Europe’s next-generation Ariane 6 rocket rose today for the first time from its South American spaceport, ending a yearlong launch gap caused by the Ariane 5’s retirement.
The heavy-lift launch vehicle’s demonstration flight began with liftoff at 4 p.m. local time (19:00 GMT) from the Kourou spaceport in French Guiana, and continued with satellite deployments in orbit.
“A completely new rocket is not launched often, and success is far from guaranteed,” Josef Aschbacher, the European Space Agency’s director general, said in a statement. “I am privileged to have witnessed this historic moment when Europe’s new generation of the Ariane family lifted off – successfully – effectively reinstating European access to space.”
The European Space Agency has retired its Ariane 5 rocket, and all eyes are on its next generation, Ariane 6. The rocket’s pieces have been arriving at the Kourou facility in French Guiana and are now assembled. ESA has now announced they’ll attempt a test launch on July 9th and hope to complete a second flight before the end of 2024. This new heavy-life rocket has a re-ignitable upper stage, allowing it to launch multiple payloads into different orbits.
Since 2010, the European aerospace manufacturer ArianeGroup has been developing the Ariane 6 launch vehicle, a next-generation rocket for the European Space Agency (ESA). This vehicle will replace the older Ariane 5 model, offering reduced launch costs while increasing the number of launches per year. In recent years, the ArianeGrouip has been putting the rocket through its paces to prepare it for its first launch, which is currently scheduled for 2024. This past week, on Wednesday, November 23rd, the Ariane 6 underwent its biggest test to date as ground controllers conducted a full-scale dress rehearsal.
A prototype of ESA’s new heavy lift rocket is now fully assembled and sitting on the launchpad at Europe’s Spaceport in French Guiana. But according to officials at a briefing last week, the space agency and the rocket’s prime contractor, ArianeGroup, have decided to delay the first flight of the Ariane 6 to the fourth quarter of 2023 after several issues were brought to the fore in an external review.
Europe plans to have its own reusable spacecraft for cargo and crewed missions to LEO and beyond. It’s called SUSIE (Smart Upper Stage for Innovative Exploration). At first glance, it may look like Europe’s answer to SpaceX’s Starship, but it’s not that simple.
Last month, an Ariane 5 rocket carried the James Webb Space Telescope (JWST) safely to space, the latest of 112 total launches for the European Space Agency’s (ESA) primary workhorse rocket. With a 95.5% success rate, the Ariane 5 has been a reliable ride to space for decades, but its story is about to come to an end. ESA is no longer building new Ariane 5 vehicles, instead developing its next-generation rocket, the Ariane 6, which is intended to provide cheaper access to space. This week, the first completed core stage of a new Ariane 6 rocket arrived at the spaceport outside Korou in French Guiana for testing.
Finally, it’s starting to get real for the James Webb Space Telescope. Engineers are now preparing the long-awaited landmark telescope for transport to its launch site at Europe’s Spaceport in French Guiana.
In November (or early December) of this year, after many excruciating delays, NASA’s James Webb Space Telescope (JWST) will finally launch to space. As the most advanced and complex observatory ever deployed, the James Webb will use its advanced suite of instruments to observe stars, exoplanets, and galaxies in the near and mid-infrared spectrum. In the process, it will address some of the most enduring mysteries about the nature of the Universe.
When the time comes, the James Webb will fly aboard an Ariane 5 rocket from the European Space Agency (ESA) launch facility near the town of Korou, French Guayana. Overnight on August 17th, 2021, the upper stage of that Ariane 5 began making its way in its cargo container from the ArianeGroup facility in Bremen, Germany, to Neustadt port, where it will board a ship bound for the ESA spaceport in French Guiana.
The most powerful space telescope ever built will have to wait on the ground for a few more months into 2019 before launching to the High Frontier and looking back nearly to the beginning of time and unraveling untold astronomical secrets on how the early Universe evolved – Engineers need a bit more time to complete the Webb telescopes incredibly complex assembly and testing here on Earth.
“NASA’s James Webb Space Telescope now is planning to launch between March and June 2019 from French Guiana, following a schedule assessment of the remaining integration and test activities,” the agency announced.
Until now the Webb telescope was scheduled to launch on a European Space Agency (ESA) Ariane V booster from the Guiana Space Center in Kourou, French Guiana in October 2018.
“The change in launch timing is not indicative of hardware or technical performance concerns,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at Headquarters in Washington, in a statement.
“Rather, the integration of the various spacecraft elements is taking longer than expected.”
NASA’s says the currently approved budget will not bust the budget or reduce the science output. It “accommodates the change in launch date, and the change will not affect planned science observations.”
NASA’s $8.8 Billion James Webb Space Telescope is the most powerful space telescope ever built and is the scientific successor to the phenomenally successful Hubble Space Telescope (HST).
The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).
Since Webb is not designed to be serviced by astronauts, the extremely thorny telescope deployment process is designed to occur on its own over a period of several months and must be fully successful. Webb will be positioned at the L2 Lagrange point- a gravitationally stable spot approximately 930,000 miles (1.5 million km) away from Earth.
So its better to be safe than sorry and take the extra time needed to insure success of the hugely expensive project.
Various completed components of the Webb telescope are undergoing final testing around the country to confirm their suitability for launch.
Critical cryogenic cooling testing of Webb’s mirrors and science instrument bus is proceeding well inside a giant chamber at NASA’s Johnson Space Center in Texas.
However integration and testing of the complex multilayered sunshield at Northrup Grumman’s Redondo Beach, Ca. facility is taking longer than expected and “has experienced delays.”
The tennis court sized sunshield will protect the delicate optics and state of the art infrared science instruments on NASA’s Webb Telescope.
Webb’s four research instruments cannot function without the essential cooling provided by the sunshield deployment to maintain them at an operating temperature of minus 388 degrees F (minus 233 degrees C).
The Webb telescopes groundbreaking sunshield subsystem consists of five layers of kapton that will keep the optics and instruments incredibly cool, by reducing the incoming sunside facing temperature more than 570 degrees Fahrenheit. Each layer is as thin as a human hair.
“Webb’s spacecraft and sunshield are larger and more complex than most spacecraft. The combination of some integration activities taking longer than initially planned, such as the installation of more than 100 sunshield membrane release devices, factoring in lessons learned from earlier testing, like longer time spans for vibration testing, has meant the integration and testing process is just taking longer,” said Eric Smith, program director for the James Webb Space Telescope at NASA Headquarters in Washington, in a statement.
“Considering the investment NASA has made, and the good performance to date, we want to proceed very systematically through these tests to be ready for a Spring 2019 launch.”
Northrop Grumman designed the Webb telescope’s optics and spacecraft bus for NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which manages Webb.
Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about the upcoming ULA Atlas NRO NROL-52 spysat launch on Oct 5 and SpaceX Falcon 9 SES-11 launch on Oct 7, JWST, OSIRIS-REx, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Oct 3-6, 8: “ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
The complex multilayered sunshield that will protect the delicate optics and state of the art infrared science instruments of NASA’s James Webb Space Telescope (JWST) is now fully installed on the spacecraft bus in California, completing another major milestone on the path to launch, NASA announced.
Meanwhile a critical cryogenic cooling test of Webb’s mirrors and science instrument bus has commenced inside a giant chamber at NASA’s Johnson Space Center in Texas, marking another major milestone as the mammoth telescope comes together after years of development.
NASA’s $8.8 Billion James Webb Space Telescope is the most powerful space telescope ever built and is the scientific successor to the phenomenally successful Hubble Space Telescope (HST).
The Webb telescopes groundbreaking tennis court sized sunshield subsystem consists of five layers of kapton that will keep the optics and instruments incredibly cool, by reducing the incoming sunside facing temperature more than 570 degrees Fahrenheit. Each layer is as thin as a human hair.
“The sunshield layers work together to reduce the temperatures between the hot and cold sides of the observatory by approximately 570 degrees Fahrenheit,” according to NASA. “Each successive layer of the sunshield is cooler than the one below.”
The painstaking work to integrate the five sunshield membranes was carried out in June and July by engineers and technicians working at the Northrop Grumman Corporation facility in Redondo Beach, California.
“All five sunshield membranes have been installed and will be folded over the next few weeks,” said Paul Geithner, deputy project manager – technical for the Webb telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.
Deployment tests of the folded sunshield start in August.
Webb’s four research instruments cannot function without the essential cooling provided by the sunshield deployment.
Northrop Grumman designed the Webb telescope’s optics and spacecraft bus for NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which manages Webb.
“This is a huge milestone for the Webb telescope as we prepare for launch,” said Jim Flynn, Webb sunshield manager, Northrop Grumman Aerospace Systems.
“The groundbreaking tennis court sized sunshield will shield the optics from heat and assist in providing the imaging of the formation of stars and galaxies more than 13.5 billion years ago.”
Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.
After successfully passing a rigorous series of vibration and acoustic environmental tests earlier this year at NASA Goddard in March, the mirror and instrument assembly was shipped to NASA Johnson in May for the cryo cooling tests.
“Those tests ensured Webb can withstand the vibration and noise created during the telescope’s launch into space. Currently, engineers are analyzing this data to prepare for a final round of vibration and acoustic testing, once Webb is joined with the spacecraft bus and sunshield next year,” says NASA.
The cryogenic cooling test will last 100 days and is being carried out inside the giant thermal vacuum known as Chamber A at the Johnson Space Center in Houston.
“A combination of liquid nitrogen and cold gaseous helium will be used to cool the telescope and science instruments to their operational temperature during high-vacuum operations,” said Mark Voyton, manager of testing effort, who works at the NASA Goddard Space Flight Center in Greenbelt, Maryland.
Next year, the tennis-court sized sunshield and spacecraft bus will be combined to make up the entire observatory.
The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).
Assembly of the Webb telescope is currently on target and slated to launch on an ESA Ariane V booster from the Guiana Space Center in Kourou, French Guiana in October 2018.
NASA and ESA are currently evaluating a potential launch scheduling conflict with ESA’s BepiColombo mission to Mercury.
Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
………….
Learn more about the upcoming SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Aug 11-14: “SpaceX CRS-12 and CRS-11 resupply launches to the ISS, Inmarsat 5, BulgariaSat 1 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings