Cygnus Commercial Resupply Ship ‘Janice Voss’ Berths to Space Station on 45th Apollo 11 Anniversary

The International Space Station's robotic arm, Canadarm2, grapples the Orbital Sciences' Cygnus cargo craft named "Janice Voss" on July 16, 2014. Image Credit: NASA TV

Following a nearly three day journey, an Orbital Sciences Corp. Cygnus commercial cargo freighter carrying a ton and a half of science experiments and supplies for the six person crew was successfully installed onto the International Space Station at 8:53 a.m. EDT this morning, July 16, after a flawless arrival and being firmly grasped by station astronauts deftly maneuvering the Canadarm2 robotic arm some two hours earlier.

Cygnus was captured in open space at 6:36 a.m. EDT by Commander Steve Swanson as he maneuvered the 57-foot (17-meter) Canadarm2 from a robotics workstation inside the station’s seven windowed domed Cupola, after it was delicately flown on an approach vector using GPS and LIDAR lasers to within about 32 feet (10 meters) of the massive orbiting complex.

Swanson was assisted by ESA astronaut and fellow Expedition 40 crew member Alexander Gerst working at a hardware control panel.

“Grapple confirmed” radioed Houston Mission Control as the complex soared in low orbit above Earth at 17500 MPH.

“Cygnus is captured as the ISS flew 260 miles (400 km) over northern Libya.”

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

Cygnus by the book arrival at the million pound orbiting laboratory coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission.

This mission dubbed Orbital-2, or Orb-2, marks the second of eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The supplies are critical to keep the station flying and humming with research investigations.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

The supply ship thrusters all worked perfectly normal during rendezvous and docking to station with streaming gorgeous views provided by the stations new high definition HDEV cameras.

“We now have a seventh crew member. Janice Voss is now part of Expedition 40,” radioed Swanson.

“Janice devoted her life to space and accomplished many wonderful things at NASA and Orbital Sciences, including five shuttle missions. And today, Janice’s legacy in space continues. Welcome aboard the ISS, Janice.”

The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

A robotics officer at Mission Control in Houston then remotely commanded the arm to move Cygnus into place for its berthing at the Earth-facing port on the Harmony module.

Once Cygnus was in place at the ready to latch (RTF) position, NASA astronaut and Flight Engineer Reid Wiseman monitored the Common Berthing Mechanism operations and initiated the first and second stage capture of the cargo ship to insure the craft was firmly joined.

The hard mate was completed at 8:53 a.m. EDT as the complex was flying about 260 miles over the east coast of Australia. 16 bolts were driven to firmly hold Cygnus in place to the station.

“Cygnus is now bolted to the ISS while flying 260 miles about the continent of Australia,” confirmed Houston Mission Control.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Student Space Flight teams at NASA Wallops.  Science experiments from these students representing 15 middle and high schools across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing 15 middle and high schools across America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

The crew will begin work today to remove the Centerline Berthing Camera System that provided the teams with a view of berthing operations through the hatch window.

Swanson will then pressurize and outfit the vestibule area between Harmony and Cygnus. After conducting leak checks they will open the hatch to Cygnus either later today or tomorrow and begin the unloading process, including retrieving a stash of highly desired fresh food.

The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

“Every flight is critical,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a post launch briefing at NASA Wallops. Culbertson was a NASA shuttle commander and also flew aboard the International Space Station (ISS).

“We carry a variety of types of cargo on-board, which includes food and basic supplies for the crew, and also the research.”

The cargo mission was crucial since the crew supply margin would have turned uncomfortably narrow by the Fall of 2014.

Cygnus will remain attached to the station approximately 30 days until August 15.

For the destructive and fiery return to Earth, the crew will load Cygnus with approximately 1,340 kg (2950 lbs) of trash for disposal upon atmospheric reentry over the Pacific Ocean approximately five days later after undocking.

The Orb-2 launch was postponed about a month from June 9 to conduct a thorough re-inspection of the two Russian built and US modified Aerojet AJ26 engines that power the rocket’s first stage after a test failure of a different engine on May 22 at NASA’s Stennis Space Center in Mississippi resulted in extensive damage.

The July 13 liftoff marked the fourth successful launch of the 132 foot tall Antares in the past 15 months, Culbertson noted.

The first Antares was launched from NASA Wallops in April 2013. And the Orb-2 mission also marks the third deployment of Cygnus in less than a year.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

45 Years Ago Today: Relive the Historic Apollo 11 Launch

The Saturn V rocket bearing Apollo 11 lifts off from the Kennedy Space Center on July 20, 1969. Credit: NASA

45 years ago today — on July 16th, 1969 — the Apollo 11 crew left Earth for the first human mission to land on the Moon. Launching on at Saturn V rocket from Cape Kennedy, the mission sent Commander Neil Armstrong, Command Module Pilot Michael Collins and Lunar Module Pilot Edwin “Buzz” Aldrin into an initial Earth-orbit, and then two hours and 44 minutes after launch, another burn of the engines put Apollo 11 into a translunar orbit.

If you want to re-live the launch and the mission, there are several ways you can participate. We’ve included here a few different replays of the launch, varying from a quick recap to a detailed look at the launch itself. Above is the newscast of the launch from CBS news with Walter Cronkite, and we’ve got more below.

Also below is information on several webcasts and other events that NASA has planned to commemorate the anniversary.

Here’s a detailed look at the launch in ultra-slow motion, with narration:

Here is some remastered high definition footage from NASA of the Apollo 11 launch, but there’s no audio.

And here’s a quick look at the entire Apollo 11 mission, all in just 100 seconds from Spacecraft Films:

Here are some ways to participate in the anniversary:

On Twitter, @ReliveApollo11 from the Smithsonian National Air and Space Museum is reliving the highlights from Apollo 11 mission to the Moon in “real time” 45 years later.

Also @NASAHistory is tweeting images and events from the mission, and journalist Amy Shira Teitel (@astVintageSpace ) is tweeting out some interesting pictures, facts and quotes from the mission, in “real time” (again 45 years later).

To join the ongoing conversation on social media about the anniversary and NASA’s deep space exploration plans, use the hashtags #NextGiantLeap and #Apollo45.

On Friday, July 18 at 10:30 a.m. PDT (1:30 p.m. EDT), NASA TV will air a live conversation about the future of space exploration with actor, director and narrator Morgan Freeman. He will speak at NASA’s Jet Propulsion Laboratory in Pasadena, California, about his personal vision for space. The event also will include NASA astronaut Reid Wiseman participating from the International Space Station.

If you don’t have NASA TV on your cable or satellite feeds, you can watch online here.

Also on Friday at 3:30 p.m. EDT, NASA will host a discussion with Buzz Aldrin and astronaut Mike Massimino at the Intrepid Sea, Air & Space Museum in New York during the Intrepid Space and Science Festival. NASA also will have exhibits and activities at the festival Thursday, July 17 through Saturday, July 19. There’s more information about the festival here.

On Sunday, July 20 at 7:39 p.m. PDT (10:39 p.m. EDT), when Armstrong opened the spacecraft hatch to begin the first spacewalk on the moon, NASA TV will replay the restored footage of Armstrong and Aldrin’s historic steps on the lunar surface.

On Monday, July 21 at 7 a.m. PDT (10 a.m. EDT) from the agency’s Kennedy Space Center in Florida, NASA TV will air live coverage of the renaming of the center’s Operations and Checkout Building in honor of Armstrong, who passed away in 2012. The renaming ceremony will include NASA Administrator Charles Bolden, Kennedy Center Director Robert Cabana, Apollo 11’s Collins, Aldrin and astronaut Jim Lovell, who was the mission’s back-up commander. International Space Station NASA astronauts Wiseman and Steve Swanson, who is the current station commander, also will take part in the ceremony from their orbiting laboratory 260 miles above Earth.

Kennedy’s Operations and Checkout Building has played a vital role in NASA’s spaceflight history. It was used during the Apollo program to process and test the command, service and lunar modules. Today, the facility is being used to process and assemble NASA’s Orion spacecraft, which the agency will use to send astronauts to an asteroid in the 2020s and Mars in the 2030s.

On Thursday, July 24 at 3 p.m. PDT (6 p.m. EDT), which is the 45th anniversary of Apollo 11’s return to Earth, the agency will host a panel discussion — called NASA’s Next Giant Leap — from Comic-Con International in San Diego. Moderated by actor Seth Green, the panel includes Aldrin, NASA Planetary Science Division Director Jim Green, JPL systems engineer Bobak Ferdowsi, and NASA astronaut Mike Fincke, who will talk about Orion and the Space Launch System rocket, which will carry humans on America’s next great adventure in space.

The NASA.gov website will host features, videos, and historic images and audio clips that highlight the Apollo 11 anniversary, as well as the future of human spaceflight. Find it all here.

Also, the Slooh telescope team will celebrate the 45th anniversary of the Apollo 11 landing with a high-definition broadcast of the lunar surface on Sunday, July 20th starting at 5:30 PM PDT / 8:30 PM EDT / 00:30 UTC (7/21) – (check International Times here) Slooh will broadcast the event live from a special feed located in Dubai in the United Arab Emirates.

Viewers can watch the event unfold free on Slooh.com, or in the webcast below. The image stream will be accompanied by discussions led by Slooh host, Geoff Fox, Slooh astronomer, Bob Berman, Slooh Observatory Engineer, Paul Cox, along with numerous special guests, including documentary filmmaker, Duncan Copp, and science journalist, Andrew Chaikin. Viewers can follow updates on the show by using the hashtag #SloohApollo11.

Buzz Aldrin Wants to Know: Where Were You When Apollo 11 Landed on the Moon?

Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA

If you are 45 years or older, chances are you know where you were and what you were doing on July 20th, 1969 when Apollo 11 landed on the Moon. Apollo 11 lunar module pilot Buzz Aldrin says that when he travels around the world, people always want to tell him their stories from that day when he and Neil Armstrong walked on the Moon. And he says he actually likes to hear all these stories because he and his crewmates missed all the hubbub back on Earth, since they were decidedly off making history.

And now you can tell Buzz your story own story about Apollo 11, and share it with the world, as well. To celebrate the upcoming 45th anniversary of the Apollo 11 Moon landing, Buzz has just launched a social media campaign where you can share your story, your parents’, your grandparents’, or your friends’ stories of that moment and how it inspired you.

“I feel we need to remind people about our Apollo missions and that we can still do impossible things,” Buzz says in this new video, above.

You can tell your story on social media, using the hashtag #Apollo45, or visit the Apollo45 You Tube Channel where you can post a video of your recollections. Videos will be shared from the public as well as featured videos from astronauts, public figures and celebrities.

This can be a family and/or generational project. As Buzz says, “Kids, help your parents if they don’t know how to use their smartphones. Get them to tell you their memories.”

We’d also like to see your stories here on Universe Today. Post in the comment section below and if you create a video, post the link.

I’ll start with my story:

I was quite young, but I do remember sitting on the floor with my sister in front of the television set, basically glued there since we didn’t want to miss a thing. We felt really lucky because our parents let us stay up late to watch the first moonwalk. Later, my Mom got me a T-shirt that had an eagle (bird) landing on the Moon with an Apollo 11 mission patch and the date “July 20, 1969” emblazoned on it, and I basically wore it non-stop.

Hat tip to Leonard David for letting us know about #Apollo45!

NASA’s Orion Deep Space Capsule Completes Most Complex Parachute Test Ahead of Maiden Launch

A test version of NASA’s Orion manned spacecraft descends under its three main parachutes above the U.S. Army Proving Ground in Arizona in the agency’s most difficult test of the parachutes system’s performance to prepare Orion for its first trip to space in December 2014. Credit: NASA/Rad Sinyak

A test version of NASA’s Orion deep space capsule has completed its most complex and last full flight-like parachute drop test on June 25 ahead of the maiden launch on the EFT-1 mission now slated for early December 2014.

The descent test was conducted at an altitude of 35,000 feet over the Arizona desert at the U.S. Army’s Yuma Proving Ground by pulling the test vehicle out of a huge C-17 cargo aircraft.

The test also included the addition of several added stress tests to check out the ability of the parachute system to compensate and examine capsule and astronaut crew survival via several potential failure modes.

For example, engineers rigged one of the main parachutes to skip the intermediate phase of the three-phase process to unfurl each of Orion’s three parachutes, called reefing.

“This tested whether one of the main parachutes could go directly from opening a little to being fully open without an intermediary step, proving the system can tolerate potential failures,” according to NASA.

The goal is to prove that that parachute system will slow Orion to ensure a safe landing speed for the astronaut crews returning from deep space missions to the Moon, Asteroids and eventually Mars.

The Orion crew module for Exploration Flight Test-1 is shown in the Final Assembly and System Testing (FAST) Cell, positioned over the service module just prior to mating the two sections together. Credit:   NASA/Rad Sinyak
The Orion crew module for Exploration Flight Test-1 is shown in the Final Assembly and System Testing (FAST) Cell, positioned over the service module just prior to mating the two sections together. Credit: NASA/Rad Sinyak

“We’ve put the parachutes through their paces in ground and airdrop testing in just about every conceivable way before we begin sending them into space on Exploration Flight Test (EFT)-1 before the year’s done,” said Orion Program Manager Mark Geyer in a state

“The series of tests has proven the system and will help ensure crew and mission safety for our astronauts in the future.”

Orion is slated to launch on its inaugural unmanned EFT-1 test flight in December 2014 atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket from Cape Canaveral, Florida.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida.  Service module at bottom.  Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Service module at bottom. Credit: Ken Kremer/kenkremer.com

This test also marked the last time that the entire parachute sequence involving the deployment of all three 116 foot-wide main chutes will be tested before the December launch.

For some of the parachutes, this was the highest altitude drop test attempted.

“Engineers also put additional stresses on the parachutes by allowing the test version of Orion to free fall for 10 seconds, which increased the vehicle’s speed and aerodynamic pressure,” NASA noted in a statement.

The parachute deployment and unfurling can only begin after jettisoning of the spacecraft’s forward bay cover. The chutes are housed below the cover which protects the chutes until reentry into Earth’s atmosphere.

The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

One of the primary goals of NASA’s eagerly anticipated Orion EFT-1 uncrewed test flight is to test the efficacy of the heat shield in protecting the vehicle – and future human astronauts – from excruciating temperatures reaching 4000 degrees Fahrenheit (2200 C) during scorching re-entry heating.

At the conclusion of the EFT-1 flight, the detached Orion capsule plunges back and re-enters the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).

“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.

The parachute system comprising of two drogue parachutes and a trio of main parachutes – nearly the size of a football field – will then unfurl to slow Orion down to just 20 mph for a safe splashdown and recovery by the US Navy in the Pacific Ocean.

The Orion EFT-1 mission will end with a splashdown in the Pacific Ocean. During the stationary recovery test of Orion at Norfolk Naval Base on Aug. 15, 2013, US Navy divers attached tow lines and led the test capsule to a flooded well deck on the USS Arlington. Credit: Ken Kremer/kenkremer.com.
The Orion EFT-1 mission will end with a splashdown in the Pacific Ocean. During the stationary recovery test of Orion at Norfolk Naval Base on Aug. 15, 2013, US Navy divers attached tow lines and led the test capsule to a flooded well deck on the USS Arlington. Credit: Ken Kremer/kenkremer.com.

Another drop test scheduled for August will test the combined failure of one drogue parachute and one main parachute, as well as new parachute design features, says NASA.

Meanwhile, Orion’s prime contractor Lockheed Martin is finishing assembly and test operations of the EFT-1 capsule inside the Operations and Checkout Facility (O & C) at the Kennedy Space Center (KSC) flying in December’s launch

Stay tuned here for Ken’s continuing Orion, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Opportunity Peers Out from ‘Pillinger Point’ – Honoring British Beagle 2 Mars Scientist Where Ancient Water Flowed

Opportunity Mars rover peers into vast Endeavour Crater from Pillinger Point mountain ridge named in honor of Colin Pillinger, the Principal Investigator for the British Beagle 2 lander built to search for life on Mars. Pillinger passed away from a brain hemorrhage on May 7, 2014. This navcam camera photo mosaic was assembled from images taken on June 5, 2014 (Sol 3684) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

NASA’s decade old Opportunity rover has reached a long sought after region of aluminum-rich clay mineral outcrops at a new Endeavour crater ridge now “named ‘Pillinger Point’ after Colin Pillinger the Principal Investigator for the [British] Beagle 2 Mars lander”, Prof. Ray Arvidson, Deputy Principal Investigator for the rover, told Universe Today exclusively. See above the spectacular panoramic view from ‘Pillinger Point’ – where ancient water once flowed billions of year ago.

The Beagle 2 lander was built to search for signs of life on Mars.

The Mars Exploration Rover (MER) team named the noteworthy ridge in honor of Prof. Colin Pillinger – a British planetary scientist at the Open University in Milton Keynes, who passed away at the age of 70 on May 7, 2014.

‘Pillinger Point’ is a scientifically bountiful place possessing both clay mineral outcrops and mineral veins where “waters came up through the cracks”, Arvidson explained to me.

Since water is a prerequisite for life as we know it, this is a truly fitting tribute to name Opportunity’s current exploration site ‘Pillinger Point’ after Prof. Pillinger.

See our new photo mosaic above captured by Opportunity peering out from ‘Pillinger Point’ ridge on June 5, 2014 (Sol 3684) and showing a panoramic view around the eroded mountain ridge and into vast Endeavour crater.

The gigantic crater spans 14 miles (22 kilometers) in diameter.

See below our Opportunity 10 Year traverse map showing the location of Pillinger Point along the segmented rim of Endeavour crater.

British planetary scientist Colin Pillinger with the Beagle 2 lander.
British planetary scientist Colin Pillinger with the Beagle 2 lander.

Pillinger Point is situated south of Solander Point and Murray Ridge along the western rim of Endeavour in a region with caches of clay minerals indicative of an ancient Martian habitable zone.

For the past several months, the six wheeled robot has been trekking southwards from Solander towards the exposures of aluminum-rich clays – now named Pillinger Point- detected from orbit by the CRISM spectrometer aboard NASA’s powerful Martian ‘Spysat’ – the Mars Reconnaissance Orbiter (MRO) – while gathering context data at rock outcrops along the winding way.

“We are about 3/5 of the way along the outcrops that show an Al-OH [aluminum-hydroxl] montmorillonite [clay mineral] signature at 2.2 micrometers from CRISM along track oversampled data,” Arvidson told me.

“We have another ~160 meters to go before reaching a break in the outcrops and a broad valley.”

The rover mission scientists ultimate goal is travel even further south to ‘Cape Tribulation’ which holds a motherlode of the ‘phyllosilicate’ clay minerals based on extensive CRISM measurements accomplished earlier at Arvidson’s direction.

“The idea is to characterize the outcrops as we go and then once we reach the valley travel quickly to Cape Tribulation and the smectite valley, which is still ~2 km to the south of the present rover location,” Arvidson explained.

Mars Express and Beagle 2 were launched in 2003, the same year as NASA’s twin rovers Spirit and Opportunity, on their interplanetary voyages to help unlock the mysteries of Mars potential for supporting microbial life forms.

Pillinger was the driving force behind the British built Beagle 2 lander which flew to the Red Planet piggybacked on ESA’s Mars Express orbiter. Unfortunately Beagle 2 vanished without a trace after being deployed from the orbiter on Dec. 19, 2003 with an expected air bag assisted landing on Christmas Day, Dec. 25, 2003.

In an obituary by the BBC, Dr David Parker, the chief executive of the UK Space Agency, said that Prof. Pillinger had played a critical role in raising the profile of the British space programme and had inspired “young people to dream big dreams”.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and also clearly shows the distant rim. See the complete panorama below. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and also clearly shows the distant rim. See the complete panorama below. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

During his distinguished career Pillinger also analyzed lunar rock samples from NASA’s Apollo moon landing missions and worked on ESA’s Rosetta mission.

“It’s important to note that Colin’s contribution to planetary science goes back to working on Moon samples from Apollo, as well as his work on meteorites,” Dr Parker told the BBC.

Today, June 16, marks Opportunity’s 3696th Sol or Martian Day roving Mars – compared to a warranty of just 90 Sols.

So far she has snapped over 193,400 amazing images on the first overland expedition across the Red Planet.

Her total odometry stands at over 24.51 miles (39.44 kilometers) since touchdown on Jan. 24, 2004 at Meridiani Planum.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater's western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge.  This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Meanwhile on the opposite side of Mars, Opportunity’s younger sister rover Curiosity is trekking towards gigantic Mount Sharp after drilling into her 3rd Red Planet rock at Kimberley.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

Traverse Map for NASA’s Opportunity rover from 2004 to 2014 - A Decade on Mars. This map shows the entire path the rover has driven during a decade on Mars and over 3692 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location along Pillinger Point ridge south of Solander Point summit at the western rim of Endeavour Crater and heading to clay minerals at Cape Tribulation.  Opportunity discovered clay minerals at Esperance - indicative of a habitable zone.  Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2014 – A Decade on Mars
This map shows the entire path the rover has driven during a decade on Mars and over 3692 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location along Pillinger Point ridge south of Solander Point summit at the western rim of Endeavour Crater and heading to clay minerals at Cape Tribulation. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer

Hulk Smash! Collision That Formed Our Moon Shows Up In Lunar Rocks, Study Says

Artist's conception of two celestial bodies smacking into each other. Such a collision is believed to have formed Earth's moon. Credit: NASA/JPL-Caltech

Billions of years ago, so the theory goes, a Mars-sized body (sometimes called “Theia”) smashed into our young planet and caused a near-catastrophe. Earth fortunately survived the risk of blowing apart, and the fragments from the crash gradually coalesced into the Moon that we see today.

Even though this happened a heck of a long time ago, scientists believe they have found traces of Theia in lunar rocks pulled from the Apollo missions.

The isotopes or types of oxygen revealed in the new research appear to be different between the Earth and the Moon. And that’s important, because it implies that a body of different composition caused the changes. “If the Moon formed predominantly from the fragments of Theia, as predicted by most numerical models, the Earth and Moon should differ,” the study states.

An airplane at about 2,400 meters above the ground  passes in front of the Moon on its way to landing at the Charles de Gaulle Airport in Paris, France. Taken from about 70 km from Paris. Credit and copyright: Sebastien Lebrigand.
An airplane at about 2,400 meters above the ground passes in front of the Moon on its way to landing at the Charles de Gaulle Airport in Paris, France. Taken from about 70 km from Paris. Credit and copyright: Sebastien Lebrigand.

Scientists scanned samples from the Apollo 11, 12 and 16 missions with scanning electron microscopes that are more powerful than what was available in the 1960s and 1970s, when scientists first looked at these samples from the manned moon missions.

Before, the “resolution” of these microscopes couldn’t find any significant differences, but the new data reveals the moon rocks have 12 parts per million more oxygen-17 than the Earth rocks.

“The differences are small and difficult to detect, but they are there,” stated lead researcher Daniel Herwartz, who was formerly with the University of Gottingen and is now with the University of Cologne. “This means two things; firstly we can now be reasonably sure that the giant collision took place. Secondly, it gives us an idea of the geochemistry of Theia.”

The work was published in Science and will also be presented at the Goldschmidt geochemistry conference in California on June 11.

Watch All The Apollo Saturn V Rockets Blast Off At The Same Time

Screenshot of a video showing all the Saturn V launches happening at the same time. Credit: SpaceOperaFR/YouTube (screenshot)

Editor’s note: We posted this yesterday only to find that the original video we used had been pulled. Now, we’ve reposted the article with a new and improved version of the video, thanks to Spacecraft Films.

To the moon! The goal people most remember from the Apollo program was setting foot on the surface of our closest neighbor. To get there required a heck of a lot of firepower, bundled in the Saturn V rocket. The video above gives you the unique treat of watching each rocket launch at the same time.

Some notes on the rockets you see:

  • Apollos 4 and 6 were uncrewed test flights.
  • Apollo 9 was an Earth-orbit flight to (principally) test the lunar module.
  • Apollo 8 and 10 were both flights around the moon (with no lunar landing).
  • Apollo 13 was originally scheduled to land on the moon but famously experienced a dangerous explosion that forced the astronauts to come back to Earth early — but safely.
  • Apollos 11, 12, 14, 15, 16 and 17 safely made it to the moon’s surface and back.
  • Skylab’s launch was also uncrewed; the Saturn V was used in this case to send a space station into Earth’s orbit that was used by three crews in the 1970s.
  • You don’t see Apollo 7 pictured here because it did not use the Saturn V rocket; it instead used the Saturn IB. It was an Earth-orbiting flight and the first successful manned one of the Apollo program. (Apollo 1 was the first scheduled crew, but the three men died in a launch pad fire.)

And if this isn’t enough firepower for you, how about all 135 space shuttle launches at the same time?

Read more about the Saturn V at NASA and the Smithsonian National Air and Space Museum.

(h/t Sploid)

All Saturn V Launches At Once from Spacecraft Films on Vimeo.

Want to Measure the Distance to the Moon Yourself? Now You Can!

The dazzling full moon sets behind the Very Large Telescope in Chile’s Atacama Desert in this photo released June 7, 2010 by the European Southern Observatory. The moon appears larger than normal due to an optical illusion of perspective. Image Credit: Gordon Gillet, ESO.

Astronomy is a discipline pursued at a distance. And yet, actually measuring that last word — distance — can be incredibly tricky, even if we set our sights as nearby as the Moon.

But now astronomers from the University of Antioquia, Colombia, have devised a clever method that allows citizen scientists to measure the Moon’s distance with only their digital camera and smartphone.

“Today a plethora of advanced and accessible technological devices such as smartphones, tablets, digital cameras and precise clocks, is opening a new door to the realm of ‘do-it-yourself-science’ and from there to the possibility of measuring the local Universe by oneself,” writes lead author Jorge Zuluaga in his recently submitted paper.

While ancient astronomers devised clever methods to measure the local Universe, it took nearly two millennia before we finally perfected the distance to the Moon. Now, we can bounce powerful lasers off the mirrors placed on the Lunar surface by the Apollo Astronauts. The amount of time it takes for the laser beam to return to Earth gives an incredibly precise measurement of the Moon’s distance, within a few centimeters.

But this modern technique is “far from the realm and technological capacities of amateur astronomers and nonscientist citizens,” writes Zuluaga. In order to bring the local Universe into the hands of citizen scientists, Zuluaga and colleagues have devised an easy method to measure the distance to the Moon.

The trick is in observing how the apparent size of the Moon changes with time.

As the moon rises its distance to an observer on the surface of the Earth is slightly reduced.  Image Credit: Zuluaga et al.
As the moon rises its distance to an observer on the surface of the Earth is slightly reduced.
Image Credit: Zuluaga et al.

While the Moon might seem larger, and therefore closer, when it’s on the horizon than when it’s in the sky — it’s actually the opposite. The distance from the Moon to any observer on Earth decreases as the Moon rises in the sky. It’s more distant when it’s on the horizon than when it’s at the Zenith. Note: the Moon’s distance to the center of the Earth remains approximately constant throughout the night.

The direct consequence of this is that the angular size of the moon is larger — by as much as 1.7 percent — when it’s at the Zenith than when it’s on the horizon. While this change is far too small for our eyes to detect, most modern personal cameras have now reached the resolution capable of capturing the difference.

So with a good camera, a smart phone and a little trig you can measure the distance to the Moon yourself. Here’s how:

1.) Step outside on a clear night when there’s a full Moon. Set your camera up on a tripod, pointing at the Moon.

2.) With every image of the Moon you’ll need to know the Moon’s approximate elevation. Most smartphones have various apps that allow you to measure the camera’s angle based on the tilt of the phone. By aligning the phone with the camera you can measure the elevation of the Moon accurately.

3.) For every image you’ll need to measure the apparent diameter of the Moon in pixels, seeing an increase as the Moon rises higher in the sky.

4.) Lastly, the Moon’s distance can be measured from only two images (of course the more images the better you beat down any error) using this relatively simple equation:

Screen Shot 2014-05-27 at 11.47.25 AM

where d(t) is the distance from the Moon to your location on Earth, RE is the radius of the Earth, ht(t) is the elevation of the Moon for your second image, α(t)
is the relative apparent size of the Moon, or the apparent size of the Moon in your second image divided by the initial apparent size of the Moon in your first image and ht,0 is the initial elevation of the Moon for your first image.

So with a few pictures and a little math, you can measure the distance to the Moon.

“Our aim here is not to provide an improved measurement of a well-known astronomical quantity, but rather to demonstrate how the public could be engaged in scientific endeavors and how using simple instrumentation and readily available technological devices such as smartphones and digital cameras, any person can measure the local Universe as ancient astronomers did,” writes Zuluaga.

The paper has been submitted to the American Journal of Physics and is available for download here.

Watch the Trailer for “The Last Man on the Moon”

Gene Cernan on the Moon during the final EVA of the Apollo 17 mission, Dec. 13, 1972 (NASA/JSC scan)

On December 14, 1972, at about 5:40 a.m. GMT, Apollo 17 astronaut Eugene Andrew “Gene” Cernan returned to the lunar module Challenger after the end of the third mission EVA to join Harrison “Jack” Schmitt, completing nearly two and a half days of surface operations within the Taurus-Littrow site and officially becoming the last human to set foot upon the lunar surface. No one has returned since, and to this day the 80-year-old Cernan still holds the title of “last man on the Moon.”

If that’s not the perfect setup for a documentary film, I don’t know what is. Luckily for us there’s one in the works.

“The Last Man on the Moon,” from UK-based Mark Stewart Productions, tells the story of Gene Cernan and his accomplishments against the backdrop of the Apollo era, when superpowers competed for dominance in space and hotshot flyboys became international heroes. With firsthand accounts from Cernan himself and his family, along with several other astronauts and NASA celebrities, it’s an emotional and intimate account of America’s last lunar voyage.

Watch the trailer below:

According to IMDB the 99-minute documentary directed by Mark Craig is slated for release in the UK (and hopefully U.S.!) sometime this year, although an exact date isn’t listed. There have been advance screenings very recently, at some of which Cernan was present for Q&A sessions. Some viewers are calling it “the best space documentary they have seen” so needless to say I’m pretty excited about it!

You can keep up with the status of the film (and see some exclusive astronaut photos) by liking the Facebook page here and joining the mailing list on the official site.

And yes, we do need more films like this.

“I really wanted to reach out, stick it in my spacesuit and bring it home and show it to everybody: this is what it feels like.
– Gene Cernan

Earth over the LM seen from the Apollo 17 landing site (NASA/JSC scan)
Earth over the LM seen from the Apollo 17 landing site (NASA/JSC scan)

Video © Mark Stewart Productions. All rights reserved.

Assembling and Launching Boeing’s CST-100 Private Space Taxi – One on One Interview with Chris Ferguson, Last Shuttle Commander; Part 2

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Story updated[/caption]

KENNEDY SPACE CENTER, FL – Boeing expects to begin “assembly operations of our commercial CST-100 manned capsule soon at the Kennedy Space Center,” Chris Ferguson, commander of NASA’s final shuttle flight and now director of Boeing’s Crew and Mission Operations told Universe Today in an exclusive one-on-one interview about Boeing’s space efforts. In part 1, Ferguson described the maiden orbital test flights to the ISS set for 2017 – here.

In part 2, we focus our discussion on Boeings’ strategy for building and launching the CST-100 ‘space taxi’ as a truly commercial space endeavor.

To begin I asked; Where will Boeing build the CST-100?

“The CST-100 will be manufactured at the Kennedy Space Center (KSC) in Florida inside a former shuttle hanger known as Orbiter Processing Facility 3, or OPF-3, which is now [transformed into] a Boeing processing facility,” Ferguson told me. “Over 300 people will be employed.”

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

During the shuttle era, all three of NASA’s Orbiter Processing Facilities (OPFs) were a constant beehive of activity for thousands of shuttle workers busily refurbishing the majestic orbiters for their next missions to space. But following Ferguson’s final flight on the STS-135 mission to the ISS in 2011, NASA sought new uses for the now dormant facilities.

So Boeing signed a lease for OPF-3 with Space Florida, a state agency that spent some $20 million modernizing the approximately 64,000 square foot hanger for manufacturing by ripping out all the no longer needed shuttle era scaffolding, hardware and equipment previously used to process the orbiters between orbital missions.

Boeing takes over the OPF-3 lease in late June 2014 following an official handover ceremony from Space Florida. Assembly begins soon thereafter.

When will CST-100 spacecraft manufacturing begin?

“The pieces are coming one by one from all over the country,” Ferguson explained. “Parts from our vendors are already starting to show up for our test article.

“Assembly of the test article in Florida starts soon.”

The CST-100 is being designed at Boeing’s Houston Product Support Center in Texas.

It is a reusable capsule comprised of a crew and service module that can carry a mix of cargo and up to seven crew members to the International Space Station (ISS) and must meet stringent safety and reliability standards.

How will the pressure vessel be manufactured? Will it involve friction stir welding as is the case for NASA’s Orion deep space manned capsule?

“There are no welds,” he informed.

“The pressure vessel is coming from Spincraft, an aerospace manufacturing company in Massachusetts.”

Spincraft has extensive space vehicle experience building tanks and assorted critical components for the shuttle and other rockets.

“The capsule is produced by Spincraft using a weld-free process. It’s made as a single piece by a proprietary spun form process and machined out from a big piece of metal.”

The capsule measures approximately 4.56 meters (175 inches) in diameter.

“The service module will be fabricated in Florida.”

The combined crew and service modules are about 5.03 meters (16.5 feet) in length.

“In two years in 2016, our CST-100 will look like the Orion EFT-1 capsule does now at KSC, nearly complete [and ready for the maiden test flight]. Orion is really coming along,” Ferguson beamed while contemplating a bright future for US manned spaceflight.

He is saddened that it’s been over 1000 days since his crew’s landing inside shuttle Atlantis in July 2011.

Early version of Boeing CST-100 pressure vessel mockup inside OPF-3 and surrounded by shuttle era scaffolding at the Kennedy Space Center, FL.   Credit: Ken Kremer – kenkremer.com
Early version of Boeing CST-100 pressure vessel mockup inside OPF-3 and surrounded by shuttle era scaffolding at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

With Boeing’s long history in aircraft and aerospace manufacturing, the CST-100 is being designed and built as a truly commercial endeavor.

Therefore the spacecraft team is able to reach across Boeing’s different divisions and diverse engineering spectrum and draw on a vast wealth of in-house expertise, potentially giving them a leg up on commercial crew competitors like SpaceX and Sierra Nevada Corp.

Nevertheless, designing and building a completely new manned spaceship is a daunting task for anyone. And no country or company has done it in decades.

How hard has this effort been to create the CST-100? – And do it with very slim funding from NASA and Boeing.

“Well any preconceived notion I had on building a human rated spacecraft has been completely erased. This is really hard work to build a human rated spacecraft!” Ferguson emphasized.

“And the budget is very small – without a lucrative government contract as used in the past to build these kind of spacecraft.”

“Our budget now is an order of magnitude less than to build the shuttle – which was about $35 to $42 Billion in 2011 dollars. The budget is a lot less now.”

Read more about the travails of NASA’s commercial crew funding situation in Part 1.

The team size now is just a fraction of what it was for past US crewed spaceships.

“So to support this we have a pretty small team.”

“The CST-100 team of a couple hundred folks works very hard!”

“For comparison, the space shuttle had 30,000 people working on it at the peak. By early 2011 there were 11,000. We flew on STS-135 with only 4,000 people in July 2011.”

NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011.   From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS). Credit: Ken Kremer - kenkremer.com
NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011. From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS).
Credit: Ken Kremer – kenkremer.com

Boeing’s design philosophy is straightforward; “It’s a simple ride up to and back from space,” Ferguson emphasized to me.

Next we turned to the venerable Atlas V rocket that will launch Boeing’s proposed space taxi. But before it can launch people it must first be human rated, certified as safe and outfitted with an Emergency Detection System (EDS) to save astronauts lives in a split second in case of a sudden and catastrophic in-flight anomaly.

The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing
The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing

United Launch Alliance (ULA) builds the two stage Atlas V and is responsible for human rating the vehicle which has a virtually unblemished launch record of boosting a wide array of advanced US military satellites and NASA’s precious one-of-a-kind robotic science explorers like Curiosity, JUNO, MAVEN and MMS on far flung interplanetary voyages of discovery.

What modifications are required to man rate the Atlas V to launch humans on Boeing’s CST-100?

“We will launch on an Atlas V that’s being retrofitted to meet NASA’s NPR human rating standards for redundancy and the required levels of fault tolerance,” Ferguson explained.

“So the rocket will have all the safety NASA wants when it flies humans.”

“Now with the CST-100 you can do all that in a smaller package [compared to shuttle].”

“The Atlas V will also be modified by ULA to include an Emergency Detection System (EDS). It’s a system not unlike what Apollo and Gemini had, which was much more rudimentary but quite evolved for its day.”

“Their EDS would monitor critical parameters like pitch, roll, yaw rates, critical engine parameters. It measures the time to criticality. You know the time to criticality for certain failures is so short that they didn’t think humans could react to it in time. So it was essentially automated.”

“So if it [EDS] sensed large pitch or yaw excursions, it would self jettison. And the escape system would kick in automatically.”

The Atlas V is already highly reliable. The EDS is one of the few systems that had to be added for human flights?

“Yes.”

“We also wanted a better abort system performance to go with the two engine Centaur upper stage we elected to use instead of the single engine Centaur.”

The purpose is to shut down the Centaur engine firing [in an emergency].”

“The two engine Centaur has flown many times. But it has never flown on an Atlas V. So there is a little bit of recertification and qualification to be done by ULA to go along with that also.”

Does that require a lot of work?

“ULA doesn’t seem to think the work to be done is all that significant. There is some work to be done.”

So it’s not a showstopper. Can ULA meet your 2017 launch schedule?

“Yes.”

“Before an engine fails it vibrates. So when you talk about automated ‘Red Lines’ you have to be careful that first you “Do No Harm” – and not make the situation even worse.”

“So we’ll see how ULA does building this,” Ferguson stated.

Artist's concept shows Boeing's CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing
Artist’s concept shows Boeing’s CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing

The future of the CST-100 project hinges on whether NASA awards Boeing a contract to continue development and assembly work in the next round of funding (dubbed CCtCAP) from the agency’s Commercial Crew Program (CCP). The CCP seed money fosters development of a safe, reliable and new US commercial human spaceship to low Earth orbit as a public/private partnership.

NASA’s announcement of the CCP contract winners is expected around late summer 2014.

Based on my discussions with NASA officials, it seems likely that the agency could select at least two winners to move on – to spur competition and thereby innovation – from among the trio of American aerospace firms competing.

Besides Boeing’s CST-100, the SpaceX Dragon and Sierra Nevada Dream Chaser vehicles are also in the running for the contract to restore America’s capability to fly humans to Earth orbit and the International Space Station (ISS) by 2017.

In Part 3 we’ll discuss with Chris Ferguson the requirements for how many and who will fly aboard the CST-100 and much more. Be sure to read Part 1 here.

Early version of Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com
Early version of Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Boeing CST-100 space taxi launch atop Atlas V booster will resemble this photo of NASA’s Mars bound MAVEN spacecraft launched by Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer (Universe Today) meet at emergency M-113 Tank Practice during crew pre-launch events at the Kennedy Space Center in the weeks before Atlantis July 8, 2011 liftoff. Credit: Ken Kremer- kenkremer.com
STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer (Universe Today) meet at emergency M-113 Tank Practice during crew pre-launch events at the Kennedy Space Center in the weeks before Atlantis July 8, 2011 liftoff. Credit: Ken Kremer- kenkremer.com