China’s Chang’e-3 Moon Rover Descends to Lower Orbit Sets Up Historic Soft Landing

China's lunar probe Chang'e-3 is expected to land on Sinus Iridum (Bay of Rainbows) of the moon in mid-December 2013. Credit: Xinhua

All systems appear to be “GO” for the world’s first attempt to soft land a space probe on the Moon in nearly four decades.

China’s maiden moon landing probe – Chang’e-3 – is slated to attempt the history making landing this weekend on a lava plain in the Bay of Rainbows, or Sinus Iridum region.

Chinese space engineers at the Beijing Aerospace Control Center (BACC) paved the way for the historic touchdown by successfully commanding Chang’e-3 to descend from the 100 km-high lunar circular orbit it reached just one week ago on Dec. 6, to “an elliptical orbit with its nearest point about 15 km away from the moon’s surface”, according to a statement from China’s State Administration of Science, Technology and Industry for National Defense (SASTIND).

UPDATE: CCTV is providing live landing coverage

The first pictures taken from the alien lunar surface in some 37 years are expected to be transmitted within days or hours of touchdown planned as early as Saturday, Dec. 14, at 9:40 p.m. Beijing local time, 8:40 a.m. EST.

CCTV, China’s state run network, carried the launch live. It remains to be seen whether they will have live coverage of the landing since there have been no programming announcements.

SASTIND said the orbit lowering thruster firing was “conducted above the dark side of the moon at 9:20 p.m.” on Dec. 10, Beijing local time.

Confirmation of the Chang’e-3 probes new, lower orbit was received four minutes later.

China's lunar probe Chang'e-3 entered an orbit closer to the moon on Dec. 10, 2013. (Xinhua)
China’s lunar probe Chang’e-3 entered an orbit closer to the moon on Dec. 10, 2013. Credit: Xinhua

If successful, the Chang’e-3 mission will mark the first soft landing on the Moon since the Soviet Union’s unmanned Luna 24 sample return vehicle landed back in 1976.

China would join an elite club of three, including the United States, who have mastered the critical technology to successfully touch down on Earth’s nearest neighbor.

The Chang’e-3 mission is comprised of China’s ‘Yutu’ lunar lander riding piggyback atop a much larger four legged landing probe.

Artists concept of the Chinese Chang'e 3 lander and rover on the lunar surface.  Credit: Beijing Institute of Spacecraft System Engineering
Artists concept of the Chinese Chang’e-3 lander and rover on the lunar surface. Credit: Beijing Institute of Spacecraft System Engineering

The voyage from the Earth to the Moon began 12 days ago with the flawless launch of Chang’e-3 atop China’s Long March 3-B booster at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center, in southwest China.

Chang’e-3 will make a powered descent to the Moon’s surface on Dec. 14 by firing the landing thrusters at the altitude of 15 km (9 mi) for a soft landing in a preselected area on the Bay of Rainbows.

The powered descent will take about 12 minutes.

The variable thrust engine can continuously vary its thrust power between 1,500 to 7,500 newtons, according to Xinhua.

The Bay of Rainbows is located in the upper left portion of the moon as seen from Earth. It was imaged in high resolution by China’s prior lunar mission – the Chang’e-2 lunar orbiter.

The 1200 kg lander is equipped with terrain recognition equipment and software to avoid rock and boulder fields that could spell catastrophe even in the final seconds before touchdown if the vehicle were to land directly on top of them.

Chang’e-3 is powered by a combination of solar arrays and a nuclear device in order to survive the two week long lunar nights.

The six-wheeled ‘Yutu’ rover, with a rocker bogie suspension, will be lowered in stages to the moon’s surface in a complex operation and then drive off a pair of landing ramps to explore the moon’s terrain.

Yutu measures 150 centimeters high and weighs approximately 120 kilograms and sports a robotic arm equipped with science instruments.

The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

Heat Shield for 2014 Orion Test Flight Arrives at Kennedy Aboard NASA’s Super Guppy

Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com

Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]

KENNEDY SPACE CENTER, FL – The heat shield crucial to the success of NASA’s 2014 Orion test flight has arrived at the Kennedy Space Center (KSC) aboard the agency’s Super Guppy aircraft – just spacious enough to fit the precious cargo inside.

Orion is currently under development as NASA’s next generation human rated vehicle to replace the now retired space shuttle. The heat shields advent is a key achievement on the path to the spacecraft’s maiden flight.

“The heat shield which we received today marks a major milestone for Orion. It is key to the continued assembly of the spacecraft,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told Universe Today during an interview at the KSC shuttle landing facility while the offloading was in progress.

“It will be installed onto the bottom of the Orion crew module in March 2014.”

The inaugural flight of Orion on the unmanned Exploration Flight Test – 1 (EFT-1) mission is scheduled to blast off from the Florida Space Coast in mid September 2014 atop a Delta 4 Heavy booster, Wilson told me.

Orion EFT-1 heat shield moved off from NASA’s Super Guppy aircraft after arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com
Orion EFT-1 heat shield moved off from NASA’s Super Guppy aircraft after arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com

The heat shield was flown in from Textron Defense Systems located near Boston, Massachusetts and offloaded from the Super Guppy on Dec. 5 as Universe Today observed the proceedings along with top managers from NASA and Orion’s prime contractor Lockheed Martin.

“The Orion heat shield is the largest of its kind ever built. Its wider than the Apollo and Mars Science Laboratory heat shields,” Todd Sullivan told Universe Today at KSC. Sullivan is the heat shield senior manager at Lockheed Martin.

The state-of-the-art Orion crew capsule will ultimately enable astronauts to fly to deep space destinations including the Moon, Asteroids, Mars and beyond – throughout our solar system.

The heat shield was one of the last major pieces of hardware needed to complete Orion’s exterior structure.

“Production of the heat shields primary structure that carries all the loads began at Lockheed Martin’s Waterton Facility near Denver,” said Sullivan. The titanium composite skeleton and carbon fiber skin were manufactured there to give the heat shield its shape and provide structural support during landing.

“It was then shipped to Textron in Boston in March,” for the next stage of assembly operations, Sullivan told me.

“They applied the Avcoat ablater material to the outside. That’s what protects the spacecraft from the heat of reentry.”

Textron technicians just completed the final work of installing a fiberglass-phenolic honeycomb structure onto the heat shield skin. Then they filled each of the honeycomb’s 320,000 cells with the ablative material Avcoat.

Orion EFT-1 heat shield hauled off NASA’s Super Guppy aircraft after arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com
Orion EFT-1 heat shield hauled off NASA’s Super Guppy aircraft after arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com

Each cell was X-rayed and sanded to match Orion’s exacting design specifications.

“Now we have about two and a half months of work ahead to prepare the Orion crew module before the heat shield is bolted on and installed,” Sullivan explained.

The Avcoat-treated shell will shield Orion from the extreme heat of nearly 4000 degrees Fahrenheit it experiences during the blazing hot temperatures it experiences as it returns at high speed to Earth. The ablative material will wear away as it heats up during the capsules atmospheric re-entry thereby preventing heat from being transferred to the rest of the capsule and saving it and the human crew from utter destruction.

“Testing the heat shield is one of the prime objectives of the EFT-1 flight,” Wilson explained.

“The Orion EFT-1 capsule will return at over 20,000 MPH,” Wilson told me. “That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions.”

“The big reason to get to those high speeds during EFT-1 is to be able to test out the thermal protection system, and the heat shield is the biggest part of that.”

Hoisting Orion heat shield at KSC for transport to Orion crew module in the Operations and Checkout Building. Credit: Ken Kremer/kenkremer.com
Hoisting Orion heat shield at KSC for transport to Orion crew module in the Operations and Checkout Building. Credit: Ken Kremer/kenkremer.com

The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

“Numerous sensors and instrumentation have been specially installed on the EFT-1 heat shield and the back shell tiles to collect measurements of things like temperatures, pressures and stresses during the extreme conditions of atmospheric reentry,” Wilson explained.

Orion managers pose with heat shield at KSC; Scott Wilson, NASA Orion deputy manager of Production Operations; Todd Sullivan, heat shield senior manager at Lockheed Martin; Stu Mcclung, NASA Orion deputy manager of Production Operations. Credit: Ken Kremer/kenkremer.com
Orion managers pose with heat shield at KSC; Scott Wilson, NASA Orion deputy manager of Production Operations; Todd Sullivan, heat shield senior manager at Lockheed Martin; Stu Mcclung, NASA Orion deputy manager of Production Operations. Credit: Ken Kremer/kenkremer.com

The data gathered during the unmanned EFT-1 flight will aid in confirming. or refuting, design decisions and computer models as the program moves forward to the first flight atop NASA’s mammoth SLS booster in 2017 on the EM-1 mission and human crewed missions thereafter.

“I’m very proud of the work we’ve done, excited to have the heat shield here [at KSC] and anxious to get it installed,” Sullivan concluded.

Stay tuned here for continuing Orion, Chang’e 3, LADEE, MAVEN and MOM news and Ken’s reports from on site at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about Orion, MAVEN, MOM, Mars rovers, Chang’e 3, SpaceX, and more at Ken’s upcoming presentations

Dec 10: “Antares ISS Launch from Virginia, Mars and SpaceX Mission Update”, Amateur Astronomers Association of Princeton, Princeton University, Princeton, NJ, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Departure of NASA’s Super Guppy from the shuttle landing runway at the Kennedy Space Center in Florida on Dec. 5, 2013 after removal of Orion heat shield.  Credit: Ken Kremer/kenkremer.com
Takeoff of NASA’s Super Guppy from the shuttle landing runway at the Kennedy Space Center in Florida on Dec. 5, 2013 after removal of Orion heat shield. Credit: Ken Kremer/kenkremer.com

China’s Maiden Moon Rover Mission Chang’e 3 Achieves Lunar Orbit

Artists concept of the Chinese Chang'e 3 lander and rover on the lunar surface. Credit: Beijing Institute of Spacecraft System Engineering

China’s maiden moon landing probe successfully entered lunar orbit on Friday, Dec. 6, following Sunday’s (Dec. 1) spectacular blastoff – setting the stage for the historic touchdown attempt in mid December.

Engineer’s at the Beijing Aerospace Control Center (BACC) commanded the Chang’e 3 lunar probe to fire its braking thrusters for 361 seconds, according to China’s Xinhua news agency.

The do or die orbital insertion maneuver proceeded precisely as planned at the conclusion of a four and a half day voyage to Earth’s nearest neighbor.

China’s ‘Yutu’ lunar lander is riding piggyback atop the four legged landing probe during the history making journey from the Earth to the Moon.

Liftoff of China’s first ever lunar rover on Dec. 2 local China time from the Xichang Satellite Launch Center, China. Credit: CCTV
Liftoff of China’s first ever lunar rover on Dec. 2 local China time (Dec. 1 EST) from the Xichang Satellite Launch Center, China. Credit: CCTV

The critical engine burn placed Chang’e 3 into its desired 100 kilometer (60 mi.) high circular orbit above the Moon’s surface at 5:53 p.m. Friday, Beijing Time (4:53 a.m. EST).

An engine failure would have doomed the mission.

Chang’e 3 is due to make a powered descent to the Moon’s surface on Dec. 14, firing the landing thrusters at an altitude of 15 km (9 mi) for a soft landing in a preselected area called the Bay of Rainbows or Sinus Iridum region.

The Bay of Rainbows is a lava filled crater located in the upper left portion of the moon as seen from Earth. It is 249 km in diameter.

The variable thrust engine can continuously vary its thrust power between 1,500 to 7,500 newtons, according to Xinhua.

The lander is equipped with terrain recognition equipment and software to avoid rock and boulder fields that could spell catastrophe in the final seconds before touchdown if vehicle were to land directly on top of them.

The voyage began with the flawless launch of Chang’e 3 atop China’s Long March 3-B booster at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center, in southwest China.

If successful, the Chang’e 3 mission will mark the first soft landing on the Moon since the Soviet Union’s unmanned Luna 24 sample return vehicle landed nearly four decades ago back in 1976.

Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum
Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum

The name for the ‘Yutu’ rover – which means ‘Jade Rabbit’ – was chosen after a special naming contest involving a worldwide poll and voting to select the best name.

‘Yutu’ stems from a Chinese fairy tale, in which the goddess Chang’e flew off to the moon taking her little pet Jade rabbit with her.

The six-wheeled ‘Yutu’ rover will be lowered in stages to the moon’s surface in a complex operation and then drive off a pair of landing ramps to explore the moon’s terrain.

Yutu measures 150 centimeters high and weighs approximately 120 kilograms.

The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, radar and other sensors to investigate the lunar surface and composition.

Spectacular view of Chang’e 3 thruster firings after separation from upper stage with Earth in the background. Credit: CCTV
Spectacular view of Chang’e 3 thruster firings after separation from upper stage with Earth in the background. Credit: CCTV

Chang’e 3 marks the beginning of the second phase of China’s lunar robotic exploration program.

The lander follows a pair of highly successful lunar orbiters named Chang’e 1 and 2 which launched in 2007 and 2010.

The next step will be an unmanned lunar sample return mission, perhaps by 2020.

China’s Chang’e 3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a similarly spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for continuing Chang’e 3, LADEE, MAVEN and MOM news and Ken’s SpaceX and MAVEN launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about Chang’e 3, SpaceX, MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Dec 10: “Antares ISS Launch from Virginia, Mars and SpaceX Mission Update”, Amateur Astronomers Association of Princeton, Princeton University, Princeton, NJ, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Apollo Conspiracy Theories Debunked In Coming Video Series

Al Shepard raises the American flag during Apollo 14 in February 1971. Below is the shadow of his crewmate, Ed Mitchell. Credit: NASA

Decades after the last man walked on the moon, Apollo astronauts still get a lot of respect. Some of them have been portrayed in Hollywood movies. Many of them willingly, even in their advanced ages, give public lectures and sign autographs. And already, some observers are wondering about the loss to humanity when the last moonwalker dies.

But there is a still a percentage of the population that believes that the astronauts didn’t land on the moon at all. To address this, a couple of experienced hands in filmmaking started a new video series examining and debunking the common conspiracies.

Helming the project is Chris Riley, who produced and directed ‘First Orbit’ as well as two BBC biographies of Neil Armstrong and Richard Feynman, and animator Antony Buonomo, who won an Emmy for his work.

“This Christmas it will be 45 years since the first astronauts reached lunar orbit, and yet conspiracy theories continue to question if the Moonshots ever really happened,” a press release stated.

“The first episode of their Apollo Fact Files has recently been released and Riley is now launching a Kickstarter campaign to raise £5000, which he will use to fund eleven more episodes.”

We’d also be remiss if we didn’t point out Bad Astronomy/Phil Plait’s classic rebuffing of the Apollo conspiracy theories, which he wrote after Fox aired a controversial documentary in 2001.

“Of course, I am trying to debunk the conspiracy theorists, but unlike them, I want people to look at their evidence rationally and critically, and not swallow it whole. It’ll choke you if you do,” Plait wrote at the time.

Moonwalker’s Golf Club Now Hanging Out In New Jersey Museum

Apollo 14 astronaut Al Shepard holding a golf club he used during the moon mission in 1971. Here he is visiting the United States Golf Association Museum in Far Hills, NJ in 1995. Credit: Robert Walker/USGA

During that heady time when NASA was sending people to the moon, Apollo astronaut Al Shepard — so the story goes — was showing comedian Bob Hope around a NASA center. Hope went into a simulator for the lighter lunar gravity and swung a golf club around (a habit of his) as he bounced around.

“That was the inspiration, I guess,” said Michael Trostel, the curator and historian at the United States Golf Association Museum in Far Hills, New Jersey. In other words, the inspiration for Al Shepard to bring a golf club to the moon and hit a couple of balls. The golf club, in fact, is at the USGA Museum today.

Of course, it wasn’t so easy just to bring a six-iron on board — there were science experiments and other payloads for the Apollo 14 crew. According to the Smithsonian National Air and Space Museum, the golf club was actually “a contingency sample extension handle with a No. 6 iron golf club head attached.”

Unusually, as space artifacts tend to head over to the Smithsonian after missions, this particular one ended up at the USGA Museum itself. In 1972, when singer Bing Crosby (also a friend of Hope’s and Shepard’s) was a member of the board, he wrote to Shepard on behalf of the museum and asked for the club. Shepard agreed and handed it over during a special ceremony in 1974.

“The reason that it’s not in this museum was that it was personal property of Alan Shepherd. In other words, he took it to space, he brought it back, it was still his personal property he donated it and it was his. That’s the reason,” said Claire Brown, the Smithsonian National Air and Space Museum’s communications director.

“Things were a little different back then. You could take a certain amount of personal property. There are different rules now, but at the time that he did it, he was able to bring his own personal club.”

A close-up of the golf club used by Apollo 14 astronaut Al Shepard on the moon. Credit: USGA/USGA Museum
A close-up of the golf club used by Apollo 14 astronaut Al Shepard on the moon. Credit: USGA/USGA Museum

Orion Service Module Comes Together and Testing Affirms Flight Design for 2014 Blastoff

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann

KENNEDY SPACE CENTER, FL – All of the key hardware elements being assembled for NASA’s new Orion spacecraft launching just under one year from now are nearing completion at the Kennedy Space Center (KSC) – at the same time as a crucial and successful hardware test in California this week helps ensure that the Exploration Flight Test-1 (EFT-1) vehicle will be ready for an on-time liftoff.

Orion is NASA’s first spaceship designed to carry human crews on long duration flights to deep space destinations beyond low Earth orbit, such as asteroids, the moon, Mars and beyond.

In a major construction milestone, Orion’s massive Service Module (SM) was hoisted out from the tooling stand where it was manufactured at the Operations and Checkout Building (O & C) at KSC and moved to the next assembly station where it will soon be mated to the spacecraft adapter cone.

The SM should be mated to the crew module (CM) by year’s end, Orion managers told Universe Today during my recent inspection tour of significant Orion hardware at KSC.

“We are working 24 hours a day, 7 days a week,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an exclusive interview with Universe Today inside the Orion clean room at KSC. “We are moving fast!”

The three panel or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin
The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin

The Orion CM recently passed a significant milestone when it was “powered on” for the first time at KSC.

“We are bringing Orion to life. Lots of flight hardware has now been installed.”

And on the other side of the country, the Service Module design passed a key hurdle on Wednesday (Nov. 6) when the trio of large spacecraft panels that surround the SM were successfully jettisoned from the spacecraft during a systems test by Lockheed Martin that simulates what would happen during an actual flight several minutes after liftoff.

“Hardware separation events like this are absolutely critical to the mission and some of the more complicated things we do,” said Mark Geyer, Orion program manager at NASA’s Johnson Space Center in Houston. “We want to know we’ve got the design exactly right and that it can be counted on in space before we ever launch.”

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida.  Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives.  Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives. Credit: Ken Kremer/kenkremer.com

Lockheed Martin is the prime contractor for Orion and responsible for assembly, testing and delivery of the Orion EFT-1 spacecraft to NASA that’s slated for an unmanned test flight targeted to lift off from Cape Canaveral, Florida in September 2014.

The CM rests atop the SM similar to the Apollo Moon landing program architecture.

However in a significant difference from Apollo, the Orion fairings support half the weight of the crew module and the launch abort system during launch and ascent. The purpose is to improve performance by saving weight thus maximizing the vehicles size and capability.

The SM also provides in-space power, propulsion capability, attitude control, thermal control, water and air for the astronauts.

At Lockheed Martin’s Sunnyvale, California facility a team of engineers used a series of precisely-timed, explosive charges and mechanisms attached to the Orion’s protective fairing panels in a flight-like test to verify that the spacecraft can successfully and confidently jettison them as required during the ascent to orbit.

The trio of fairing panels protect the SM radiators and solar arrays from heat, wind and acoustics during ascent.

The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin
The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin

“This successful test provides the Orion team with the needed data to certify this new fairing design for Exploration Flight Test-1 (EFT-1) next year. The test also provides significant risk reduction for the fairing separation on future Orion manned missions,” said Lance Lininger, engineering lead for Lockheed Martin’s Orion mechanism systems in a statement.

This was the 2nd test of the fairing jettison system. During the first test in June, one of the three fairing panels did not completely detach due to an interference “when the top edge of the fairing came into contact with the adapter ring and kept it from rotating away and releasing from the spacecraft,” said NASA.

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann
Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann

2013 has been an extremely busy and productive year for the Orion EFT-1 team.

“There are many significant Orion assembly events ongoing this year,” said Larry Price, Orion deputy program manager at Lockheed Martin, in an interview with Universe Today at Lockheed Space Systems in Denver.

“This includes the heat shield construction and attachment, power on, installing the plumbing for the environmental and reaction control system, completely outfitting the crew module, attached the tiles, building the service module and finally mating the crew and service modules (CM & SM),” Price told me.

Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1 Credit: Lockheed Martin
Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1
Credit: Lockheed Martin

The two-orbit, four- hour flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Ken Kremer

Watch All Six Apollo Moon Landings at Once

Apollo moon landing sites
Apollo moon landing sites

So often, when we think of all the Apollo missions to the Moon, we recall the videos of the astronauts walking, jumping and driving around on the Moon. But the actual landing of the Lunar Module was such a key – if not nail-biting – part of the mission. Here in this video you can watch all six Apollo lunar landings at once. The footage uses the original descent camera coverage, realigned by the person who put this together —lunarmodule5 on YouTube — to 45 degrees to show what the lunar module pilots saw on the descent. There’s also the actual audio from all the landings. It’s amazing to hear both calm and anxiety in the voices of the LMP, Commander and Mission Control, as well as the jubilation after landing.

You can also watch all thirteen Saturn V launches at once in the video below — Apollo 4 thru Skylab with the Apollo 4 CBS audio added.

Best to go full-screen on these!

Skeleton Crew gets LADEE in Orbit, Checked Out and Fires Revolutionary Laser During Gov’t Shutdown

An artist's concept of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft seen orbiting near the surface of the moon after successfully entering lunar orbit on Oct. 6, 2013. Credit: NASA Ames / Dana Berry

NASA’s new LADEE spacecraft successfully entered lunar orbit, is operating beautifully and has begun shooting its radical laser communications experiment despite having to accomplish a series of absolutely critical do-or-die orbital insertion engine firings with a “skeleton crew ” – all this amidst the NASA and US government shutdown, NASA Ames Research Center Director Pete Worden told Universe Today in a LADEE mission exclusive.

During the two and a half week long NASA shutdown, engineers had to fire LADEE’s maneuvering thrusters three times over six days – first to brake into elliptical orbit about the Moon and then lower it significantly and safely into a circular commissioning orbit.

“All burns went super well,” Ames Center Director Worden told me exclusivly. And he is extremely proud of the entire team of “dedicated” professional men and women who made it possible during the shutdown.

“It says a lot about our people’s dedication and capability when a skeleton crew can get a new spacecraft into lunar orbit and fully commissioned in the face of a shutdown!” Worden said to Universe Today.

“I’m really happy that everyone’s back.”

After achieving orbit, a pair of additional engine burns reduced LADEE’s altitude and period into its initial commissioning orbit and teams began the month long activation and instrument checkout phase.

“We are at the commissioning orbit of 250 km,” said Worden.

And to top all that off, LADEE’s quartet of science instruments are checked out and the ground – breaking laser communications experiment that will bring about a quantum leap in transmitting space science data has already begun its work!

“All instruments are fully checked out with covers deployed.”

“We’ve begun the Lunar Laser Communications Demonstration (LLCD) tests and its working very well,” Worden explained.

NASA’s LADEE lunar orbiter will firing its main engine on Oct. 6 to enter lunar orbit in the midst of the US government shutdown. Credit: NASA
NASA’s LADEE lunar orbiter fired its main engine on Oct. 6 to enter lunar orbit in the midst of the US government shutdown. Credit: NASA

And that’s the whole point of the LADEE mission in the first place.

97% of NASA’s employees were furloughed during the utterly chaotic and wasteful partial shutdown of the US government that lasted from Oct. 1 to Oct. 17 and also temporarily threatened the upcoming launch of NASA’s next mission to Mars – the MAVEN orbiter.

However, orbital mechanics follows the natural laws of the Universe, continues unabated and waits for no one in Washington, D.C.

NASA’s Jupiter-bound Juno orbiter also flew by Earth amidst the DC shutdown showdown on Oct. 9 for a similarly critical do-or-die gravity assisted speed boost and trajectory targeting maneuver.

The stakes were extremely high for NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) mission because the spacecraft was on course for the Moon and absolutely had to ignite its main engine on the Sunday morning of Oct. 6.

There were no second chances. If anything failed, LADEE would simply sail past the Moon with no hope of returning later.

So, mission controllers at NASA Ames commanded LADEE to ignite its main engine and enter lunar orbit on Oct. 6 following the spectacular Sept. 6 night launch from NASA’s Wallops Island spaceport in Virginia.

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

The approximately four minute long burn know as Lunar Orbit Insertion burn 1 (LOI-1) began with LADEE’s arrival at the Moon following three and a half long looping orbits of the Earth.

LOI-1 changed the spacecrafts velocity by 329.8 meters/sec so that the couch sized probe could be captured by the Moon’s gravity and be placed into a 24 hour polar elliptical orbit.

The LOI-2 maneuver on Oct. 9 put LADEE into a 4-hour elliptic lunar orbit. The third and final LOI-3 burn occurred on Oct. 12, and put the spacecraft into the 2-hour commissioning orbit (roughly 235 Km x 250 Km), according to a NASA statement.

The 844 pound (383 kg) robot explorer was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

“LADEE is the first NASA mission with a dedicated laser communications experiment,” said Don Cornwell, mission manager for the Lunar Laser Communications Demonstration (LLCD), NASA’s Goddard Space Flight Center, Greenbelt, Md, during an interview with Universe Today at the LADEE launch.

“With the LLCD experiment, we’ll use laser communications to demonstrate at least six times more data rate from the moon than what we can do with a radio system with half the weight and 25 percent less power,” said Cornwell.

The LADEE satellite in lunar orbit.   The revolutionary modular science probe is equipped with a Lunar Laser Communication Demonstration (LLCD) that will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine.  Credit: NASA
The LADEE satellite in lunar orbit. The revolutionary modular science probe is equipped with a Lunar Laser Communication Demonstration (LLCD) that will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine. Credit: NASA

The LLCD will be operated for about 30 days during the time of the commissioning orbit period.

The purpose of LADEE is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface. In turn this will lead to a better understanding of other planetary bodies in our solar system and beyond.

The $280 million probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.

“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Director Worden told Universe Today. “It will study the pristine moon to study significant questions.”

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

Stay tuned here for continuing LADEE news

Ken Kremer

LADEE_Poster_01

LADEE Successfully Enters Lunar Orbit on Oct. 6 Amidst Government Shutdown

NASA’s LADEE lunar orbiter will firing its main engine on Oct. 6 to enter lunar orbit in the midst of the US government shutdown. Credit: NASA

NASA’s LADEE lunar orbiter will fire its main engine on Oct. 6 to enter lunar orbit in the midst of the US government shutdown. Credit: NASA
See the orbit insertion animation below[/caption]

Update Oct 6: LADEE fired its main engine this morning (Oct. 6) at 6:57 a.m. EDT and successfully achieved lunar orbit. Headline/story revised.

NASA’s trailblazing LADEE lunar spacecraft is set to ignite its main engine and enter lunar orbit on Sunday morning, Oct. 6 – if all goes well – following the spectacular Sept. 6 night launch from NASA’s Virginia spaceport.

And in a happenstance no one could have foreseen, the critical engine firing comes smack in the midst of the political chaos reigning in Washington D.C. that has shut down the US government, furloughed 97% of NASA’s employees, and temporarily threatened the upcoming launch of NASA’s next mission to Mars – the MAVEN orbiter.

However, orbital mechanics waits for no one!

A source indicated that LADEE (Lunar Atmosphere and Dust Environment Explorer) mission operations were continuing leading up to the engine burn.

But there will be virtually a complete news blackout and little public information released due to the legal requirements of the shutdown.

NASA websites, which are amongst the most heavily trafficked, as well as NASA TV have been shuttered during the shutdown and the press office is likewise furloughed.

So it was do or die for LADEE with the four minute long braking thruster firing set to start on Oct. 6 at 6:57 a.m. EDT (10:57 UTC), so that the couch sized spacecraft is captured by the Moon’s gravity.

Fortunately, LADEE was deemed “essential” and a small team of engineers is working right now at mission control at NASA’s Ames Research Center in California.

If the had burn failed, LADEE will swing by the moon with no hope of returning. And this is being accomplished with a skeleton crew thanks to the government shutdown.

Here’s a video animation of orbital capture at the moon:


Video caption: This video shows the LADEE lunar orbit capture scheduled to take place at 10:57 UTC on 6 Oct. 2013. The main view is an Earth centered perspective showing the effect of the Moon’s gravity on the orbit and then how a Lunar orbit looks from the Earth. The inset view shows the same trajectory from the perspective of the Moon.

Dubbed LOI-1 (Lunar Orbit Insertion burn 1),it is designed to begin with LADEE’s arrival at the Moon after three and a half orbits of the Earth. It will change the spacecrafts velocity by 329.8 meters/sec.

LOI-1 is the first of three main engine maneuvers and will place LADEE into a 24 hour retrograde orbit, with a periselene altitude of 590 km (369 mi).

LOI-2 follows on Oct. 9 to place LADEE into a 4 hour orbit with a 250 km (156 mi) periselene altitude.

Finally LOI-3 on Oct. 12 places LADEE into a roughly circular 250 km (156 mi) orbit that initiates a 30 day commissioning phase as well as experiments using the on-board Lunar Laser Communications Experiment (LLCD) before the start of the missions science phase.

LADEE thundered to space atop the maiden launch of the five stage Minotaur V rocket on Sept. 6, blazing a spectacular trail to orbit from a beachside launch pad at NASA’s Wallops Flight Facility in Virginia.

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com
This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com

The blastoff was easily visible to tens of millions of thrilled spectators up and down the eastern seaboard stretching from Maine to the Carolinas as a result of crystal clear skies and the night time liftoff.

The LADEE liftoff at 11:27 p.m. EDT marked the first space probe of any kind ever launched beyond Earth orbit from NASA Wallops, as well as being the first planetary science mission ever launched from Wallops.

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

Eventually the spacecraft will fly in a very low equatorial science orbit of about 50 kilometers (31 mi) altitude above the moon that will require considerable fuel to maintain. The science mission duration is approximately 100 days, limited by the amount of maneuvering fuel.

The 844 pound (383 kg) robot explorer was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

It is equipped with a trio of science instruments whose purpose is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface.

The goal of the $280 Million mission is to gain a thorough understanding of long-standing unknowns about the tenuous atmosphere, dust and surface interactions that will help scientists understand other planetary bodies as well.

The probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.

“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Director Pete Worden told Universe Today in an interview. “It will study the pristine moon to study significant questions.”

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

Stay tuned here for continuing LADEE news.

Ken Kremer

…………….

Learn more about LADEE, MAVEN, Curiosity, Mars rovers, Cygnus, Antares, SpaceX, Orion, the Gov’t shutdown and more at Ken’s upcoming presentations

Oct 8: “NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”& “Curiosity and MAVEN updates”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

LADEE_Poster_01

Best Ever Astronaut ‘Selfies’

Clay Anderson's shadow during a spacewalk he took in July 2007, while he was part of Expedition 15. Credit: NASA

“Talk about a selfie!” wrote former astronaut Clay Anderson on Twitter yesterday (Oct. 1). He posted that comment along with a favorite photo from Expedition 15, when he was standing in restraints on the robotic Canadarm2. Off in the distance, he saw his shadow against the solar array panels of a Soyuz spacecraft.

That got us thinking — what are the best astronaut selfies? Below are some of our favourites (some intentional, some not) from over the years. Any that we have missed? Let us know in the comments!

JAXA astronaut Aki Hoshide takes a self-portrait during Expedition 32 in September 2012. "Visible in this outworldly assemblage is the Sun, the Earth, two portions of a robotic arm, an astronaut's spacesuit, the deep darkness of space, and the unusual camera taking the picture," NASA wrote. Credit: NASA
JAXA astronaut Aki Hoshide takes a self-portrait during Expedition 32 in September 2012. “Visible in this outworldly assemblage is the Sun, the Earth, two portions of a robotic arm, an astronaut’s spacesuit, the deep darkness of space, and the unusual camera taking the picture,” NASA wrote. Credit: NASA

Apollo 12's Pete Conrad is visible in the helmet of crewmate Al Bean during their moon landing in November 1969. Credit: NASA
Apollo 12’s Pete Conrad is visible in the helmet of crewmate Al Bean during their moon landing in November 1969. Credit: NASA
Expedition 15 crewmember and NASA astronaut Clay Anderson nabbed this self-portrait during a spacewalk in August 2007. Credit: NASA
Expedition 15 crewmember and NASA astronaut Clay Anderson nabbed this self-portrait during a spacewalk in August 2007. Credit: NASA
Self-portrait of Expedition 36/37 European Space Agency astronaut Luca Parmitano during a July 2013 spacewalk. Credit: NASA
Self-portrait of Expedition 36/37 European Space Agency astronaut Luca Parmitano during a July 2013 spacewalk. Credit: NASA
Al Shepard raises the American flag during Apollo 14 in February 1971. Below is the shadow of his crewmate, Ed Mitchell. Credit: NASA
Al Shepard raises the American flag during Apollo 14 in February 1971. Below is the shadow of his crewmate, Ed Mitchell. Credit: NASA
NASA astronaut Mike Fossum grabbed this self-portrait in July 2011, with space shuttle Atlantis visible in the background. Credit: NASA
NASA astronaut Mike Fossum grabbed this self-portrait in July 2011, with space shuttle Atlantis visible in the background. Credit: NASA
NASA astronaut Joe Tanner grabs a helmet shot during a spacewalk on STS-115 in September 2006. Credit: NASA
NASA astronaut Joe Tanner grabs a helmet shot during a spacewalk on STS-115 in September 2006. Credit: NASA
Gemini 12 astronaut Buzz Aldrin snaps a picture of himself during a spacewalk in November 1966. Credit: NASA
Gemini 12 astronaut Buzz Aldrin snaps a picture of himself during a spacewalk in November 1966. Credit: NASA
Mike Fossum, a mission specialist on STS-121, took this shot in July 2006. In the visor you can see space shuttle Discovery, part of the International Space Station and fellow crewmate Piers J. Sellers. Credit: NASA
Mike Fossum, a mission specialist on STS-121, took this shot in July 2006. In the visor you can see space shuttle Discovery, part of the International Space Station and fellow crewmate Piers J. Sellers. Credit: NASA
NASA astronaut Scott Parazynski takes a self-portrait during STS-120, which ran from October to November 2007. Credit: NASA
NASA astronaut Scott Parazynski takes a self-portrait during STS-120, which ran from October to November 2007. Credit: NASA
Gemini 10 astronaut Mike Collins in July 1966. Credit: NASA/Arizona State University
Gemini 10 astronaut Mike Collins in July 1966. Credit: NASA/Arizona State University
Expedition 6's Don Pettit takes a portrait in January 2003. Also visible in the picture (upper right) is his crewmate, Ken Bowersox. Credit: NASA
Expedition 6’s Don Pettit takes a portrait in January 2003. Also visible in the picture (upper right) is his crewmate, Ken Bowersox. Credit: NASA
A teensy-tiny Neil Armstrong is visible in the helmet of Buzz Aldrin during the Apollo 11 landing in July 1969. Credit: NASA
A teensy-tiny Neil Armstrong is visible in the helmet of Buzz Aldrin during the Apollo 11 landing in July 1969. Credit: NASA