Everything Still Looks Good for Monday's Artemis 1 Launch

NASA’s Space Launch System and Orion spacecraft for Artemis I on the pad at Launch Complex 39B at NASA’s Kennedy Space Center. Credit: NASA/Ben Smegelsky

Addendum: Today’s launch was scrubbed due to an engine issue that occurred during fueling. The backup date of Sept. 2nd is now targeted.

On Monday, August 29th, NASA will make history with the launch of the Artemis I mission. As the first flight in the Artemis Program, the mission will consist of a fully-stacked Space Launch System (SLS) and an Orion spacecraft taking off from Kennedy Space Center in Florida. Once in orbit, the uncrewed Orion spacecraft and European Space Module (ESM) will fly beyond the Moon before returning to Earth. This mission will validate the key systems and components of the Artemis Program and be a dress rehearsal for the crewed Artemis II mission in 2024.

According to the Flight Readiness Review, the Artemis I mission is a GO for launch and will launch no earlier than 02:33 PM EST (11:33 PM PST). While the mission is uncrewed, the crew module will still carry two mannequins (Helga and Zohar), occupying two of the capsule’s passenger seats. Helga and Zohar will carry over 5600 sensors to measure the radiation load during the circumlunar journey. Shaun the Sheep, a character from the popular animated series Wallace and Grommit, will occupy the third seat as part of a global social media campaign.

Continue reading “Everything Still Looks Good for Monday's Artemis 1 Launch”

Here is Where Astronauts Might Land on the Moon

Shown here is a rendering of 13 candidate landing regions for Artemis III. Credits: NASA

In just four days, the inaugural mission of the Artemis Program will lift off from Kennedy Space Center in Florida! Dubbed Artemis I, this mission will see the Space Launch System (SLS) and Orion spacecraft achieve flight together for the first time. The mission will last between 39 and 42 days and consist of the uncrewed Orion flying beyond the Moon, farther than any spaceship has ever traveled, and then looping back around the Moon to return home. This flight, and the crewed Artemis II that will follow, are essentially the dress rehearsal for the long-awaited return to the Moon.

Designated Artemis III, this mission is scheduled to take place in 2025 and will see the “first woman and first person of color” set foot on the lunar surface. It will also be the first time in over 50 years (since Apollo 17 landed in 1972) that astronauts will venture beyond Low Earth Orbit (LEO). In preparation for this, NASA has identified 13 candidate regions in the Moon’s South Pole-Aitken Basin, which they recently shared with the public. Each region contains multiple potential sites where the Starship Human Landing System (HLS) will land.

Continue reading “Here is Where Astronauts Might Land on the Moon”

Artemis 1 Goes Back to the Launch pad, Getting Ready for its August 29th Blastoff

NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard is seen atop the mobile launcher as it moves up the ramp at Launch Pad 39B, Wednesday, Aug. 17, 2022, at NASA’s Kennedy Space Center in Florida. Credit: NASA/Joel Kowsky.

The Space Launch System (SLS) rocket and Orion spacecraft now sits on the launchpad, ready for liftoff on a journey around the Moon. This is the first time since 1972 that NASA has a human-rated spacecraft is ready to go beyond Earth orbit.

Continue reading “Artemis 1 Goes Back to the Launch pad, Getting Ready for its August 29th Blastoff”

Masten Space is Building a Lunar Lander for NASA. Also, They Just Filed for Bankruptcy

Artist's rendering of the Masten XL-1 lander. Credit: Masten Space Systems

If you’re a fan of the commercial space industry (aka. NewSpace), then the name Masten Space Systems is sure to ring a bell. For years, this California-based aerospace company has been developing delivery systems to accommodate payloads to the Moon, Mars, and beyond. This included Xoie, the lander concept that won the $1 million Northrop Grumman Lunar X-Prize in 2009, their Xombie and Xodiac reusable terrestrial landers, and the in-Flight Alumina Spray Technique (FAST) that would allow lunar landers to create their own landing pads.

But perhaps their biggest feat was the Xelene Lunar Lander (XL-1) that they developed in partnership with the NASA Lunar CATALYST program. This lander was one of several robotic systems enlisted by NASA to deliver cargo to the Moon in support of the Artemis Program. This included the Masten-1 mission, which was scheduled to land a payload Moon’s southern polar region in 2023. The company was scheduled to make a second delivery (Masten-2) by 2024, one year before the first Artemis astronauts arrived. But according to a statement issued on July 28th, the company has filed for Chapter 11 and is bankrupt!

Continue reading “Masten Space is Building a Lunar Lander for NASA. Also, They Just Filed for Bankruptcy”

Engineers are Testing how VIPER can Handle the Gnarliest Lunar Terrain

An illustration of NASA's VIPER lunar rover. It'll explore the Moon's south pole and map water resources. Image Credit: NASA Ames/Daniel Rutter

NASA’s getting ready to send a VIPER to the Moon. Not the popular sports car but a rugged vehicle that can handle whatever the lunar surface can throw at it. The Volatiles Investigating Polar Exploration Rover (VIPER) was put through its paces recently at the Glenn Research Center in Cleveland. The prototype drove up test slopes and clambered over boulders and craters. It also made its way through a simulated quicksand type of soil in a “sink tank”. It passed with flying colors, and showed engineers how it will handle similar conditions on the Moon.

Continue reading “Engineers are Testing how VIPER can Handle the Gnarliest Lunar Terrain”

NASA Says It’s Satisfied With Rehearsal for SLS Moon Rocket Launch

SLS and Orion at launch pad
A full Moon looms over NASA's Space Launch System and its Orion capsule containing yeast cells bound for an epic trip. (NASA Photo / Ben Smegelsky)

NASA says it’s finished with having to do full-scale dress rehearsals for the first liftoff of its moon-bound Space Launch System rocket. But it’s not finished with having to make fixes.

“At this point we’ve determined that we’ve successfully completed the evaluations and the work that we intended to complete for the dress rehearsal,” Thomas Whitmeyer, NASA’s deputy associate administrator for common exploration systems development, told reporters today.

NASA’s assessment came after a dress rehearsal that reached its climax on June 20 with the loading of the 322-foot-tall rocket’s supercooled propellant tanks. The rehearsal, which followed some less-than-fully-successful trial runs in April, marked a milestone for launch preparations because it was the first time that the team at Kennedy Space Center in Florida had fully loaded all of the tanks and proceeded into the terminal launch countdown.

Continue reading “NASA Says It’s Satisfied With Rehearsal for SLS Moon Rocket Launch”

Engineers Design an Electrical Microgrid for a Lunar Base

Moon base
Illustration of NASA astronauts on the lunar South Pole. Mission ideas we see today have at least some heritage from the early days of the Space Age. Credit: NASA

For seventy years, Albuquerque-based Sandia National Laboratories has been developing electrical microgrids that increase community resilience and ensure energy security. Applications include the Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS), designed to support military bases abroad, and independent power systems for hospitals and regions where electrical grids are at risk of being compromised by natural disasters (like hurricanes, flooding, and earthquakes).

In the coming years, Artemis Program, NASA will be sending astronauts back to the Moon for the first time since the Apollo Era and establish a “sustained program of lunar exploration.” To ensure that astronauts have the necessary power to maintain their habitats and support operations on the surface, NASA has partnered with Sandia to develop microgrids for the Moon! This technology could also support future endeavors, like mining, fuel processing, and other activities on the Moon.

Continue reading “Engineers Design an Electrical Microgrid for a Lunar Base”

A CubeSat is Flying to the Moon to Make Sure Lunar Gateway’s Orbit is Actually Stable

Artist rendition of the CAPSTONE mission. Credit: Advanced Space.

Before this decade is over, NASA will send astronauts to the Moon for the first time since the Apollo Era. As part of the Artemis Program, NASA also plans to establish the infrastructure that will allow for a “sustained program of lunar exploration.” A key part of this is the Lunar Gateway, an orbiting space station that will facilitate regular trips to and from the lunar surface. In addition to being a docking point for ships going to and from Earth, the station will also allow for long-duration missions to Mars.

The Gateway will have what is known in orbital mechanics as a “near rectilinear halo orbit” (NRHO), meaning it will orbit the Moon from pole to pole. To test the long-term stability of this orbit, NASA will be sending the Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) to the Moon by the end of May. This nine-month CubeSat mission will be the first spacecraft to test this orbit and demonstrate its benefits for the Gateway.

Continue reading “A CubeSat is Flying to the Moon to Make Sure Lunar Gateway’s Orbit is Actually Stable”

Artemis 1 Probably won't Launch Until August

The Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the right-hand center aft booster segment for Artemis I is stacked on the mobile launcher for the Space Launch System (SLS) on Jan. 7, 2021. Photo credit: NASA/Kim Shiflett

On March 17th, the Artemis I mission rolled out of the Vehicle Assembly Building (VLB) and was transferred to Launch Complex 39B at the NASA Kennedy Space Center in Florida. This was the first time that a fully-stacked Space Launch System (SLS) and Orion spacecraft were brought to the launchpad in preparation for a “wet dress rehearsal.” To mark the occasion, NASA released a video of the event that featured a new song by Pearl Jam’s Eddie Vedder (“Invincible”).

Unfortunately, technical issues forced ground controllers to scrub the dress rehearsal repeatedly and return the Artemis I to the VLB on April 26th. This was followed by reports that these issues were addressed and that Artemis I rocket would return to LC 39B by early- to mid-June. Meanwhile, an official NASA statement (issued on Thursday, May 8th) says that the official launch of the mission is not likely to take place until August at the earliest.

Continue reading “Artemis 1 Probably won't Launch Until August”

What’s the Best Way to Build Landing Pads on the Moon?

An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018
An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018

In the near future, NASA, the European Space Agency (ESA), China, and Roscosmos all mount crewed missions to the Moon. This will constitute the first time astronauts have walked on the lunar surface since the Apollo Era. But unlike the “Race to the Moon,” the goal of these programs is not to get their first and leave only a few experiments and landers behind (i.e., “footprints and flags” missions) but to establish a sustained human presence on the lunar surface. This means creating habitats on the surface and in orbit that can be used by rotating crews.

While NASA and other space agencies intend to leverage local resources as much as possible – a process known as In-Situ Resource Utilization (ISRU) – creating lunar bases will still require lots of materials and machinery to be shipped from Earth. In a recent study, Philip Metzger and Greg Autry reviewed the cost and energy consumption of building landing pads on the lunar surface. After considering various construction methods, they determined that a combination of additive manufacturing and polymer infusion was the most efficient and cost-effective means.

Continue reading “What’s the Best Way to Build Landing Pads on the Moon?”