A Region On Mars With Recent Water Is About To Get Major Attention

Credit: NASA/ JPL-Caltech
Striations exposed on the surface between Martian sand dunes (one pictured at top) in Lucaya Crater indicate fluctuating levels of salty groundwater. At “a” we see possible cross beds which are tilted layers of sand within larger layers deposited by wind or water. At b, dark and light strata are similar to that exposed in the dune at top and resemble the striations seen in the Namib Desert on Earth. The photo was taken by NASA’s Mars Reconnaissance Orbiter in infrared, red and blue light. Credit: NASA/JPL-Caltech

Researcher Dr. Mary Bourke from Trinity College Dublin have discovered a patch of land in an ancient valley in Mars’ Lucaya Crater that appears to have held water in the not-too-distant past, making it a prime target to search for past life forms on the Red Planet. Signs of water past and present pop up everywhere on Mars from now-dry, wriggly riverbeds snaking across arid plains to water ice exposed at the poles during the Martian summer.

A valley lined with sand dunes crosses the southern floor of the 21-mile-wide Lucaya Crater, located at latitude 11° south and longitude 52° east on Mars. Striations found between the dunes may have been created by recent water flows. The box shows the area pictured in the close up above. The 3.7-mile-long valley measures between 2,000 and 2,600 feet wide. Credit: NASA/JPL-Caltech with additions by the author

On Earth, Bourke had done previous studies of dunes in the Namib Desert near Walvis Bay, Namibia and noted “arctuate striations” — crusty arcs of sand cemented by water and minerals — on the surfaces of migrating sand dunes using photos taken by satellite. She subsequently assembled a team to check them out on the ground and discovered that the striations resulted when dune materials had been chemically cemented by salts left behind by evaporating groundwater.

“On Earth, desert dune fields are periodically flooded by water in areas of fluctuating groundwater, and where lakes, rivers and coasts are found in proximity,” said Bourke. These periodic floods leave tell-tale patterns behind them.” Once the material had been cemented, it hardens and remains behind as the dunes continue to migrate downwind.

Compare these cemented arctuate striations between dunes near Walvis Bay, Namibia with those in Lucaya Crater’s valley in the earlier image. White arrows highlight particularly prominent examples. Photos in (b) and (c) were taken from the ground. The excavated pit in (c) shows that the dipping sediment layers below the surface match the protruding layers on the surface. Alternating light and dark layers have different salt composition and grain size. Credit: Google Earth (left) and Dr Mary Bourke, Trinity College Dublin

Next, Bourke and colleague Prof. Heather Viles, from the University of Oxford, examined close up images of Mars taken with the Mars Reconnaissance Orbiter (MRO) and experienced a flash of insight: “You can imagine our excitement when we scanned satellite images of an area on Mars and saw this same patterned calling card, suggesting that water had been present in the relatively recent past.”

Bourke examined similar arcuate striations exposed on the surface between dunes, indications of fluctuating levels of salty groundwater during a time when dunes were actively migrating down the valley.

A possible scenario: an asteroid impacts Mars, forming Lucaya Crater and unleashing water flows that created the crater valley and striations.

So where did the water come from to create the striations in the crater valley? Bourke and Viles propose that water may have been released by the impact that formed Lucaya Crater especially if the target area was rich in ice.

Extreme temperatures during the impact would have vaporized water but also possibly melted other ice to flow for a time as liquid water. Alternatively, the impact may have jump-started hydrothermal activity as hot springs-style underground flows.

Flowing water would have created the valley and saturated the soils there with salty water. In dry periods, erosion from the wind would have picked away the water-eroded sands to create the striking pattern of repeating dunes we see to this day.

Water, water everywhere … once upon a time. Nanedi Valles, a roughly 500-mile-long (800 km) valley extending southwest-northeast and photographed by Mars Express. In this view, Nanedi Valles ranges from approximately 0.5 – 3 miles (0.8- to 5.0 km) wide and extends to a maximum of about 1,640 feet (500 meters) below the surrounding plains. The valley’s origins remain unclear, with scientists debating whether erosion caused by ground-water outflow, flow of liquid beneath an ice cover or collapse of the surface in association with liquid flow is responsible. In all cases, it’s clear that water was involved. Copyright ESA/DLR/FU Berlin (G. Neukum)

Carbonate rocks, which require liquid water to form are dissolved by the same, have been detected in the valley using spectroscopy and could have served as the cement to solidify sands between the moving dunes. That in concert with alternating dry and wet periods would create the striations seen in the MRO photos.

“These findings are hugely significant,” said Bourke. “Firstly, the Martian sand dunes show evidence that water may have been active near Mars’ equator — potentially in the not-too-distant past. And secondly, this location is now a potential geological target for detecting past life forms on the Red Planet, which is important to those involved in selecting sites for future missions.”

Meet Asteroid 2017 BQ6 — A Giant, Spinning Brick

Credit: NASA/JPL-Caltech/GSSR

 

This composite of 25 images of asteroid 2017 BQ6 was generated with radar data collected using NASA’s Goldstone Solar System Radar in California’s Mojave Desert. It sped by Earth on Feb. 7 at a speed of around  25,560 mph (7.1 km/s) relative to the planet. The images have resolutions as fine as 12 feet (3.75 meters) per pixel. Credit: NASA/JPL-Caltech/GSSR

To radar imager Lance Benner at JPL in Pasadena, asteroid 2017 BQ6 resembles the polygonal dice used in Dungeons and Dragons. But my eyes see something closer to a stepping stone or paver you’d use to build a walkway. However you picture it, this asteroid is more angular than most imaged by radar.

It flew harmlessly by Earth on Feb. 7 at 1:36 a.m. EST (6:36 UT) at about 6.6 times the distance between Earth and the moon or some about 1.6 million miles. Based on 2017 BQ6’s brightness, astronomers estimate the hurtling boulder about 660 feet (200 meters) across. The recent flyby made for a perfect opportunity to bounce radio waves off the object, harvest their echoes and build an image of giant space boulder no one had ever seen close up before.

NASA’s 70-meter antennas are the largest and most sensitive Deep Sky Network antennas, capable of tracking a spacecraft traveling tens of billions of miles from Earth. This one at Goldstone not only tracked Voyager 2’s Neptune encounter, it also received Neil Armstrong’s famous communication from Apollo 11: “That’s one small step for a man. One giant leap for mankind.” Credit: JPL-Caltech/GSSR

The images of the asteroid were obtained on Feb. 6 and 7 with NASA’s 230-foot (70-meter) antenna at the Goldstone Deep Space Communications Complex in California and reveal an irregular, angular-appearing asteroid:

Animation of 2017 BQ6. The near-Earth asteroid has a rotation period of about 3 hours. Credit: NASA/JPL-Caltech/GSSR

“The radar images show relatively sharp corners, flat regions, concavities, and small bright spots that may be boulders,” said Lance Benner of NASA’s Jet Propulsion Laboratory in Pasadena, California, who leads the agency’s asteroid radar research program. “Asteroid 2017 BQ6 reminds me of the dice used when playing Dungeons and Dragons.”

2017 BQ6 was discovered on Jan. 26 by the NASA-funded Lincoln Near Earth Asteroid Research (LINEAR) Project, operated by MIT Lincoln Laboratory on the Air Force Space Command’s Space Surveillance Telescope at White Sands Missile Range, New Mexico.

Radar has been used to observe hundreds of asteroids. Even through very large telescopes, 2017 BQ6 would have appeared exactly like a star, but the radar technique reveals shape, size, rotation, roughness and even surface features.

This chart shows how data from NASA’s Wide-field Infrared Survey Explorer, or WISE, has led to revisions in the estimated population of near-Earth asteroids. Credit: NASA/JPL-Caltech

To create the images, Benner conducted a controlled experiment on the asteroid, transmitting a signal with well-known characteristics to the object and then, by comparing the echo to the transmission, deduced its properties. According to NASA’s Asteroid Radar Research site, measuring how the echo power spreads out over time along with changes in its frequency caused by the Doppler Effect (object approaching or receding from Earth), provide the data to construct two-dimensional images with resolutions finer than 33 feet (10 meters) if the echoes are strong enough.

This orbital diagram shows the close approach of 2017 BQ6 to Earth on Feb. 7, 2017. Credit: NASA/JPL Horizons

In late October 2016, the number of known near-Earth asteroids topped 15,000 with new discoveries averaging about 30 a week. A near-Earth asteroid is defined as a rocky body that approaches within approximately 1.3 times Earth’s average distance to the Sun. This distance then brings the asteroid within roughly 30 million miles (50 million km) of Earth’s orbit. To date, astronomers have already discovered more than 90% of the estimated number of the large near-Earth objects  or those larger than 0.6 miles (1 km). It’s estimated that more than a million NEAs smaller than 330 feet (100 meters) lurk in the void. Time to get crackin’.

NASA Announces Missions to Explore Early Solar System

An artist’s conception of the Lucy spacecraft (left) flying by the Trojan Eurybates, and Psyche (Right) Psyche, the first mission to the metal world 16 Psyche. Credits: SwRI and SSL/Peter Rubin

It’s a New Year, with new challenges and new opportunities! And NASA, looking to kick things off, has announced the two new missions that will be launching in the coming decade. These robotic missions, named Lucy and Psyche, are intended to help us understand the history of the early Solar System, and will deploy starting in 2021 and 2023, respectively.

While Lucy’s mission is to explore one of Jupiter’s Trojan asteroids, Psyche will explore a metal asteroid known as 16 Psyche. And between the two of them, it is hoped that they will answer some enduring questions about planetary formation and how the Solar System came to be. More than that, these mission represent historic firsts for NASA and human space exploration.

NASA’s Discovery Program, of which Lucy and Psyche are part, was created in 1992 to compliment their larger “flagship” programs. By bringing scientists and engineers together to design missions, the Discovery Program’s focus has been to maximize scientific research by creating many smaller missions that have shorter development periods and require less in the way of operational resources.

Artist’s concept of the Lucy spacecraft flying by Eurybates, one of the six diverse and scientifically important Trojans it will study. Credit: SwRI

The Lucy mission is scheduled to launch in October of 2021, and is expected to arrive at its first destination (a Main Belt asteroid) in 2025. It will then set course for Jupiter’s Trojans, a group of asteroids that are trapped by Jupiter’s gravity and share its orbit. These asteroids are thought to be relics of the early Solar System; and between 2027 and 2033, Lucy will study six of them.

In addition to being the first mission to explore Jupiter’s Trojan population, Lucy is also of historic importance because of the number of asteroids it will visit. Throughout the course of its mission, it is will investigate six Trojans, which is the total number of Main Belt asteroids that have been studied to date. The nature of these six asteroids is also expected to tell us much about the early history of the Solar System.

As Harold F. Levison – the principal investigator of the Lucy mission from the Southwest Research Institute (SwRI) in Boulder, Colorado – explained during a NASA call-in briefing:

“One of the surprising aspects of this population is their diversity. If we look at them through telescopes on the Earth, we see that they are very different from one other in their color, in their spectra. And so, we believe that’s telling us something about how the Solar System formed and evolved… This diversity in these objects, we believe, are due to the fact that they actually formed in very different regions of the Solar System, with very different physical characteristics. And something occurred in the history of the Solar System where these objects started off at very different distances, but during the formation and evolution of the Solar System, they got moved around and placed in these stable reservoirs near Jupiter’s orbit.”

Illustration of the Lucy spacecraft’s orbit around Jupiter, which will allow it to study its Trojan population. Credit: SwRI

The six Trojans that Lucy is intended investigate were selected because the diversity of their physical characteristics show that they are from different locations throughout the Solar System. As Levison put it, “These small bodies really are the fossils of planet formation, and that’s why we named Lucy after the human ancestor known as Lucy.”

In addition, Lucy will build on the success of missions like New Horizons and OSIRIS-REx., which includes using updated versions of instruments they used to explore Pluto, the Kuiper Belt, and the asteroid Bennu -i.e. the RALPH and LORRI instruments and the OTES instrument. In addition, several members of the New Horizons and OSIRIS-REx science teams will be lending their expertise to the Lucy mission.

Similarly, the Psyche mission will of be immense scientific value since it will visit the only metal asteroid known to exist. This asteroid measures about 210 km (130 mi) in diameter and is believed to be composed entirely of iron and nickel. In this respect, it is similar to Earth’s metallic core, as well as the cores of every terrestrial planet in the Solar System.

It is for this reason why scientists believe it may be the exposed core of a Mars-sized planet. According to this theory, 16 Psyche experienced several major collisions during the early history of the Solar System, which caused it to shed its rocky mantle. The robotic probe will launch in 2023 and is expected to arrive by 2030 – after receiving an Earth gravity-assist maneuver in 2024 and a Mars flyby in 2025.

By measuring its composition, magnetic field, and mapping its surface features, Lucy’s science team hopes to learn more about the history of planetary formation. As Lindy Elkins-Tanton – the Principal Investigator of Psyche and the Director of the School of Earth and Space Exploration at Arizona State University – said during the NASA call-in briefing:

“Humankind has visited rocky worlds and icy worlds and worlds made of gas. But we have never seen a metal world. Psyche has never been visited or had a picture taken that was more than a point of light. And so, its appearance remains a mystery. This mission will be true exploration and discovery. We think that Psyche is the metal core of a small planet that was destroyed in the high-energy, high-speed, first one-one-hundredth of the age of our Solar System. By visiting Psyche we can literally visit a planetary core the only way humanity can… Psyche let’s us visit inner space by visiting outer space.”

Not only are planetary cores thought to be where magnetic fields originate (which are necessary for the emergence of life), but they are entirely inaccessible to us. The very edge of Earth’s outer core is roughly 2,890 km (1790 mi) from our planet’s surface. But the deepest humanity has ever dug has been to a depth of 12 km (7.5 mi), which took place at the Kola Superdeep Borehole, in Russia.

In addition, within the Earth’s core, temperature and pressure conditions are estimated to reach 5700 K (5400 °C; 9752 °F) and 330 to 360 gigapascals (over three million times normal air pressure). This makes exploring the core of our planet (or any other planet in the Solar System, for that matter) completely impractical. Hence why a robotic mission to a world like Pysche is such an opportunity.

And since Psyche is the only rounded body of metal that is known to exist in the Solar System, the asteroid is as improbably as it is unique. And since no missions have ever taken place to explore its surface, and no pictures exist that can tell us what its surface features would look like, the Psyche mission is sure to shed some serious light on what a metal world looks like.

“What do we think it might look like?” asked Tanton. “Does it have surface sulfur lava flows on its surface? Is it covered with towering cliffs created when solidifying metal shrank and the exterior of the body broke into fault? Is its surface a combination of iron metal and green mineral crystal as iron meteorites are? And what does an impact crater in metal look like? Could its edges or its metal flashes become frozen in the cold of space before they fell back on the surface. We don’t know.”

Jim Green, NASA’s Planetary Science Director, expressed enthusiasm for the Discovery 13 and 14 missions in a recent NASA press release:

“These are true missions of discovery that integrate into NASA’s larger strategy of investigating how the solar system formed and evolved. We’ve explored terrestrial planets, gas giants, and a range of other bodies orbiting the sun. Lucy will observe primitive remnants from farther out in the solar system, while Psyche will directly observe the interior of a planetary body. These additional pieces of the puzzle will help us understand how the sun and its family of planets formed, changed over time, and became places where life could develop and be sustained – and what the future may hold.”

Lucy and Psyche were chosen from five finalists that were selected for further development back in September 2015. These in turn were chosen from 27 mission concepts that were submitted back in November of 2014. Examples of past and present Discovery missions include the Kepler space probe, the Dawn spacecraft, the Mars Pathfinder, and the InSight lander (which is scheduled to launch in 2018).

Further Reading: NASA

Start the Year With Spark: See the Quadrantid Meteor Shower

Map: Bob King, Source: Stellarium
The Quadrantid meteor shower, named for the obsolete constellation Quadran Muralis, will appear to stream from a point in the sky called the radiant (yellow star), located below the end of the Big Dipper’s handle and across from the bright, orange-red star Arcturus. The map shows the sky around 4 a.m. local time Tuesday, Jan. 3. The shower will be best between 4 a.m. and 6 a.m., the start of dawn. Map: Bob King, Source: Stellarium

If one of your New Year’s resolutions is to spend more time under the stars in 2017, you’ll have motivation to do so as soon as Tuesday. That morning, the Quadrantid (kwah-DRAN-tid) meteor shower will peak between 4 to about 6 a.m. local time just before the start of dawn. This annual shower can be a rich one with up to 120 meteors flying by an hour — under perfect conditions.

Those include no moon, a light-pollution free sky and most importantly, for the time of maximum meteor activity to coincide with the time the radiant is highest in the pre-dawn sky. Timing is everything with the “Quads” because the shower is so brief. Meteor showers occur when Earth passes through either a stream of dusty debris left by a comet or asteroid. With the Quads, asteroid 2003 EH1 provides the raw material — bits of crumbled rock flaked off the 2-mile-wide (~3-4 km) object during its 5.5 year orbit around the sun.

A Quadrantid fireball flares to the left of the Hyades star cluster and Jupiter in 2013. As Earth travels across the debris stream, bits and pieces of asteroid 2003 EH1 strike the atmosphere at nearly 100,000 mph (43 km/second) and vaporize while creating a glowing dash of light called a meteor. Credit: Jimmy Westlake via NASA

Only thing is, the debris path is narrow and Earth tears through it perpendicularly, so we’re in and out in a hurry. Just a few hours, tops. This year’s peak happens around 14 hours UT or 8 a.m. Central time (9 a.m. Eastern, 7 a.m. Mountain and 6 a.m. Pacific), not bad for the U.S. and Canada. The timing is rather good for West Coast skywatchers and ideal if you live in Alaska. Alaska gets an additional boost because the radiant, located in the northeastern sky, is considerably higher up and better placed than it is from the southern U.S. states.

Another Quadrantid fireball. Credit: NASA

The Quads will appear to radiate from a point in the sky below the Big Dipper’s handle, which stands high in the northeastern sky at the time. This area was once home to the now defunct constellation Quadrans Muralis (mural quadrant), the origin of the shower’s name. As with all meteor showers, you’ll see meteors all over the sky, but all will appear to point back to the radiant. Meteors that point back to other directions don’t belong to the Quads are called sporadic or random meteors.

The long-obsolete constellation Quadrans Muralis represents the wall quadrant, a instrument once used to measure star positions. It was created by French astronomer Jerome Lalande in 1795. Credit: Johann Bode atlas

Off-peak observers can expect at least a decent shower with up to 25 meteors an hour visible from a reasonably dark sky. Peak observers could see at least 60 per hour. Tropical latitude skywatchers will miss most of the the show because the radiant is located at or below the horizon, but they should be on the lookout for Earthgrazers, meteors that climb up from below the horizon and make long trails as they skirt through the upper atmosphere.

Set your clock for 4 or 5 a.m. Tuesday, put on a few layers of clothing, tuck hand warmers in your boots and gloves, face east and have at it!  The Quads are known for their fireballs, brilliant meteors famous for taking one’s breath away. Each time you see one chalk its way across the sky, you’re witnessing the fiery end of an asteroid shard. As the crumble burns out, you might be fulfilling another resolution: burning away those calories while huddling outside to see the show.

 

 

NASA’s NEOWISE Missions Spots New Comets

Artist's concept of the Wide-field Infrared Survey Explorer as its orbit around Earth. Credit: NASA/JPL

NASA’s Wide-field Infrared Survey Explorer (WISE) accomplished much during its first mission, which ran from December of 2009 to September of 2010. During the many months that it was active, the orbital telescope conducted an all-sky astronomical survey in the infrared band and discovered thousands of minor planets and numerous star clusters.

The extension of its mission, NEOWISE, has brought new life to the telescope as a comet and asteroid hunter. And since its re-activation in December of 2013, the orbiting telescope has spotted hundreds of Near Earth Objects (NEOs) and thousands of Main Belt asteroids. Most recently, it has detected two new objects (both possibly comets) which could be observable from Earth very soon.

The most recent object to be detected – 2016 WF9 – was first observed by NEOWISE on November 27th, 2016. This comet’s path through the Solar System takes it on a circuitous route, taking it from Jupiter to just inside the orbit of Earth over the course of 4.9 years. Much like other objects of its kind, 2016 WF9 may have once been a comet, or part of a  population of dark objects in the Main Asteroid Belt.

Artist’s rendition of the comet 2016 WF9 as it passes Jupiter’s orbit and moves toward the sun. Credit: NASA/JPL-Caltech

In any case, 2016 WF9 will approach Earth’s orbit on February 25th, 2017, passing Earth at a minimum distance of almost 51 million km (32 million mi). This will place it well outside the orbit of the Moon, so the odds of it threatening Earth are negligible. But for those keen observers hoping to catch sight of the object, it will be close enough that it might be visible with just a pair of binoculars.

Since its discovery, 2016 WF9 has been of interest to astronomers, mainly because it straddles the already blurry line between asteroids and comets. While its proportions are known – roughly 0.5 to 1 kilometer in diameter (0.3 to 0.6 miles) – its other characteristics have led to some confusion as to where it came from. For one, its appearance (which is quite dark) and its orbit are consistent with what one expects from a comet.

But on the other hand, it lacks the characteristic cloud of dust and gas that comets are known for. As James Bauer, NEOWISE’s Deputy Principal Investigator at JPL, said in a NASA press release:

“2016 WF9 could have cometary origins. This object illustrates that the boundary between asteroids and comets is a blurry one; perhaps over time this object has lost the majority of the volatiles that linger on or just under its surface.”

Graphic showing the asteroids and comets observed by NASA’s Near-Earth Object Wide-field Survey Explorer (NEOWISE) mission. Credit: NASA/JPL-Caltech/UCLA/JHU

The other object, C/2016 U1 NEOWISE, was discovered about a month prior to 2016 WF9. Its orbit, which can you see by checking out the 3D Solar System Simulator, takes it from the outer Solar System to within Mercury’s orbit over the course of thousands of years. According to NASA scientists, this object is very clearly a comet, as evidenced by the dust it has been releasing as it gets closer to our Sun.

During the first week of 2017, comet C/2016 U1 NEOWISE is also likely to be visible in the night sky – in this case, in the southeastern sky shortly before dawn (for those looking from the northern hemisphere). It will reach its closest point to the Sun on January 14th (where it will be passing within Mercury’s orbit) before heading back out towards the outer Solar System.

Once again, it is believed that comet-hunters should be able to see it, though that is open to question. Paul Chodas, the manager of NASA’s Center for Near-Earth Object (NEO) Studies at the Jet Propulsion Laboratory, thinks that this object “has a good chance of becoming visible through a good pair of binoculars, although we can’t be sure because a comet’s brightness is notoriously unpredictable.”

A mosaic of the images covering the entire sky as observed by the Wide-field Infrared Survey Explorer (WISE), part of its All-Sky Data Release. Credit: NASA/JPL

In any case, NASA will be continuing to monitor 2016 WF9 to see if they can’t sort out what it is. Should it prove to be a comet, it would be the tenth discovered by NEOWISE since it was reactivated in December of 2013. If it turns out to be an asteroid, it would be the one-hundredth discovered since its reactivation.

As of November 2016, the orbital telescope has conducted over 562,000 infrared measurements have been made of 24,024 different solar system objects, including 613 NEOs and 110 comets. It has also been responsible for discovering 249 new near-Earth objects and comets, as well as more than 34,000 asteroids during its original mission.

At present, NEOWISE’s science team is currently reprocessing all its primary mission data to extend the search for asteroids and comets. It is hoped that by taking advantage of the latest in photometric and astrometric calibrations, they will be able to push the limits of what the telescope can detect, thereby adding many more minor planets and objects to its suite of discoveries.

And be sure to enjoy this video, detailing the first two years of asteroid data collected by the NEOWISE mission:

Further Reading: NASA

101 Astronomical Events for 2017: A Teaser

A partial solar eclipse rising over the VAB. Image by author.

It’s that time of year again… time to look ahead at the top 101 astronomical events for the coming year.

And this year ’round, we finally took the plunge. After years of considering it, we took the next logical step in 2017 and expanded our yearly 101 Astronomical Events for the coming year into a full-fledged guide book, soon to be offered here for free download on Universe Today in the coming weeks. Hard to believe, we’ve been doing this look ahead in one form or another now since 2009.

This “blog post that takes six months to write” will be expanded into a full-fledged book. But the core idea is the same: the year in astronomy, distilled down into the very 101 best events worldwide. You will find the best occultations, bright comets, eclipses and much more. Each event will be interspersed with not only the ‘whens’ and ‘wheres,’ but fun facts, astronomical history, and heck, even a dash of astronomical poetry here and there.

It was our goal to take this beyond the realm of a simple almanac or Top 10 listicle, to something unique and special. Think of it as a cross between two classics we loved as a kid, Burnham’s Celestial Handbook and Guy Ottewell’s Astronomical Calendar, done up in as guide to the coming year in chronological format. Both references still reside on our desk, even in this age of digitization.

And we’ve incorporated reader feedback from over the years to make this forthcoming guide something special. Events will be laid out in chronological order, along with a quick-list for reference at the end. Each event is listed as a one- or two-page standalone entry, ready to be individually printed off as needed. We will also include 10 feature stories and true tales of astronomy. Some of these were  culled from the Universe Today archives, while others are new astronomical tales written just for the guide.

Great American Eclipse
Don’t miss 2017’s only total solar eclipse, crossing the United States! Image credit: Michael Zeiler/The Great American Eclipse.

The Best of the Best

Here’s a preview of some of the highlights for 2017:

-Solar cycle #24 begins to ebb in 2017. Are we heading towards yet another profound solar minimum?

-Brilliant Venus reaches greatest elongation in January and rules the dusk sky.

-45P/Honda-Mrkos-Pajdusakova passes 0.08 AU from Earth on February 11th, its closest passage for the remainder of the century.

-An annular solar eclipse spanning Africa and South America occurs on February 26th.

A sample occultation map from the book. Image credit: Occult 4.1.2.
A sample occultation map from the book. Image credit: Occult 4.1.2.

-A fine occultation of Aldebaran by the Moon on March 5th for North America… plus more occultations of the star worldwide during each lunation.

-A total solar eclipse spanning the contiguous United States on August 21st.

-A complex grouping of Mercury, Venus, Mars and the Moon in mid-September.

-Saturn’s rings at their widest for the decade.

Getting wider... the changing the of Saturn's rings. Image credit and copyright: Andrew Symes (@FailedProtostar).
Getting wider… the changing face of Saturn’s rings. Image credit and copyright: Andrew Symes (@FailedProtostar).

-A fine occultation of Regulus for North America on October 15th, with  occultations of the star by the Moon during every lunation for 2017.

-Asteroid 335 Roberta occults a +3rd magnitude star for northern Australia…

And that’s just for starters. Entries also cover greatest elongations for the inner planets and oppositions for the outer worlds, the very best asteroid occultations of bright stars, along with a brief look ahead at 2018.

Get ready for another great year of skywatching!

And as another teaser, here’s a link to a Google Calendar download of said events, complied by Chris Becke (@BeckePhysics). Thanks Chris!

NASA Technology Used To Find Stone Age Structures

The Phoenix Mars Lander used a lidar device built by Teledyne Optech to detect snow in the Martian atmosphere in 2008. Credits: NASA

Oklahoma’s Beaver River is an incredibly historic place. Anthropologists estimate that as early as 10,500 years ago, human beings hunted bison in the region. Being without horses, the hunter-gatherers would funnel herds into narrow, dead-end gullies cut into the hillside by the river. Once there, they would kill them en masse, taking the meat and organs and leaving the skeletons behind.

Sadly, no visible trace of this history remains in the region today, thanks to weathering and erosion. But according to a recent story released by NASA, the same technology that powers the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission has made the ancient history of this region visible for all to see.

Having launched back in September of 2016, the robotic spacecraft OSIRIS-REx is scheduled to rendezvous with the Near-Earth Asteroid Bennu in 2023. The purpose of the mission is to obtain samples of the carbonaceous object and return them to Earth, thus helping scientists to get a better understanding of the formation and evolution of the Solar System, as well as the source of organic compounds that led to the formation of life on Earth.


Once it reaches Bennu, it will rely on light-detection and ranging (aka. lidar) to map the asteroid and help the mission team select a landing site. This technology uses one or more lasers to send out short pulses that bounce off of nearby objects. The instrument then measures how long it takes for the signal to return to get an accurate assessment of distance and generate topographical information.

The OSIRIS-REx Laser Altimeter (OLA) instrument was designed by Teledyne Optech, a company that has worked with NASA many times in the past. Their work includes the laser instrument that was used by the Phoenix Lander to detect snow in the Martian atmosphere back in 2008. And more recently, it was used by an archeological research team in the Beaver River area to create a detailed picture of its past.

Using an airborne version of the Teledyne Optech lidar device, the team was able to create a 3-D model of the surface. They were also able to generate as a ‘bare-earth” version of the area that showed what the land looked like without all of the concealing features – i.e. rocks, trees and grass – that hide its past.

In so doing, they were able to figure out where they should dig to find evidence that the region was once a major hunting ground. As Paul LaRoque, vice president of special projects at Teledyne Optech, explained, this process allowed the archaeologists to “see structures or features that were so overgrown that they wouldn’t be obvious at all to someone on the ground.”

Aerial photograph of a forest in Connecticut (left), and bare-earth lidar image beneath the overgrown vegetation (right) showing the remnants of stone walls, building foundations, abandoned roads and what was once cleared farm land. Credits: NASA/Katharine Johnson
Aerial photograph of a forest in Connecticut (left), and bare-earth lidar image beneath the vegetation (right) showing archaeological remains. Credits: UofConn/Katharine Johnson

This sort of process has also been used by other archaeological teams to make major finds, like uncovering the lost “Ciudad Blanca” (aka. the “City of the Monkey God”) of Honduras. This ancient Mesoamerican settlement, which is believed to have been built between the 1st and 2nd millennium CE, had remained the stuff of legend for centuries. Despite multiple claims by explorers, no confirmed discovery was ever made.

But thanks to a joint effort by archaeologists from the University of Florida and  the Houston-based National Center for Airborne Laser Mapping, an archaeological team was able to create images that stripped away the lush rainforest to revealed multiple structures – including pyramids, a plaza, a possible ball court, and many houses.

Lidar was also used by a research team from the University of Connecticut for the sake of studying the dynamics between human settlement and the historic landscape of New England. Using publicly available data, they were able to peer beneath all the current vegetation to detect the remnants of stone walls, building foundations, abandoned roads and what was once cleared farm land.

The revealing look at Beaver River is one of 50 stories that will be released on Dec. 5th, as part of a NASA Spinoff publication. Each year, Spinoff profiles about 50 NASA technologies that have transformed into commercial products and services, demonstrating the wider benefits of America’s investment in its space program. Spinoff is a publication of the Technology Transfer Program in NASA’s Space Technology Mission Directorate.

Further Reading: NASA

Soar Over Ceres With New Images From the Dawn Spacecraft

This image of the limb of dwarf planet Ceres shows a section of the northern hemisphere. Prominently featured is Occator Crater, home of Ceres' intriguing brightest areas. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

There’s one thing that could mean the end of the Dawn mission: if the hydrazine fuel for its maneuvering thruster system runs out. Now, engineers for the Dawn mission have figured out a way to save on this fuel while still sending Dawn to a new science orbit around the dwarf planet Ceres. They are effectively extending the mission while expanding on the science Dawn can do.

And in the meantime, Dawn’s cameras can take stunning new images, like the one above of Occator Crater on Ceres and its intriguing, mysterious bright regions.

“This image captures the wonder of soaring above this fascinating, unique world that Dawn is the first to explore,” said Marc Rayman, Dawn’s chief engineer and mission director at the Jet Propulsion Laboratory.

This image has the cameras on the Dawn spacecraft looking straight down at Occator Crater on Ceres, with its signature bright areas. Dawn scientists have found that the central bright spot, which harbors the brightest material on Ceres, contains a variety of salts. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image has the cameras on the Dawn spacecraft looking straight down at Occator Crater on Ceres, with its signature bright areas. Dawn scientists have found that the central bright spot, which harbors the brightest material on Ceres, contains a variety of salts. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn started making its way to a sixth science orbit earlier this month, raising its orbital height to over 4,500 miles (7,200 kilometers) from Ceres. For previous changes in its orbit, Dawn needed to make several changes in direction while it spiraled either higher or lower. But Dawn’s ever-ingenious engineers have figured out a way for the spacecraft to arrive at this next orbit while the ion engine thrusts in the same direction that Dawn is already going. This uses less hydrazine and xenon fuel than Dawn’s normal spiral maneuvers.

Previously, Dawn’s engineers have done things nothing short of miraculous, such as figuring out how to operate the spacecraft with only two reaction wheels (when at least three are needed, normally), they have developed new, emergency flight paths on short notice, and they keep figuring out ways to conserve the hydrazine. Earlier in the mission, they analyzed more than 50 different options to figure out how to reduce their fuel usage by a whopping 65 percent.

Occator Crater, with its central bright region and other reflective areas, provides evidence of recent geologic activity. The latest research suggests that the bright material in this crater is comprised of salts left behind after a briny liquid emerged from below, froze and then sublimated, meaning it turned from ice into vapor.

The impact that formed the crater millions of years ago unearthed material that blanketed the area outside the crater, and may have triggered the upwelling of salty liquid.

Another new image from Dawn scientists at the German Aerospace Center in Berlin shows how the dwarf planet’s colors would appear to the human eye. The color was calculated based on the way Ceres reflects different wavelengths of light.

This image of Ceres approximates how the dwarf planet's colors would appear to the eye. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image of Ceres approximates how the dwarf planet’s colors would appear to the eye. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn scientists say that one goal of Dawn’s sixth science orbit is to refine previously collected measurements. The spacecraft’s gamma ray and neutron spectrometer, which has been investigating the composition of Ceres’ surface, will characterize the radiation from cosmic rays unrelated to Ceres. This will allow scientists to subtract “noise” from measurements of Ceres, making the information more precise.

This image of the limb of dwarf planet Ceres shows a section of the northern hemisphere. A shadowy portion of Occator Crater can be seen at the lower right -- its bright "spot" areas are outside of the frame of view. Part of Kaikara Crater (45 miles, 72 kilometers in diameter) is visible at top left. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image of the limb of dwarf planet Ceres shows a section of the northern hemisphere. A shadowy portion of Occator Crater can be seen at the lower right — its bright “spot” areas are outside of the frame of view. Part of Kaikara Crater (45 miles, 72 kilometers in diameter) is visible at top left. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The spacecraft has gathered tens of thousands of images and other information from Ceres since arriving in orbit on March 6, 2015. After spending more than eight months studying Ceres at an altitude of about 240 miles (385 kilometers), closer than the International Space Station is to Earth, Dawn headed for a higher vantage point in August. Then, in October, Dawn raised its orbit to about 920-mile (1,480 km) altitude, returning more images and other valuable data about Ceres.

Thanks to the ingenuity of Dawn’s engineers, we’ll have more time to study Ceres.

See all of Dawn’s latest images here.

Oxo Crater and its surroundings are featured in this image of Ceres' surface from NASA's Dawn spacecraft. Dawn took this image on Oct. 18, 2016, from its second extended-mission science orbit (XMO2), at a distance of about 920 miles (1,480 kilometers) above the surface. The image resolution is about 460 feet (140 meters) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Oxo Crater and its surroundings are featured in this image of Ceres’ surface from NASA’s Dawn spacecraft. Dawn took this image on Oct. 18, 2016, from its second extended-mission science orbit (XMO2), at a distance of about 920 miles (1,480 kilometers) above the surface. The image resolution is about 460 feet (140 meters) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This view from NASA's Dawn spacecraft features a lobe-shaped flow feature in Ghanan Crater on Ceres. The flow feature is a place where a crater rim has collapse and material has flowed across the surface. Several small craters are visible on top of the flow; the number of craters can help scientists estimate the feature's age. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This view from NASA’s Dawn spacecraft features a lobe-shaped flow feature in Ghanan Crater on Ceres. The flow feature is a place where a crater rim has collapse and material has flowed across the surface. Several small craters are visible on top of the flow; the number of craters can help scientists estimate the feature’s age. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Source: JPL

Rock Legends – the Asteroids and Their Discoverers

Artist's concept of Trojan asteroids, small bodies that dominate our solar system. Credit: NASA

If we are indeed stardust, then what will our future hold? And what happened to all that other dust that isn’t in people or planets? These are pretty heady questions perhaps best left for late at night. Since the age of Galileo and perhaps even beforehand these inquisitive night goers have sought an understanding of “What’s out there?” Paul Murdin in his book “Rock Legends – the Asteroids and Their Discoverers” doesn’t answer the big questions directly but he does shed some capricious light upon what the night time reveals and what the future may hold.

rock-legends

We’re pretty confident that our solar system evolved from a concentration of dust. Let’s leave aside the question about where the dust came from and assume that, at a certain time and place, there was enough free dust that our Sun was made and so too all the planets. In a nice, orderly universe all the dust would have settled out. However, as we’ve discovered since at least the time of Galileo this didn’t happen. There are a plethora of space rocks — asteroids — out wandering through our solar system.

And this is where Murdin’s book steps up. Once people realized that there more than just a few asteroids out there, they took to identifying and classifying them. The book takes a loosely chronological look at this classification and at our increasing knowledge of the orbits, sizes, densities and composition of these space wanderers.

Fortunately this book doesn’t just simply list discovery dates and characteristics. Rather, it includes significant amounts of its contents on the juicy human story that tags along, especially with the naming. It shows that originally these objects were considered special and refined and thus deserved naming with as much aplomb as the planets; i.e. using Greek and Roman deities. Then the number of discovered asteroids outpaced the knowledge of ancient lore, so astronomers began using the names of royalty, friends and eventually pets. Today with well over a million asteroids identified  setting a name to an asteroid doesn’t quite have the same lustre, as the author is quick to point out with his own asteroid (128562) Murdin. Yet perhaps there’s not much else to do while waiting for a computer program to identify a few hundred more accumulations of dust, so naming some of the million nameless asteroids could happily fill in some time.

With the identifying of the early asteroid discoverers and the fun names they chose, this part of the book is quite light and simple. It expands the fun by wandering a bit just like the asteroids. From it you learn of the discovery of palladium, the real spelling of Spock’s name and the meaning of YORP.  Sometimes the wandering is quite far, as with the origins of the Palladium Theatre, the squabbling surrounding the naming of Ceres and the status of the Cubewanos. Yet it is this capriciousness that gives the book its flavour and makes it great for a budding astronomer or a reference for a generalist. The occasional bouts of reflection on the future of various asteroids and even of the Earth add a little seriousness to an otherwise pleasant prose.

So if you’re wondering about the next occultation of Eris or the real background of the name (3512) Eriepa then you’re into asteroids. And perhaps you’re learning how to survive on a few hours of sleep so you can search for one more faint orbiting mote. Whether that’s the case or you’re just interested in how such odd names came to represent these orbiting rocks then Paul Murdin’s book “Rock Legends – the Asteroids and Their Discoverers” will be a treat. Read it and maybe you can use it to place your own curve upon an asteroid’s name.

The book is available on Springer. Find out more about author Paul Murdin here.

NASA’s New Asteroid Alert System Gives 5 Whole Days of Warning

An asteroid strike that could wreak some serious havoc against Earth may be statistically unlikely. But it's not like there's no precedent for one. Artist's Image: . Credit: NASA

Everyone knows it was a large asteroid striking Earth that led to the demise of the dinosaurs. But how many near misses were there? Modern humans have been around for about 225,000 years, so we must have come close to death by asteroid more than once in our time. We would have had no clue.

Of course, it’s the actual strikes that are cause for concern, not near misses. Efforts to predict asteroid strikes, and to catalogue asteroids that come close to Earth, have reached new levels. NASA’s newest tool in the fight against asteroids is called Scout. Scout is designed to detect asteroids approaching Earth, and it just passed an important test. Scout was able to give us 5 days notice of an approaching asteroid.

Here’s how Scout works. A telescope in Hawaii, the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) detected the asteroid, called 2016 UR36, and then alerted other ‘scopes. Three other telescopes confirmed 2016 UR36 and were able to narrow down its trajectory. They also learned its size, about 5 to 25 meters across.

The Pan STARRS telescope in Hawaii. Image: Institute for Astronomy, University of Hawaii.
The Pan STARRS telescope in Hawaii. Image: Institute for Astronomy, University of Hawaii.

After several hours, we knew that UR 36 would come close to us, but was not a threat to impact Earth. UR 36 would pass Earth at a distance of about 498,000 km. That’s about 1.3 times further away than the Moon.

The key part of this is that we had 5 days notice. And five days notice is a lot more than the few hours that we usually have. The approach of 2016 UR36 was the first test for the Scout system, and it passed the test.

Asteroids that come close to Earth are called Near Earth Objects (NEOs) and finding them and tracking them has become a growing concern for NASA. In fact NASA has about 15,000 NEOs catalogued, and they’re still finding about 5 more every night.

NASA is getting much better at discovering and detecting NEOs. Image: NASA/NEO Program.
NASA is getting much better at discovering and detecting NEOs. Image: NASA/NEO Program.

Not only does NASA have the Scout system, whose primary role is to speed up the confirmation process for approaching asteroids, but they also have the Sentry program. Sentry’s role is a little different.

Sentry’s job is to focus on asteroids that are large enough to wipe out a city and cause widespread destruction. That means NEOs that are larger than about 140 metres. Sentry has over 600 large NEOs catalogued, and astronomers think there are a lot more of them out there.

NASA also has the Planetary Defense Coordination Office (PDCO), which has got to be the greatest name for an office ever. (Can you imagine having that on your business card?) Anyway, the PDCO has the over-arching role of preparing for asteroid impacts. The Office is there to make emergency plans to deal with the impact aftermath.

5 days notice for a small asteroid striking Earth is a huge step for preparedness. Resources can be mobilized, critical infrastructure can be protected, maybe things like atomic power plants can be shut down if necessary. And, of course, people can be evacuated.

We haven’t always had any notice for approaching asteroids. Look at the Chelyabinsk meteor from 2013. It was a 10,000 ton meteor that exploded over the Chelyabinsk Oblast, injuring 1500 people and damaging an estimated 3,000 building in 6 cities. If it had been a little bigger, and reached the surface of the Earth, the damage would have been widespread. 5 days notice would likely have saved a lot of lives.

Smaller asteroids may be too small to detect when they’re very far away. But larger ones can be detected when they’re still 10, 20, even 30 years away. That’s enough time to figure out how to stop them. And if you can reach them when they’re that far away, you only need to nudge them a little to deflect them away from Earth, and maybe to the Sun to be destroyed.

Large asteroids with the potential to cause widespread destruction are the attention-getters. Hollywood loves them. But it may be more likely that we face numerous impacts from smaller asteroids, and that they could cause more damage overall. Scout’s ability to detect these smaller asteroids, and give us several days notice of their approach, could be a life-saver.