The Solar System Probably has Thousands of Captured Interstellar Asteroids

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) in Hawaii announced the first-ever detection of an interstellar asteroid, named 1I/2017 U1 (aka. ‘Oumuamua). Originally thought to be a comet, this interstellar visitor quickly became the focus of follow-up studies that sought to determine its origin, structure, composition, and rule out the possibility that it was an alien spacecraft!

While ‘Oumuamua is the first known example of an interstellar asteroid reaching our Solar System, scientists have long suspected that such visitors are a regular occurrence. Aiming to determine just how common, a team of researchers from Harvard University conducted a study to measure the capture rate of interstellar asteroids and comets, and what role they may play in the spread of life throughout the Universe.

The study, titled “Implications of Captured Interstellar Objects for Panspermia and Extraterrestrial Life“, recently appeared online and is being considered for publication in The Astrophysical Journal. The study was conducted by Manasavi Lingam, a postdoc at the Harvard Institute for Theory and Computation (ITC), and Abraham Loeb, the chairman of the ITC and a researcher at the Harvard-Smithsonian Center for Astrophysics (CfA).

For the sake of their study, Lingam and Loeb constructed a three-body gravitational model, where the physics of three bodies are used to compute their respective trajectories and interactions with one another. In Lingam and Loeb’s model, Jupiter and the Sun served as the two massive bodies while a far less massive interstellar object served as the third. As Dr. Loeb explained to Universe Today via email:

“The combined gravity of the Sun and Jupiter acts as a ‘fishing net’. We suggest a new approach to searching for life, which is to examine the interstellar objects captured by this fishing net instead of the traditional approach of looking through telescope or traveling with spacecrafts to distant environments to do the same.”

Using this model, the pair then began calculating the rate at which objects comparable in size to ‘Oumuamua would be captured by the Solar System, and how often such objects would collide with the Earth over the course of its entire history. They also considered the Alpha Centauri system as a separate case for the sake of comparison. In this binary system, Alpha Centauri A and B serve as the two massive bodies and an interstellar asteroid as the third.

As Dr. Lingam indicated:

“The frequency of these objects is determined from the number density of such objects, which has been recently updated based on the discovery of ‘Oumuamua. The size distribution of these objects is unknown (and serves as a free parameter in our model), but for the sake of obtaining quantitative results, we assumed that it was similar to that of comets within our Solar System.”

The theory of Lithopanspermia states that life can be shared between planets within a planetary system. Credit: NASA

In the end, they determined that a few thousands captured objects might be found within the Solar system at any time – the largest of which would be tens of km in radius. For the Alpha Centauri system, the results were even more interesting. Based on the likely rate of capture, and the maximum size of a captured object, they determined that even Earth-sized objects could have been captured in the course of the system’s history.

In other words, Alpha Centauri may have picked up some rogue planets over time, which would have had drastic impact on the evolution  of the system. In this vein, the authors also explored how objects like ‘Oumuamua could have played a role in the distribution of life throughout the Universe via rocky bodies. This is a variation on the theory of lithopanspermia, where microbial life is shared between planets thanks to asteroids, comets and meteors.

In this scenario, interstellar asteroids, which originate in distant star systems, would be the be carriers of microbial life from one system to another. If such asteroids collided with Earth in the past, they could be responsible for seeding our planet and leading to the emergence of life as we know it. As Lingam explained:

“These interstellar objects could either crash directly into a planet and thus seed it with life, or be captured into the planetary system and undergo further collisions within that system to yield interplanetary panspermia (the second scenario is more likely when the captured object is large, for e.g. a fraction of the Earth’s radius).”

In addition, Lingam and Loeb offered suggestions on how future visitors to our Solar System could be studied. As Lingam summarized, the key would be to look for specific kinds of spectra from objects in our Solar Systems:

“It may be possible to look for interstellar objects (captured/unbound) in our Solar system by looking at their trajectories in detail. Alternatively, since many objects within the Solar system have similar ratios of oxygen isotopes, finding objects with very different isotopic ratios could indicate their interstellar origin. The isotope ratios can be determined through high-resolution spectroscopy if and when interstellar comets approach close to the Sun.”

“The simplest way to single out the objects who originated outside the Solar System, is to examine the abundance ratio of oxygen isotopes in the water vapor that makes their cometary tails,” added Loeb. “This can be done through high resolution spectroscopy. After identifying a trapped interstellar object, we could launch a probe that will search on its surface for signatures of primitive life or artifacts of a technological civilization.”

It would be no exaggeration to say that the discovery of ‘Oumuamua has set off something of a revolution in astronomy. In addition to validating something astronomers have long suspected, it has also provided new opportunities for research and the testing of scientific theories (such as lithopanspermia).

In the future, with any luck, robotic missions will be dispatched to these bodies to conduct direct studies and maybe even sample return missions. What these reveal about our Universe, and maybe even the spread of life throughout, is sure to be very illuminating!

Further Reading: arXiv

Asteroid Mining is Getting Closer to Reality. Planetary Resources Arkyd-6 Satellite Just Launched

The launch of the PSLV-C40 rocket from the First Launch Pad at the Satish Dhawan Space Centre. Credit: ISRO

In 2009, Arkyd Aeronautics was formed with the intention of becoming the first commercial deep-space exploration program. In 2012, the company was renamed Planetary Resources, and began exploring the ambitious idea of asteroid prospecting and mining. By harnessing Near-Earth Objects (NEOs) for their water and minerals, the company hopes to substantially reduce the costs of space exploration.

A key step in this vision is the deployment of the Arkyd 6, a CubeSat that will begin testing key technologies that will go into asteroid prospecting. Last week (on Friday, January 12th), the Arkyd-6 was one of 31 satellites that were launched into orbit aboard an Indian-built PSLV rocket. The CubeSat has since been deployed into orbit and is already delivering telemetry data to its team of operators on the ground.

The launch was not only a milestone for the asteroid prospecting company, but for commercial aerospace in general. For the purposes of creating the Arkyd 6, the company modified commercial-available technology to be used in space. This includes the mid-wave infrared (MWIR) sensor the spacecraft will use to detect water on Earth, as well as its avionics, power systems, communications, attitude determination and control systems.

The Arkyd-6 deploying from the PSLV rocket that carried it into orbit. Credit: ISRO

This process is central to the new era of commercial aerospace, where the ability to adapt readily-available technology will allow companies to have control over every stage of the development process, as well as significantly reducing costs. As Chris Lewicki, the President and CEO Planetary Resources, said in a recent company statement:

“The success of the Arykd-6 will validate and inform the design and engineering philosophies we have embraced since the beginning of this innovative project. We will continue to employ these methods through the development of the Arkyd-301 and beyond as we progress toward our Space Resource Exploration Mission.”

The company hopes to mount the Space Resource Exploration Mission by 2020, which will involve multiple spacecraft being deployed as part of a single rocket launch. These will be carried beyond Earth’s orbit and will use low-thrust ion propulsion systems to travel to asteroids that have been prospected by Arkyd-301. Once there, they will collect data and collect samples for analysis.

During the course of the Arkyd-6’s flight, 17 elements will be tested in total, the most important of which is the MWIR imager. This instrument will be the first commercial infrared imager to be used in space and relies on custom optics to collect pixel-level data. With this high-level of precision, the imager will conduct hydration studies of Earth to determine how effective the instrument is at sniffing out sources of water on other bodies.

Planetary Resources onfographic, showing the process of asteroid prospecting. Credit: Planetary Resources

Based on the findings from this initial flight, the company plans to further develop the sensor technology, which will be incorporated into their next mission – the Arkyd-301. This spacecraft will be the first step in Planetary Resources plan to make asteroid mining a reality. Using the same technology as the Arkyd-6 (with some refinements), the spacecraft will be responsible for identifying sources of water on Near-Earth Asteroids.

These asteroids will be the target of future missions, where commercial spacecraft attempt to rendezvous and mine them for water ice. As Chris Voorhees, the Chief Engineer at Planetary Resources, said:

“If all of the experimental systems operate successfully, Planetary Resources intends to use the Arkyd-6 satellite to capture MWIR images of targets on Earth’s surface, including agricultural land, resource exploration regions, and infrastructure for mining and energy. In addition, we will also have the opportunity to perform specific celestial observations from our vantage point in low Earth orbit. Lessons learned from Arkyd-6 will inform the company’s approach as it builds on this technology to enable the scientific and economic evaluation of asteroids during its future Space Resource Exploration Mission.”

All told, there are over 1600 asteroids in Near-Earth space. According to Planetary Resources own estimates, these contain a total of 2 trillion metric tons (2.2 US tons) of water, which can be used for the sake of life support and manufacturing fuel for space missions. By tapping this abundant off-world resource, they estimate that the associated costs of mounting missions to space can be reduced by 95%.

Much like SpaceX’s ongoing development of reusable rockets and attempts to create reusable space planes (such as the Dream Chaser and the Sabre Engine), the goal here is to make space exploration not only affordable, but lucrative. Once that is achieved, the size and shape of space exploration will be limited only by our imaginations.

And be sure to check out this video from Planetary Resources that outlines their Exploration Program:

“The success of the Arykd-6 will validate and inform the design and engineering philosophies we have embraced since the beginning of this innovative project,” said Chris Lewicki, President and CEO, Planetary Resources. “We will continue to employ these methods through the development of the Arkyd-301 and beyond as we progress toward our Space Resource Exploration Mission.”

Further Reading: Planetary Resources

Here’s the Earth and Moon Seen from OSIRIS-REx

The Earth-Moon system, as imaged by NASA's OSIRIS-REx mission. Credit: NASA/OSIRIS-REx team and the University of Arizona

On September 8th, 2016, NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission was launched into space. In the coming months, this space probe will approach and then rendezvous with the asteroid 101955 Bennu – a Near-Earth Object (NEO) – for the sake of studying it. The mission will also acquire samples of the asteroid, which will be returned to Earth by 2023.

The OSIRIS-REx mission is an historic one, since it will be the first US spacecraft to conduct a sample-return mission with an asteroid. In the meantime, as the probe has makes its way further into space, it has been providing some truly breathtaking images of the journey. Consider the recently-released composite image of the Earth-Moon system, which NASA created using images that were taken by the probe on October 2nd, 2017.

The images were all taken by the probe’s MapCam instrument, a medium-range camera designed to capture images of outgassing around Bennu and help map its surface in color. On this occasion, it snapped three beautiful pictures of Earth and the Moon. These images were all taken when the spacecraft was at a distance of approximately 5 million km (3 million mi) from Earth – about 13 times the distance between the Earth and the Moon.

Black and white image of Earth taken by the OSIRIS-REx’s NavCam 1 instrument. Credit: NASA/OSIRIS-REx team and the University of Arizona

As part of the OSIRIS-REx Camera Suite (OCAMS), which is operated by researchers at the University of Arizona, the CapCam has four color filters. To produce the image, three of them (b, v and w) were used as a blue, green and red filters and then stacked on top of each other. The Earth and Moon were each color-corrected, and the Moon was brightened to make it more easily visible.

A second image of planet Earth (shown above), was taken on September 22nd, 2017, by one of the probe’s navigational cameras (NavCam 1). As the name suggests, this instrument is intended to help OSIRIS-REx orient itself while making its journey to Bennu and while it studies the asteroid. This is done by tracking starfields in space (while in transit) and landmarks on Bennu’s surface once it has arrived.

The image was taken when OSIRIS-REx was at a distance of 110,000 km (69,000 mi) from Earth. This was just after the probe had completed an Earth gravity-assist maneuver, where it used Earth’s gravitational force to slingshot around its equator and pick up more speed. The original image (shown below) was rotated so that the North Pole would be pointed up and the entire image was enlarged to provide more detail.

As you can see in the altered image, North America is visible on the upper right portion, while Hurricane Maria and the remnants of Hurricane Jose are visible in the far upper-right. The acquisition of these images was the result of painstaking calculations and planning, which were performed in advance by engineers and navigation specialists on the mission team using software called Systems Tool Kit (STK).

Original image taken by the OSIRIS-REx NavCam 1 of Earth. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

These plans were developed to ensure that the probe would be able to snap pictures with precise timing, which were then uploaded to the spacecraft’s computer weeks ahead of time. Within hours of the probe executing its gravity-assist maneuver, crews on the ground were treated to the first images from the spacecraft’s navigational cameras, which confirmed that the probe was following the right path.

The probe is scheduled to reach Bennu in December of 2018, with approach operations commencing this coming August. Bennu is also expected to make a close pass with Earth several centuries from now, and could even collide with us by then. But for the time being, it represents a major opportunity to study the history and evolution of the Solar System, since it is essentially a remnant left over from its formation.

By studying this asteroid up close, and bringing samples back to Earth for further study, the OSRIS-REx mission could help us understand how life began on Earth and where the Solar System as a whole is headed. But in the meantime, the probe has been able to provide us with some beautiful snapshots of Earth, which serve to remind us all of certain things.

Much like Voyager 1‘s “Pale Blue Dot” photo, seeing Earth from space helps to drive home the fact that life is rare and precious. It also reminds us that we, as a species, are all in this together and completely and utterly dependent  on our planet and its ecosystems. Once in awhile, we need to be reminded of these things. Otherwise, we might do some stupid – like ruin it!

Further Reading: NASA

Updates on ‘Oumuamua. Maybe it’s a Comet, Actually. Oh, and no Word From Aliens.

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) in Hawaii announced the first-ever detection of an interstellar object, named 1I/2017 U1 (aka. ‘Oumuamua). After originally hypothesizing that it was a comet, observations performed by the European Southern Observatory (ESO) and other astronomers indicated that it was likely a strange-looking asteroid measuring about 400 meters (1312 ft) long.

Since that time, multiple surveys have been conducted to determine the true nature of this asteroid, which have included studies of its composition to Breakthrough Listen‘s proposal to listen to it for signs of radio transmissions. And according to the latest findings, it seems that ‘Oumuamua may actually be more icy than previously thought (thus indicated that it is a comet) and is not an alien spacecraft as some had hoped.

The first set of findings were presented in a study that was recently published in the scientific journal Nature, titled “Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua“. The study was led by Alan Fitzsimmons of Queen’s University Belfast, and included members from The Open University in Milton Keynes, the Institute for Astronomy (IfA) at the University of Hawaii, and the European Southern Observatory (ESO).

‘Oumuamua, as imaged by the William Herschel Telescope on October 29th, 2017. Credit: Queen’s University Belfast/William Herschel Telescope

As they indicate in their study, the team relied on information from the ESO’s Very Large Telescope in Chile and the William Herschel Telescope in La Palma. Using these instruments, they were able to obtain spectra from sunlight reflected off of ‘Oumuamua within 48 hours of the discovery. This revealed vital information about the composition of the object, and pointed towards it being icy rather than rocky. As Fitzsimmons explained in op-ed piece in The Conversation:

“Our data revealed its surface was red in visible light but appeared more neutral or grey in infra-red light. Previous laboratory experiments have shown this is the kind of reading you’d expect from a surface made of comet ices and dust that had been exposed to interstellar space for millions or billions of years. High-energy particles called cosmic rays dry out the surface by removing the ices. These particles also drive chemical reactions in the remaining material to form a crust of chemically organic (carbon-based) compounds.”

These findings not only addressed a long-standing question about ‘Oumuamua true nature, it also addresses the mystery of why the object did not experience outgassing as it neared our Sun. Typically, comets experience sublimation as they get closer to a star, which results in the formation of a gaseous envelope (aka. “halo”). The presence of an outer layer of carbon-rich material would explain why this didn’t happen ‘Oumuamua.

They further conclude that the red layer of material could be the result of its interstellar journey. As Fitzsommons explained, “another study using the Gemini North telescope in Hawaii showed its color is similar to some ‘trans-Neptunian objects’ orbiting in the outskirts of our solar system, whose surfaces may have been similarly transformed.” This red coloring is due to the presence of tholins, which form when organic molecules like methane are exposed to ultra-violet radiation.

Similarly, another enduring mystery about this object was resolved thanks to the recent efforts of Breakthrough Listen. As part of Breakthrough Initiatives’ attempts to explore the Universe and search for signs of Extra-Terrestrial Intelligence (ETI), this project recently conducted a survey of ‘Oumuamua to determine if there were any signs of radio communications coming from it.

While previous studies had all indicated that the object was natural in origin, this survey was more about validating the sophisticated instruments that Listen relies upon. The observation campaign began on Wednesday, December 13th, at 3:00 pm EST (12:00 PST) using the Robert C. Byrd Greenbank Radio Telescope, the world’s premiere single-dish radio telescope located in West Virginia.

The observations period was divided into four “epochs” (based on the object’s rotational period), the first of which ran from 3:45 pm to 9:45 pm ET (12:45 pm to 6:45 pm PST) on Dec 13th, and last for ten hours. During this time, the observation team monitored ‘Oumuamua across four radio bands, ranging from the 1 to 12 GHz bands. In addition to calibrating the instrument, the survey accumulated 90 terabytes of raw data over after observing ‘Oumuamua itself for two hours.

The initial results and data were released last week (Dec. 13th) and are available through the Breakthrough Listen archive. As Andrew Siemion – the Director of Berkeley SETI Research Center who took part in the survey – indicated in a Breakthrough Initiatives press release:

“It is great to see data pouring in from observations of this novel and interesting source. Our team is excited to see what additional observations and analyses will reveal”.

So far, no signals have been detected, but the analysis is far from complete. This is being conducted by Listen’s “turboSETI” pipeline, which combs the data for narrow bandwidth signals that are drifting in frequency. This consists of filtering out interference signals from human sources, then matching the rate at which signals drift relative to the expected drift caused by ‘Oumuamua’s own motion.

In so doing, the software attempts to identify any signals that might be coming from ‘Oumuamua itself. So far, data from the S-band receiver (frequencies ranging from 1.7 to 2.6 GHz) has been processed, and analysis of the remaining three bands – which corresponds to receivers L, X, and C is ongoing. But at the moment, the results seem to indicate that ‘Oumuamua is indeed a natural object – and an interstellar comet to boot.

This is certainly bad news for those who were hoping that ‘Oumuamua might be a massive cylinder-shaped generation ship or some alien space probe sent to communicate with the whales! I guess first contact – and hence, proof we are NOT alone in the Universe – is something we’ll have to wait a little longer for.

Further Reading: The Conversation, Nature, Breakthrough Initiatives

Breakthrough Listen is Going to Scan ‘Oumuamua, You Know, Just to be Sure it’s Just an Asteroid and Not a Spaceship.

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) in Hawaii announced the first-ever detection of an interstellar asteroid, named 1I/2017 U1 (aka. ‘Oumuamua). Based on subsequent measurements of its shape (highly elongated and thin), there was some speculation that it might actually be an interstellar spacecraft (the name “Rama” ring a bell?).

For this reason, there are those who would like to study this object before it heads back out into interstellar space. While groups like Project Lyra propose sending a mission to rendezvous with it, Breakthrough Initiatives (BI) also announced its plans to study the object using Breakthrough Listen. As part of its mission to search for extra-terrestrial communications, this project will use the Greenbank Radio Telescope to listen to ‘Oumuamua for signs of radio transmissions.

Observations of ‘Oumuamua’s orbit revealed that it made its closest pass to our Sun back in September of 2017, and has been on its way back to interstellar space ever since. When it was observed back in October, it was passing Earth at a distance of about 85 times the distance between Earth and the Moon, and was traveling at a peak velocity of about 315,430 km/h (196,000 mph).

This indicated that, unlike the many Near-Earth Objects (NEOs) that periodically cross Earth’s orbit, this asteroid was not gravitationally bound to the Sun. In November, astronomers using the ESO’s Very Large Telescope (VLT) at the Paranal Observatory in Chile were also able to determine the brightness and color of the asteroid, which allowed for precise calculations of its size and shape.

Basically, they determined that it was 400 meters (1312 ft) long and very narrow, indicating that it was shaped somewhat like a cigar. What’s more, the idea of a cigar or needle-shaped spacecraft is a time-honored concept when it comes to science fiction and space exploration. Such a ship would minimize friction and damage from interstellar gas and dust, and could rotate to provide artificial gravity.

For all of these reasons, it is understandable why some responded to news of this asteroid by making comparisons to a certain science fiction novel. That would be Arthur C. Clarke’s Rendezvous with Rama, a story of a cylindrical space ship that travels through the Solar System while on its way to another star. While a natural origin is the more likely scenario, there is no consensus on what the origin this object might be – other than the theory that it came from the direction of Vega.

Hence why Breakthrough Listen intends to explore ‘Oumuamua to determine whether it is truly an asteroid or an artifact. Established in January of 2016, Listen is the largest scientific research program aimed at finding evidence of extra-terrestrial intelligence with established SETI methods. These include using radio observatories to survey 1,000,000 of the closest stars (and 100 of the closest galaxies) to Earth over the course of ten years.

Breakthrough Listen will monitor the 1 million closest stars to Earth over a ten year period. Credit: Breakthrough Initiatives

Listen’s observation campaign will begin on Wednesday, December 13th, at 3:00 pm EST (12:00 PST), using the Greenbank Radio Telescope. This 100-meter telescope is the world’s premiere single-dish radio telescope and is capable of operating at millimeter and submillimeter wavelengths. It is also the mainstay of the NSF-funded Green Bank Observatory, located in West Virginia.

The first phase of observations will last a total of 10 hours, ranging from the 1 to 12 GHz bands, and will broken down into four “epochs” (based on the object’s rotational period). At present, ‘Oumuamua is about 2 astronomical units (AUs) – or 299,200,000 km; 185,900,000 mi – away from Earth, putting it at twice the distance between the Earth and the Sun. This places it well beyond the orbit of Mars, and over halfway between Mars and Jupiter.

At this distance, the Green Bank Telescope will take less than a minute to detect an omni-directional transmitter with the power of a cellphone. In other words, if there is a alien signal coming from this object, Breakthrough Listen is sure to sniff it out in no time! As Andrew Siemion, Director of Berkeley SETI Research Center and a member of Breakthrough Listen, explained in a BI press statement:

“‘Oumuamua’s presence within our solar system affords Breakthrough Listen an opportunity to reach unprecedented sensitivities to possible artificial transmitters and demonstrate our ability to track nearby, fast-moving objects. Whether this object turns out to be artificial or natural, it’s a great target for Listen.”

Even if there are no signals to be heard, and no other evidence of extra-terrestrial intelligence is detected, the observations themselves are a opportunity for scientists and the field of radio astronomy in general. The project will observe ‘Oumuamua in portions of the radio spectrum that it has not yet been observed at, and is expected to yield information about the possibility of water ice or the presence of a “coma” (i.e. gaseous envelop) around the object.

During the previous survey, data gathered using the VLT’s FOcal Reducer and low dispersion Spectrograph (FORS) indicated that ‘Oumuamua was likely a dense and rocky asteroid with a high metal content and little in the way of water ice. Updated information provided by the Greenbank Telescope could therefore confirm or cast doubt on this, thus reopening the possibility that it is actually a comet.

Regardless of what it finds, this survey is likely to be a feather in the cap of Breakthrough Listen, which already demonstrated it’s worth in terms of non-SETI astronomy this past summer. At that time, and using the Green Bank Radio Telescope, the Listen science team at UC Berkeley observed 15 Fast Radio Bursts (FRBs) for the fist time coming from a dwarf galaxy three billion light-years from Earth.

Still, I think we can all agree that an extra-terrestrial spaceship would be the most exciting possibility (and perhaps the most frightening!). And it is very safe to say that some of us will be awaiting the results of the survey with baited breath. Luckily, we’ll only have to wait two more days to see if humanity is still alone in the Universe or not! Stay tuned!

Further Reading: Breakthrough Initiatives

That Interstellar Asteroid is Probably Pretty Strange Looking

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) telescope in Hawaii picked up the first interstellar asteroid, named 1I/2017 U1 (aka. `Oumuamua). After originally being mistaken for a comet, observations performed by the European Southern Observatory (ESO) and other astronomers indicated that it was actually an asteroid that measures about 400 meters (1312 ft) long.

Thanks to data obtained by the ESO’s Very Large Telescope (VLT) at the Paranal Observatory in Chile, the brightness, color and orbit of this asteroid have been precisely determined. And according to a new study led by Dr. Karen Meech of the Institute for Astronomy in Hawaii, `Oumuamua is unlike any other asteroid we’ve ever seen, in that its shape is highly elongated (i.e. very long and thin).

The study, titled “A Brief Visit From a Red and Extremely Elongated Interstellar Asteroid“, appeared today (Nov. 20th) in the scientific journal Nature. Led by Dr. Meech, the team included members from the European Southern Observatory, the Osservatorio Astronomico di Roma, the European Space Agency’s SSA-NEO Coordination Center, and the Institute for Astronomy at the University of Hawaii in Honolulu.

The VLT was intrinsic to the combined effort to characterize the fast-moving asteroid rapidly, as it needed to be observed before it passed back into interstellar space again. Based on initial calculations of `Oumuamua’s orbit, astronomers had determined that it had already passed the closest point in its orbit to the Sun in September of 2017. Together with other large telescopes, the VLT captured images of the asteroid using its FORS instrument.

What these revealed was that `Oumuamua varies dramatically in terms of brightness (by a factor of ten) as it spins on its axis every 7.3 hours. As Dr. Meech explained in an ESO press release, this was both surprising and highly significant:

This unusually large variation in brightness means that the object is highly elongated: about ten times as long as it is wide, with a complex, convoluted shape. We also found that it has a dark red colour, similar to objects in the outer Solar System, and confirmed that it is completely inert, without the faintest hint of dust around it.

These observations also allowed Dr. Meech and her team to constrain Oumuamua’s composition and basic properties. Essentially, the asteroid is now believed to be a dense and rocky asteroid with a high metal content and little in the way of water ice. It’s dark and reddened surface is also an indication of tholins, which are the result of organic molecules (like methane) being irradiated by cosmic rays for millions of years.

Unlike other asteroids that have been studied in Near-Earth space and the Solar System at large, `Oumuamua is unique in that it is not bound by the Sun’s gravity. In addition to originating outside of our Solar System, its hyperbolic orbit – which has an eccentricity of 1.2 – means that it will head back out into interstellar space after its brief encounter with our Solar System.

Based on preliminary calculations of its orbit, astronomers have deduced that it came from the general direction of Vega, the brightest star in the northern constellation of Lyra. Traveling at a whopping speed of 95,000 km/hour (59,000 mph), `Oumuamua would have left the Vega system about 300,000 years ago. However, it is also possible that the asteroid may have originated somewhere else entirely, wandering the Milky Way for millions of years.

Astronomers estimate that interstellar asteroids like `Oumuamua pass through the inner Solar System at a rate of about once a year. But until now, they have been too faint and difficult to detect in visible light, and have therefore gone unnoticed. It is only recently that survey telescopes like Pan-STARRS have been powerful enough to have a chance at detecting them.

Hence what makes this discovery so significant in the first place. As the first asteroid of its kind to be detected, further improvements in our instruments will it make it easier to spot the others that are sure to be on the way. And as Olivier Hainaut – a researcher with the ESO and a co-author on the study – indicated, there’s plenty more to be learned from `Oumuamua as well:

“We are continuing to observe this unique object, and we hope to more accurately pin down where it came from and where it is going next on its tour of the galaxy,” he said. “And now that we have found the first interstellar rock, we are getting ready for the next ones!”

And be sure to enjoy this ESOcast video about `Oumuamua, courtesy of the ESO:

Further Reading: ESO, Nature

Dinosaur Killing Asteroid hit Earth in Exactly the Wrong Spot

Earth and possibly its Moon were hit by impactors that killed off the dinosaurs
Artistic rendition of the Chicxulub impactor striking ancient Earth, with Pterosaur observing. Could pieces of the same impact swarm have hit the Moon, too? Credit: NASA

Sixty-six million years ago, an asteroid struck Earth in what is now the Yucatan Peninsula in southern Mexico. This event, known as the Chicxulub asteroid impact, measured 9 km in diameter and caused extreme global cooling and drought. This led to a mass extinction, which not only claimed the lives of the dinosaurs, but also wiped out about 75% of all land and sea animals on Earth.

However, had this asteroid impacted somewhere else on the planet, things could have turned out very differently. According to a new study produced by a team of Japanese researchers, the destruction caused by this asteroid was due in large part to where it impacted. Had the Chicxulub asteroid landed somewhere else on the planet, they argue, the fallout would not have been nearly as severe.

The study, which recently appeared in the journal Scientific Reportsis titled “Site of asteroid impact changed the history of life on Earth: the low probability of mass extinctionand was conducted by Kunio Kaiho and Naga Oshima of Tohoku University and the Meteorological Research Institute, respectively. For the sake of their study, the pair considered how geological conditions in the Yucatan region were intrinsic to mass extinction that happened 66 million years ago.

Satellite views of the Chicxulub impact site in the Yucutan Peninsula, southern Mexico. Image credit: NASA/JPL

Dr. Kaiho and Dr. Oshima began by considering recent studies that have shown how the Chicxulub impact heated the hydrocarbon and sulfur content of rocks in the region. This is what led to the formation of stratospheric soot and sulfate aerosols which caused the extreme global cooling and drought that followed. As they state in their study, it was this (not the impact and the detritus it threw up alone) that ensured the mass extinction that followed:

“Blocking of sunlight by dust and sulfate aerosols ejected from the rocks at the site of the impact (impact target rocks) was proposed as a mechanism to explain how the physical processes of the impact drove the extinction; these effects are short-lived and therefore could not have driven the extinction. However, small fractions of stratospheric sulfate (SO4) aerosols were also produced, which may have contributed to the cooling of the Earth’s surface.

Another issue they considered was the source of the soot aerosols, which previous research has indicated were quite prevalent in the stratosphere during the Cretaceous/Paleogene (K–Pg) boundary (ca. 65 million years ago). This soot is believed to coincide with the asteroid impact since microfossil and fossil pollen studies of this period also indicate the presence of iridium, which has been traced to the Chicxulub asteroid. 

Previously, this soot was believed to be the result of wildfires that raged in the Yucatan as a result of the asteroid impact. However, Kaiho and Oshima determined that these fires could not have resulted in stratospheric soot; instead positing that they could only be produced by the burning and ejecting of hyrdocarbon material from rocks in the impact target area.

When an asteroid struck the Yucatan region about 66 million years ago, it wiped out the dinosaurs, and most of life on Earth. If it had hit elsewhere, the dinosaurs might well have survived. Credit: NASA/Don Davis
When an asteroid struck the Yucatan region about 66 million years ago, it wiped out the dinosaurs, and most of life on Earth. If it had hit elsewhere, the dinosaurs might well have survived. Credit: NASA/Don Davis

The presence of these hydrocarbons in the rocks indicate the presence of both oil and coal, but also plenty of carbonate minerals. Here too, the geology of the Yucatan was key, since the larger geological formation known as the Yucatan Platform is known to be composed of carbonate and soluble rocks – particularly limestone, dolomite and evaporites.

To test just how important the local geology was to the mass extinction that followed, Kaiho and Oshima conducted a computer simulation that took into account where the asteroid struck and how much aerosols and soot would be produced by an impact. Ultimately, they found that the resulting ejecta would have been sufficient to trigger global cooling and drought; and hence, an Extinction Level Event (ELE).

This sulfur and carbon-rich geology, however, is not something the Yucatan Peninsula shares with most regions on the planet. As they state in their study:

“Here we show that the probability of significant global cooling, mass extinction, and the subsequent appearance of mammals was quite low after an asteroid impact on the Earth’s surface. This significant event could have occurred if the asteroid hit the hydrocarbon-rich areas occupying approximately 13% of the Earth’s surface. The site of asteroid impact, therefore, changed the history of life on Earth.”

Mass extinction only occurred when the asteroid having 9-km diameter hit the orange areas. Credit: Kunio Kaiho

Basically, Kaiho and Oshima determined that 87% of Earth would not have been able to produce enough sulfate aerosols and soot to trigger a mass extinction. So if the Chicxulub asteroid struck just about anywhere else on the planet, the dinosaurs and most of the world’s animals would have likely survived, and the resulting macroevolution of mammals probably would not have taken place.

In short, modern hominids may very well owe their existence to the fact that the Chicxulub asteroid landed where it did. Granted, the majority of life in the Cretaceous/Paleogene (K–Pg) was wiped out as a result, but ancient mammals and their progeny appear to have lucked out. The study is therefore immensely significant in terms of our understanding of how asteroid impacts affect climatological and biological evolution.

It is also significant when it comes to anticipating future impacts and how they might affect our planet. Whereas a large impact in a sulfur and carbon-rich geological region could lead to another mass extinction, an impact anywhere else could very well be containable. Still, this should not prevent us from developing appropriate countermeasures to ensure that large impacts don’t happen at all!

Further Reading: Science Reports

Astronomers Practice Responding to a Killer Asteroid”

Artist's concept of a large asteroid passing by the Earth-Moon system. Credit: A combination of ESO/NASA images courtesy of Jason Major/Lights in the Dark.

Beyond the Earth-Moon system, thousands of asteroids known as Near-Earth Objects (NEOs) are known to exist. These rocks periodically cross Earth’s orbit and make close a flyby of Earth. Over the course of millions of years, some even collide with the Earth, causing mass extinctions. Little wonder then why NASA’s Center for Near Earth Object Studies (CNEOS) is dedicated to monitoring the larger objects that occasionally come close to our planet.

One of these objects is 2012 TC4, a small and oblong-shaped NEO that was first spotted in 2012 during a close flyby of Earth. During its most recent flyby – which took place on Thursday, October 12th,2017 – an international team of astronomers led by NASA scientists used the opportunity to conduct the first international exercise to test global responses to an impending asteroid strike.

This exercise was known as the “TC4 Observation Campaign“, which began this past July and concluded with the asteroid flyby. It all began when astronomers at the European Southern Observatory’s (ESO) Paranal Observatory in Chile used the Very Large Telescope (VLT) to recover 2012 TC4. When the asteroid made its final close approach to Earth in mid-October, it passed Earth by at a distance of 43,780 km (27,200 mi).

Diagram showing 2012 TC4’s heliocentric orbit, which has changed due to the 2012 and 2017 close encounters with Earth. Credit: NASA/JPL-Caltech

The goal of this exercise was simple: recover, track and characterize a real asteroid as if it were likely to collide with Earth. In addition, the exercise was an opportunity to test the International Asteroid Warning Network, which conducts observations of potentially hazardous asteroids, attempts to model their behavior, make predictions, and share these findings with institutions around the world.

On Oct. 12th, TC4 flew by Earth at roughly 0.11 times the distance between Earth and the Moon. In the months leading up to the flyby, astronomers from the US, Canada, Columbia, Germany, Israel, Italy, Japan, the Netherlands, Russia and South Africa tracked TC4 from the ground. At the same time, space-based telescopes studied the asteroid’s orbit, shape, rotation and composition.

Detlef Koschny is the co-manager of the Near-Earth Object segment in the European Space Agency (ESA)’s Space Situational Awareness program. As he was quoted in a recent NASA press release:

“This campaign was an excellent test of a real threat case. I learned that in many cases we are already well-prepared; communication and the openness of the community was fantastic. I personally was not prepared enough for the high response from the public and media – I was positively surprised by that! It shows that what we are doing is relevant.”

Asteroid 2012 TC4 appears as a dot at the center of this composite of 37 individual 50-second exposures obtained on Aug. 6, 2017 by the European Southern Observatory’s Very Large Telescope. Credit: NASA/JPL-Caltech

Based on their observations, scientists at CNEOS – which is located at the Jet Propulsion Laboratory in Pasadena, California – were able to determine all the necessary characteristics of TC4. This included its precise orbit, the distance it would pass by Earth on Oct. 12th, and discern if there was any possibility of a future impact. As Davide Farnocchia, a member of CNEOS who led the effort to determine the asteroid’s orbit, explained:

“The high-quality observations from optical and radar telescopes have enabled us to rule out any future impacts between the Earth and 2012 TC4. These observations also help us understand subtle effects such as solar radiation pressure that can gently nudge the orbit of small asteroids.”

Multiple observatories also dedicated their optical telescopes to studying how fast TC4 rotates. As Eileen Ryan – the director of the Magdalena Ridge Observatory, which conducted observations of the asteroids rotation – indicated, “The rotational campaign was a true international effort. We had astronomers from several countries working together as one team to study TC4’s tumbling behavior.”

What they found that the small asteroid rotated slowly, which was rather surprising. Whereas small asteroids typically rotate very quickly, TC4 had a rotational period of just 12 minutes, and also appeared to be tumbling. Other observations revealed some interesting things about the shape of TC4.

The Green Bank Telescope, located in West Virginia. Credit: NRAO

These were conducted by astronomers using NASA’s Goldstone Deep Space Network antenna in California, and the National Radio Astronomy Observatory‘s Green Bank Telescope in West Virginia. Their reading helped refine size estimates of the asteroid, indicating that it is elongated and measures approximately 15 meters (50 ft) long and 8 meters (25 feet) wide.

Determining TC4’s composition was more challenging. Due to unfavorable weather conditions that coincided with the flyby, instruments like NASA’s Infrared Telescope Facility (IRTF) at the Mauna Kea Observatory in Hawaii were unable to get a good look at the asteroid. However, spectra was obtained on the asteroid that indicated that it has a rocky body, which means it is an S-type asteroids.

Typically, ground-based elements determine an asteroid’s composition based on their color. Whereas dark asteroids are known for being carbon-rich (C-type), bright asteroids are predominantly composed of silicate minerals (S-type). As Lance Benner, who led the radar observations at JPL, explained:

“Radar has the ability to identify asteroids with surfaces made of highly reflective rocky or metallic materials. We were able to show that radar scattering properties are consistent with a bright rocky surface, similar to a particular class of meteorites that reflect as much as 50 percent of the light falling on them.”

In addition to the observation campaign, NASA used TC4’s latest flyby as an opportunity to test communications between observatories, as well as the internal messaging and communications system that is currently in place. This network connects various government agencies and the executive branch and would come into play in the event of a predicted impact emergency.

Asteroid 2012 TC4 projected flyby of the Earth-Moon system, which was calculated well before it took place. Credits: NASA/JPL-Caltech

According to Vishnu Reddy, an assistant professor from the University of Arizona’s Lunar and Planetary Laboratory who led the observation campaign, this aspect of the exercise “demonstrated that we could organize a large, worldwide observing campaign on a short timeline, and communicate results efficiently.”Michael Kelley, the TC4 exercise lead at NASA Headquarters in Washington, added,”We are much better prepared today to deal with the threat of a potentially hazardous asteroid than we were before the TC4 campaign.”

Last, but not least, was the way the exercise brought scientists and institutions from all around the world together for a single purpose. As Boris Shustov – the science director for the Institute of Astronomy at the Russian Academy of Sciences, who was also part of the exercise – indicated, the exercise was an excellent way to test how the world’s scientific institutions would go about prepping for a possible asteroid impact:

“The 2012 TC4 campaign was a superb opportunity for researchers to demonstrate willingness and readiness to participate in serious international cooperation in addressing the potential hazard to Earth posed by NEOs. I am pleased to see how scientists from different countries effectively and enthusiastically worked together toward a common goal, and that the Russian-Ukrainian observatory in Terskol was able to contribute to the effort. In the future I am confident that such international observing campaigns will become common practice.”

In the event that a Near-Earth asteroid might actually pose a threat the Earth, it is good to know that all the tracking, monitoring and alert systems we have in place are in good working order. If we are going to trust the fate of human civilization (and possibly all life on Earth) to an advanced warning system, it just makes sense to have all the bugs worked out beforehand!

The TC4 Observation Campaign is sponsored by NASA’s Planetary Defense Coordination Office, which in turn is managed by the Planetary Science Division of the Science Mission Directorate at NASA Headquarters in Washington, D.C.

Further Reading: NASA

Nope, our Temporary Moon Isn’t Space Junk, it’s an Asteroid

Mining asteroids might be necessary for humanity to expand into the Solar System. But what effect would asteroid mining have on the world's economy? Credit: ESA.

In April of 2016, astronomers became aware of a distant object that appeared to be orbiting the Sun, but was also passing close enough to Earth that it could be periodically viewed using the most powerful telescopes. Since then, there has been ample speculation as to what this “Temporary Moon” could be, with most astronomers claiming that it is likely nothing more than an asteroid.

However, some suggested that it was a burnt-out rocket booster trapped in a near-Earth orbit. But thanks to new study by a team from the University of Arizona’s Lunar and Planetary Laboratory, this object – known as (469219) 2016 HO3 – has been confirmed as an asteroid. While this small near-Earth-asteroid orbits the Sun, it also orbits Earth as a sort of “quasi-satellite”.

The team that made this discovery was led by Vishnu Reddy, an assistant professor at the University of Arizona’s Lunar and Planetary Laboratory. Their research was also made possible thanks to NASA’s Near-Earth Object Observations Program. This program is maintained by NASA’s Center for Near-Earth Object Studies (CNEOS) and provides grants to institutions dedicated to the research of NEOs.

2016 HO3 is an asteroid that appears to orbit around Earth due to the mechanics of its peculiar orbit around the sun. Credit: NASA-JPL

The details of this discovery were presented this week at the 49th Annual Meeting of the Division for Planetary Sciences in Utah at a presentation titled “Ground-based Characterization of Earth Quasi Satellite (469219) 2016 HO3”. During the course of the presentation, Reddy and his colleagues described how they spotted the object using the Large Binocular Telescope (LBT) at the LBT Observatory on Mount Graham in southeastern Arizona.

According to their observations, 2016 HO3 measures just 100 meters (330 feet) across and is the most stable quasi-satellite discovered to date (of which there have been five). Over the course of a few centuries, this asteroid remains at a distance of 38 to 100 lunar distances – i.e. the distance between the Earth and the Moon. As Reddy explained in a UANews press statement, this makes the asteroid a challenging target:

“While HO3 is close to the Earth, its small size – possibly not larger than 100 feet – makes it challenging target to study. Our observations show that HO3 rotates once every 28 minutes and is made of materials similar to asteroids.”

Discovering the true nature of this object has also solved another big question – namely, where did 2016 HO3 come from? For those speculating that it might be space junk, it then became necessary to determine what the likely source of that junk was. Was it a remnant of an Apollo-era mission, or something else entirely? By determining that it is actually an NEO, Reddy and his team have indicted that it likely comes from the same place as other NEOs.

Vishnu Reddy of the University of Arizona’s Lunar Planetary Laboratory. Credit: Bob Demers/UANews

Reddy and his colleagues also indicated that 2016 HO3 reflected light off its surface in a way that is similar to meteorites that have been studied here on Earth. This was another indication that 2016 HO3 has similar origins to other NEOs (some of which have entered our atmosphere as meteors) which are generally asteroids that were kicked out of the Main Belt by Jupiter’s gravity.

“In an effort to constrain its rotation period and surface composition, we observed 2016 HO3 on April 14 and 18 with the Large Binocular Telescope and the Discovery Channel Telescope,” Reddy said. “The derived rotation period and the spectrum of emitted light are not uncommon among small NEOs, suggesting that 2016 HO3 is a natural object of similar provenance to other small NEOs.”

But unlike other NEOs which periodically cross Earth’s orbit, “quasi-satellites” are distinguished by their rather unique orbits. In the case of 2016 HO3, it has an orbit that follows a similar path to that the Earth’s; but because it is not dominated by the Earth’s gravity, their two orbits are out of sync. This causes 2016 HO3 to make annual loops around the Earth as it orbits the Sun.

Artist’s impression of a hypothetical astronaut mission to an asteroid. Credit: NASA Human Exploration Framework Team

Christian Veillet, one of co-authors of the presentation, is also the director of the LBT Observatory. As he explained, this characteristic could make “quasi-satellites” ideal targets for future NEO studies:

“Of the near-Earth objects we know of, these types of objects would be the easiest to reach, so they could potentially make suitable targets for exploration. With its binocular arrangement of two 8.4-meter mirrors, coupled with a very efficient pair of imagers and spectrographs like MODS, LBT is ideally suited to the characterization of these Earth’s companions.”

Similarly, their orbital characteristic could make “quasi-satellites” an ideal target for future space missions. One of NASA’s main goals in the coming decade is to send a crewed mission to a Near-Earth Object in order to test the Orion spacecraft and the Space Launch System. Such a mission would also help develop the necessary expertise for mounting missions deeper into space (i.e. to Mars and beyond).

The study of Near-Earth Objects is also of immense importance when it comes to determining how and where as asteroid might pose a threat to Earth. This knowledge allows for advanced warnings which can potentially save lives. It is also significant when it comes to the development of proposed counter-measures, several of which are currently being explored.

And be sure to enjoy this video of 2016 HO3’s orbit, courtesy of NASA’s Jet Propulsion Laboratory:

Further Reading: UANews

Watch a House-Sized Asteroid Pass Close to Earth Tonight (October 11/12)

Asteroid 2012 TC4 captured remotely on October 11, 2017 from the iTelescope SRO Observatory. Credit and copyright: Ernesto Guido/Remanzacco Observatory.

On Oct. 12, a house-size asteroid will pass quite close to Earth – only 26,000 miles (42,000 kilometers) away. This is just above the orbital altitude of communications satellites and a little over one-tenth the distance to the Moon. But not to fear, it has no chance of hitting Earth.

Artists concept of Asteroid 2012 TC4’s close pass of Earth on Oct. 12, 2017. Based on continuing observations, scientists have determined that it will pass the Earth at a distance of about 26,000 miles (42,000 kilometers). Credits: NASA/JPL-Caltech

Asteroid 2012 TC4 was discovered almost 4 years ago to the day, on October 4, 2012, just a week before it made another close pass by Earth.

With a little more advance notice this time around, NASA and asteroid trackers around the world are using the close pass to test their ability to operate as a coordinated International Asteroid Warning Network. This is a growing global observing network to communicate and coordinate their optical and radar observations in a real scenario.

“Asteroid trackers are using this flyby to test the worldwide asteroid detection and tracking network, assessing our capability to work together in response to finding a potential real asteroid-impact threat,” said Michael Kelley, program scientist and NASA lead for the TC4 observation campaign. You can read more details about the observing campaign in our previous article.

You can watch it pass by too, if you have a at least an 8 inch telescope, according to our David Dickinson, who has a very informative post about 2012 TC4 at Sky & Telescope.

Closest approach will be at on October 12, 2017, at 5:41 Universal Time (1:41 a.m. EDT).

You can also watch a couple of webcasts of the pass:

Virtual Telescope will have a live feed, and the Slooh Telescope crew will also host a live feed starting tonight at 8 pm EDT on Oct. 11.

2012 TC4 is estimated to be 45 to 100 feet (15 to 30 meters) in size.

NASA’s Asteroid Watch says that no asteroid currently known is predicted to impact Earth for at least the next 100 years.

More info at NASA’s website.