of the CMB radiation, relic light from the Big Bang that satellites like NASA’s Wilkinson Microwave Anisotropy Probe, or WMAP, have probed with incredible accuracy. The CMB has already allowed astronomers to map the network of large-scale structure in today’s Universe from tiny fluctuations detected by WMAP. In a similar manner, some cosmologists have hoped to comb the CMB for disk-shaped patterns that would serve as evidence of collisions with other bubble universes.

Seven Year Microwave Sky (Credit: NASA/WMAP Science Team)

Now, physicists at University College London, Imperial College London and the Perimeter Institute for Theoretical Physics have designed a computer algorithm that actually examines the WMAP data for these telltale signatures. After determining what the WMAP results would look like both with and without cosmic collisions, the team uses the algorithm to determine which scenario fits best with the actual WMAP data. Once the results are in, the team’s algorithm performs a statistical analysis to ensure that any signatures that are detected are in fact due to collisions with other universes, and are unlikely to be due to chance. As an added bonus, the algorithm also puts an upper limit on the number of collision signatures astronomers are likely to find.

While their method may sound fairly straightforward, the researchers are quick to acknowledge the difficulty of the task at hand. As UCL researcher and co-author of the paper Dr. Hiranya Peiris put it, “It’s a very hard statistical and computational problem to search for all possible radii of the collision imprints at any possible place in the sky. But,” she adds, “that’s what pricked my curiosity.”

The results of this ground-breaking project are not yet conclusive enough to determine whether we live in a multiverse or not; however, the scientists remain optimistic about the rigor of their method. The team hopes to continue its research as the CMB is probed more deeply by the Planck satellite, which began its fifth all-sky survey on July 29. The research is published in Physical Review Letters and Physical Review D.

Source: UCL

Ancient Galaxies Fed On Gas, Not Collisions

The Sombrero Galaxy. Credit: ESO/P. Barthe

[/caption]The traditional picture of galaxy growth is not pretty. In fact, it’s a kind of cosmic cannibalism: two galaxies are caught in ominous tango, eventually melding together in a fiery collision, thus spurring on an intense but short-lived bout of star formation. Now, new research suggests that most galaxies in the early Universe increased their stellar populations in a considerably less violent way, simply by burning through their own gas over long periods of time.

The research was conducted by a group of astronomers at NASA’s Spitzer Science Center in Pasadena, California. The team used the Spitzer Space Telescope to peer at 70 distant galaxies that flourished when the Universe was only 1-2 billion years old. The spectra of 70% of these galaxies showed an abundance of H alpha, an excited form of hydrogen gas that is prevalent in busy star-forming regions. Today, only one out of every thousand galaxies carries such an abundance of H alpha; in fact, the team estimates that star formation in the early Universe outpaced that of today by a factor of 100!

This split view shows how a normal spiral galaxy around our local universe (left) might have looked back in the distant universe, when astronomers think galaxies would have been filled with larger populations of hot, bright stars (right). Image credit: NASA/JPL-Caltech/STScI

Not only did these early galaxies crank out stars much faster than their modern-day counterparts, but they created much larger stars as well. By grazing on their own stores of gas, galaxies from this epoch routinely formed stars up to 100 solar masses in size.

These impressive bouts of star formation occurred over the course of hundreds of millions of years. The extremely long time scales involved suggest that while they probably played a minor role, galaxy mergers were not the main precursor to star formation in the Universe’s younger years. “This type of galactic cannibalism was rare,” said Ranga-Ram Chary, a member of the team. “Instead, we are seeing evidence for a mechanism of galaxy growth in which a typical galaxy fed itself through a steady stream of gas, making stars at a much faster rate than previously thought.” Even on cosmic scales, it would seem that slow and steady really does win the race.

Source: JPL

Most Distant Quasar Opens Window Into Early Universe

Quasar
Quasar

[/caption]Astronomers have uncovered yet another clue in their quest to understand the Universe’s early life: the most distant quasar ever observed. At a redshift of 7.1, it is a relic from when the cosmos was just 770 million years old – just 5% of its age today.

Quasars are extremely old, outrageously luminous balls of radiation that were prevalent in the early Universe. Each is thought to have been fueled at its core by an incredibly powerful supermassive black hole. The most recent discovery (which carries the romantic name ULAS J1120+0641) is noteworthy for a couple of reasons. First of all, its supermassive black hole weighs approximately two billion solar masses – an impressive feat of gravity so soon after the Big Bang. It is also incredibly bright, given its great distance. “Objects that lie at such large distance are almost impossible to find in visible-light surveys because their light is stretched by the expansion of the universe,” said Dr. Simon Dye of the University of Nottingham, a member of the team that discovered the object. “This means that by the time their light gets to Earth, most of it ends up in the infrared part of the electromagnetic spectrum.” Due to these effects, only about 100 visible quasars exist in the sky at redshifts higher than 7.

Up until recently, the most distant quasar observed was at a redshift of 6.4; but thanks to this discovery, astronomers can probe 100 million years further into the history of the Universe than ever before. Careful study of ULAS J1120+0641 and its properties will enable scientists to learn more about galaxy formation and supermassive black hole growth in early epochs. The research was published in the June 30 issue of Nature.

For further reading, see related paper by Chris Willot, Monster in the Early Universe

Source: EurekAlert

Cosmology in the Year 1 Trillion

Young binarys stars: Image credit: NASA

[/caption]Much of what is known today about the birth of the cosmos comes from astronomical observations at high redshifts. Due to the accelerated expansion of the Universe, however, astronomers of the future will be unable to use the same methods. In a trillion years or so, our own Milky Way galaxy will have merged with the Andromeda galaxy, creating a new galaxy that has been quaintly termed “Milkomeda.” All of our other galactic neighbors will have long disappeared beyond our cosmological horizon. Even the CMB will have been stretched into invisibility. So how will future Milkomedans study cosmology? How will they figure out where the Universe came from?

According to a paper published by the Harvard-Smithsonan Center for Astrophysics, these astronomers will be able to decode the secrets of the cosmos by studying stellar runaways from their own galaxy: so-called hypervelocity stars (HVSs). HVSs originate in binary or triple-star systems that wander just a hair too close to their galaxy’s central supermassive black hole. Astronomers believe that one star from the system is captured by the black hole, while the others are sent careening out of the galaxy at colossally high speeds. HVS ejections occur relatively rarely (approximately once every 10,000-100,000 years) and should continue to occur for trillions of years, given the large density of stars in the galactic center.

So how would HVSs help future astronomers study the origins of the Universe? First, these scientists would have to locate an ejected star beyond the gravitational boundary of Milkomeda. Once beyond this boundary (after about 2 billion years of travel), the acceleration of a HVS could be attributed entirely to the Hubble flow. With advanced technology, future astronomers could use the Doppler shift of its spectral lines and thus deduce Einstein’s cosmological constant and the acceleration of the Universe at large. Next, scientists could use mathematical models of galaxy formation and collapse to determine the Universe’s mass density and age at the time that Milkomeda formed. From their knowledge of the galaxy’s age, they would be able to tell when the Big Bang occurred.

Antigravity Could Replace Dark Energy as Cause of Universe’s Expansion

Annihilation
Illustration of Antimatter/Matter Annihilation. (NASA/CXC/M. Weiss)

[/caption]

Since the late 20th century, astronomers have been aware of data that suggest the universe is not only expanding, but expanding at an accelerating rate. According to the currently accepted model, this accelerated expansion is due to dark energy, a mysterious repulsive force that makes up about 73% of the energy density of the universe. Now, a new study reveals an alternative theory: that the expansion of the universe is actually due to the relationship between matter and antimatter. According to this study, matter and antimatter gravitationally repel each other and create a kind of “antigravity” that could do away with the need for dark energy in the universe.

Massimo Villata, a scientist from the Observatory of Turin in Italy, began the study with two major assumptions. First, he posited that both matter and antimatter have positive mass and energy density. Traditionally, the gravitational influence of a particle is determined solely by its mass. A positive mass value indicates that the particle will attract other particles gravitationally. Under Villata’s assumption, this applies to antiparticles as well. So under the influence of gravity, particles attract other particles and antiparticles attract other antiparticles. But what kind of force occurs between particles and antiparticles?

To resolve this question, Villata needed to institute the second assumption – that general relativity is CPT invariant. This means that the laws governing an ordinary matter particle in an ordinary field in spacetime can be applied equally well to scenarios in which charge (electric charge and internal quantum numbers), parity (spatial coordinates) and time are reversed, as they are for antimatter. When you reverse the equations of general relativity in charge, parity and time for either the particle or the field the particle is traveling in, the result is a change of sign in the gravity term, making it negative instead of positive and implying so-called antigravity between the two.

Villata cited the quaint example of an apple falling on Isaac Newton’s head. If an anti-apple falls on an anti-Earth, the two will attract and the anti-apple will hit anti-Newton on the head; however, an anti-apple cannot “fall” on regular old Earth, which is made of regular old matter. Instead, the anti-apple will fly away from Earth because of gravity’s change in sign. In other words, if general relativity is, in fact, CPT invariant, antigravity would cause particles and antiparticles to mutually repel. On a much larger scale, Villata claims that the universe is expanding because of this powerful repulsion between matter and antimatter.

What about the fact that matter and antimatter are known to annihilate each other? Villata resolved this paradox by placing antimatter far away from matter, in the enormous voids between galaxy clusters. These voids are believed to have stemmed from tiny negative fluctuations in the primordial density field and do seem to possess a kind of antigravity, repelling all matter away from them. Of course, the reason astronomers don’t actually observe any antimatter in the voids is still up in the air. In Villata’s words, “There is more than one possible answer, which will be investigated elsewhere.” The research appears in this month’s edition of Europhysics Letters.

Cosmology 101: The End

A1689-zD1, one of the brightest and most distant galaxies, is 12.8 billion light years away - an extremely far distance in our expanding universe. Image credit: NASA/ESA/JPL-Caltech/STScI

[/caption]

Welcome back to the third, and last, installment of Cosmology 101. So far, we’ve covered the history of the universe up to the present moment. But what happens next? How will our universe end? And how can we be so sure that this is how the story unfolded?

Robert Frost once wrote, “Some say the world will end in fire; some say in ice.” Likewise, some scientists have postulated that the universe could die either a dramatic, cataclysmic death – either a “Big Rip” or a “Big Crunch” – or a slower, more gradual “Big Freeze.” The ultimate fate of our cosmos has a lot to do with its shape. If the universe were open, like a saddle, and the energy density of dark energy increased without bound, the expansion rate of the cosmos would eventually become so great that even atoms would be torn apart – a Big Rip. Conversely, if the universe were closed, like a sphere, and gravity’s strength trumped the influence of dark energy, the outward expansion of the cosmos would eventually come to a halt and reverse, collapsing on itself in a Big Crunch.

Despite the poetic beauty of fire, however, current observations favor an icy end to our universe – a Big Freeze. Scientists believe that we live in a spatially flat universe whose expansion is accelerating due to the presence of dark energy; however, the total energy density of the cosmos is most likely less than or equal to the so-called “critical density,” so there will be no Big Rip. Instead, the contents of the universe will eventually drift prohibitively far away from each other and heat and energy exchange will cease. The cosmos will have reached a state of maximum entropy, and no life will be able to survive. Depressing and a bit anti-climactic? Perhaps. But it probably won’t be perceptible until the universe is at least twice its current age.

At this point you might be screaming, “How do we know all this? Isn’t it all just rampant speculation?” Well, first of all, we know without a doubt that the universe is expanding. Astronomical observations consistently demonstrate that light from distant stars is always redshifted relative to us; that is, its wavelength has been stretched due to the expansion of the cosmos. This leads to two possibilities when you wind back the clock: either the expanding universe has always existed and is infinite in age, or it began expanding from a smaller version of itself at a specific time in the past and thus has a fixed age. For a long time, proponents of the Steady State Theory endorsed the former explanation. It wasn’t until Arno Penzias and Robert Wilson discovered the cosmic microwave background in 1965 that the big bang theory became the most accepted explanation for the origin of the universe.

Why? Something as large as our cosmos takes quite a while to cool completely. If the universe did, in fact, began with the kind of blistering energies that the big bang theory predicts, astronomers should still see some leftover heat today. And they do: a uniform 3K glow evenly dispersed at every point in the sky. Not only that – but WMAP and other satellites have observed tiny inhomogeneities in the CMB that precisely match the initial spectrum of quantum fluctuations predicted by the big bang theory.

What else? Take a look at the relative abundances of light elements in the universe. Remember that during the first few minutes of the cosmos’ young life, the ambient temperature was high enough for nuclear fusion to occur. The laws of thermodynamics and the relative density of baryons (i.e. protons and neutrons) together determine exactly how much deuterium (heavy hydrogen), helium and lithium could be formed at this time. As it turns out, there is far more helium (25%!) in our current universe than could be created by nucleosynthesis in the center of stars. Meanwhile, a hot early universe – like the one postulated by the big bang theory – gives rise to the exact proportions of light elements that scientists observe in the universe today.

But wait, there’s more. The distribution of large-scale structure in the universe can be mapped extremely well based solely on observed anisotropies in the CMB. Moreover, today’s large-scale structure looks very different from that at high redshift, implying a dynamic and evolving universe. Additionally, the age of the oldest stars appears to be consistent with the age of the cosmos given by the big bang theory. Like any theory, it has its weaknesses – for instance, the horizon problem or the flatness problem or the problems of dark energy and dark matter; but overall, astronomical observations match the predictions of the big bang theory far more closely than any rival idea. Until that changes, it seems as though the big bang theory is here to stay.