No one’s 100% certain what WT1190F is — asteroid or rocket stage — but we are certain it will light up like a Roman candle when it re-enters Earth’s atmosphere around 6:20 Universal Time (12:20 a.m. CST) tomorrow morning Nov. 13.
Animation by Jost Jahn of WT1190F’s final hours as it races across the sky coming down off the coast of Sri Lanka
As described in an earlier story at Universe Today, an object discovered by the Catalina Sky Survey on Oct 3rd and temporarily designated WT1190F is expected to burn up about 60 miles (100 km) off the southern coast of Sri Lanka overnight. The same team observed it twice in 2013. Based upon the evolution of its orbit, astronomers determined that the object is only about six feet (2-meters) across with a very low density, making it a good fit for a defunct rocket booster, possibly one used to launch either one of the Apollo spacecraft or the Chinese Chang’e 3 lander to the Moon.
Additional observations of WT1190F have been made in the past few days confirming its re-entry later tonight. Checking the latest predictions on Bill Gray of Project Pluto’s page, the object will likely be visible from Europe about an hour before “touchdown”. To say it will be moving quickly across the sky is an understatement. Try about 3 arc minutes per second or 3° a minute! Very tricky to find and track something moving that fast.
58 minutes later, in the minute of time from 6:18 to 6:19 UT, WT1190F will move one full hour of right ascension and plummet 34° in declination while brightening from magnitude +8 to +4.5. If you’d like to attempt to find and follow the object, head over to JPL’s Horizons site for the latest ephemerides and orbital elements. At the site, make sure that WT1190F is in the Target Body line. If not, click Change and search for WT1190F in the Target Body field at the bottom of the window.
You’ll find updates at Bill Gray’s site. According to the most recent positions, the object will pass almost exactly in front of the Sun shortly before plunging into the ocean. Sri Lanka’s capital, Colombo, is expected to get the best views.
Because the mystery object’s arrival has been fairly well publicized, I hope to update you with a full report and photos first thing tomorrow morning. Like many of you, I wish I could see the show.
Get ready for a man-made fireball. A object discovered by the Catalina Sky Survey on Oct 3rd temporarily designated WT1190F is predicted to impact the Earth about 60 miles (100 km) off the southern coast of Sri Lanka around 6:20 Universal Time (12:20 a.m CST) on November 13.
The object orbits Earth with a period of about three weeks. Because it was also observed twice in 2013 by the same survey team, astronomers have the data they need to model its orbit and trajectory, and as far anyone can tell, it’s likely man-made.
Solar radiation pressure, the physical “push” exerted by photons of sunlight, is proportional to a space object’s area-to-mass ratio. Small, lightweight objects get pushed around more easily than heavier, denser ones. Taking that factor into account in examining WT1190F’s motion over two years, the survey team has indirectly measured WT1190F’s density at about 10% that of water. This is too low to be a typical asteroid made of rock, but a good fit with a hollow shell, possibly the upper stage of a rocket.
It’s also quite small, at most only about six feet or a couple of meters in diameter. Most or all of it is likely to burn up upon re-entry, creating a spectacular show for anyone near the scene. During the next week and a half, the European Space Agency’s NEO (Near-Earth Object) Coordination Centeris organizing observing campaigns to collect as much data as possible on the object, according to a posting on their website. The agency has two goals: to better understand satellite re-entries from high orbits and to use the opportunity to test our readiness for a possible future event involving a real asteroid. The latter happened once before when 2008 TC3(a real asteroid) was spotted on October 6, 2008 and predicted to strike Earth the very next day. Incredibly, it did and peppered the Sudan with meteorites that were later recovered.
Assuming WT1190F is artificial, its trans-lunar orbit (orbit that carries it beyond the Moon) hints at several possibilities. Third stages from the Saturn-V rockets that launched the Apollo missions to the Moon are still out there. It could also be a stage from one of the old Russian or more recent Chinese lunar missions. Even rockets used to give interplanetary probes a final push are game.
Case in point. What was thought initially to be a new asteroid discovered by amateur astronomer Bill Yeung on September 3, 2002 proved a much better fit with an Apollo 12 S-IVB (third) stage after University of Arizona astronomers found that spectra taken of the object strongly correlated with absorption features seen in a combination of man-made materials including white paint, black paint, and aluminum, all consistent with Saturn V rockets.
Apollo 13’s booster was the first deliberately crashed into the Moon, where it blew out it a crisp, 98-foot-wide (30-meter) crater. Why do such a crazy thing? What better way to test the seismometers left by the Apollo 12 crew? All subsequent boosters ended their lives similarly in the name of seismography. Third stages from earlier missions — Apollos 8, 10 and 11 — entered orbit around the Sun, while Apollo 12, which is orbiting Earth, briefly masqueraded as asteroid J002E3.
Bill Gray at Project Pluto has a page up about the November 13 impact of WT1190F with more information. Satellite and asteroid watchers are hoping to track the object before and right up until it burns up in the atmosphere. Currently, it’s extremely faint and moving eastward in Orion. You can click HERE for an ephemeris giving its position at the JPL Horizons site. How exciting if we could see whatever’s coming down before its demise on Friday the 13th!
This simulation by Tom Ruen shows the trajectory of 2015 TB145 across the sky, showing tracer spheres spaced at one hour intervals along its path.
Halloween fireballs, a Supermoon and now a near-Earth asteroid flyby. What a week! While 2015 TB145 won’t be visible in binoculars because of its relative faintness and glare from a nearby waning gibbous Moon, you should be able to see it in an 8-inch telescope or larger telescope without too much difficulty.
Determined amateurs might even catch it in instruments as small as 4.5 inches especially tomorrow morning when the fleeing space mountain will brighten to around magnitude +10.
For western hemisphere observers, TB145 begins the evening in Orion’s Shield not far below the Hyades Cluster looking like a magnitude +11.5 star crawling northeast through the star field. By dawn on Halloween, it will top out around magnitude +10.2 as it zips through Taurus and Auriga traveling around 3-5° per hour depending on the time you look. For most of the night, TB145 will move swiftly enough to notice its motion in real time, resembling an Earth-orbiting satellite. Closest approach occurs around 17:00 UT (noon CDT) when it pass along bottom of the Big Dipper Bowl at around 10° hour. Amazing!
My hope is that these maps will help you spot and follow this zippy, aircraft carrier-sized boulder. Three of the four maps cover most of the time between 5:00 and 11:45 UT, equivalent to midnight CDT tonight to 6:45 a.m. tomorrow morning. I used the very latest orbital elements and hand plotted the positions (a tedious exercise but worth it!) at 15-minute intervals. For convenience, when you print them out, I’d suggest using a straight edge to draw a line connecting the position dots.
As we discussed in the previous Universe Today story, parallax comes into play when viewing any nearby Solar System object. Three of the maps show the asteroid’s position from the North Central U.S. One depicts the view from the South Central U.S. from 11-11:45 UT. Parallax is minor early on from midnight to 2 or 3 a.m. but becomes more significant near closest approach. This is based on comparisons I made between latitudes 47°-32° North.
I apologize for the limited number of maps in this article but hope these and the do-it-yourself approach described in the earlier article will be enough to set you on TB145’s trail.
As always when trying to spot asteroids on the move, pick a time and camp out at that spot with your telescope five minutes before the expected arrival time. Take the time to casually memorize the star patterns, so when the interloper arrives, you’ll pick it out straightaway. Again, depending on your location both east-west and north-south of the paths charted, TB145 may arrive a couple minutes earlier or later, but once you spot it, hold on tight. You’ll be going on a most exciting ride!
We’d love to hear from you whether or not you were successful seeing it. If the weather’s uncooperative or you don’t have a telescope, Gianluca Masi’s got your back. He’ll webcast the flyby live on his Virtual Telescope site starting at 7 p.m. CDT (0:00 UT) tonight Oct. 30-31.
Now let’s see the flyby of Earth from the asteroid’s point of view, also by Tom Ruen. Enjoy!
NASA GODDARD SPACE FLIGHT CENTER, MD – Rigorous testing has begun on the advanced robotic arm and boulder extraction mechanisms that are key components of the unmanned probe at the heart of NASA’s Asteroid Redirect Robotic Mission (ARRM) now under development to pluck a multi-ton boulder off a near-Earth asteroid so that astronauts visiting later in an Orion crew capsule can harvest a large quantity of samples for high powered scientific analysis back on Earth. Universe Today inspected the robotic arm hardware utilizing “leveraged robotic technology” during an up close visit and exclusive interview with the engineering development team at NASA Goddard.
“The teams are making great progress on the capture mechanism that has been delivered to the robotics team at Goddard from Langley,” NASA Associate Administrator Robert Lightfoot told Universe Today.
“NASA is developing these common technologies for a suite of missions like satellite servicing and refueling in low Earth orbit as well as autonomously capturing an asteroid about 100 million miles away,” said Ben Reed, NASA Satellite Servicing Capabilities Office (SSCO) Deputy Project Manager, during an exclusive interview and hardware tour with Universe Today at NASA Goddard in Greenbelt, Maryland, regarding concepts and goals for the overall Asteroid Redirect Mission (ARM) initiative.
NASA is leveraging technology originally developed for satellite servicing such as with the Robotic Refueling Mission (RRM) currently on board the International Space Station(ISS) and repurposing them for the asteroid retrieval mission.
“Those are our two near term mission objectives that we are developing these technologies for,” Reed explained.
The unmanned Asteroid Redirect Robotic Mission (ARRM) to grab a boulder is the essential first step towards carrying out the follow on sample retrieval with the manned Orion Asteroid Redirect Mission (ARM) by the mid-2020s.
ARRM will use a pair of highly capable robotic arms to autonomously grapple a multi-ton (> 20 ton) boulder off the surface of a large near-Earth asteroid and transport it to a stable, astronaut accessible orbit around the Moon in cislunar space.
“Things are moving well. The teams have made really tremendous progress on the robotic arm and capture mechanism,” Bill Gerstenmaier, NASA Associate Administrator for Human Exploration and Operations, told Universe Today.
Then an Orion crew capsule can fly to it and the astronauts will collect a large quantity of rock samples and gather additional scientific measurements.
“We are working on a system to rendezvous, capture and service different [target] clients using the same technologies. That is what we are working on in a nut shell,” Reed said.
“Right now the plan is to launch ARRM by about December 2020,” Reed told me. But a huge amount of preparatory work across the US is required to turn NASA’s plan into reality.
Key mission enabling technologies are being tested right now with a new full scale engineering model of the ‘Robotic Servicing Arm’ and a full scale mockup of the boulder snatching ARRM Capture Module at NASA Goddard, in a new facility known as “The Cauldron.”
The ARRM capture module is comprised of two shorter robotic arms (separated by 180 degrees) and three lengthy contact and restraint system capture legs (separated by 120 degrees) attached to a cradle with associated avionics, computers and electronics and the rest of the spacecraft and solar electric power arrays.
“The robotic arm we have here now is an engineering development unit. The 2.2 meter-long arms can be used for assembling large telescopes, repairing a failed satellite, removing orbital debris and capturing an asteroid,” said Reed.
“There are two little arms and three big capture legs.”
“So, we are leveraging one technology development program into multiple NASA objectives.”
“We are working on common technologies that can service a legacy orbiting satellite, not designed to be serviced, and use those same technologies with some tweaking that we can go out with 100 million miles and capture an asteroid and bring it back to the vicinity of the Moon.”
“Currently the [capture module] system can handle a boulder that’s up to about 3 x 4 x 5 meters in diameter.”
The Cauldron is a brand new Goddard facility for testing technologies and operations for multiple exploration and science missions, including satellite servicing and ARRM that just opened in June 2015 for the centers Satellite Servicing Capabilities Office.
Overall project lead for ARRM is the Jet Propulsion Laboratory (JPL) with numerous contributions from other NASA centers and industrial partners.
“This is an immersive development lab where we bring systems together and can do lifetime testing to simulate what’s in space. This is our robotic equivalent to the astronauts NBL, or neutral buoyancy lab,” Reed elaborated.
“So with this same robotic arm that can cut wires and thermal blankets and refuel an Earth sensing satellite, we can now have that same arm go out on a different mission and be able to travel out and pick up a multi-ton boulder and bring it back for astronauts to harvest samples from.”
“So that’s quite a technical feat!”
The Robotic Servicing Arm is a multi-jointed powerhouse designed to function like a “human arm” as much as possible. It builds on extensive prior research and development investment efforts conducted for NASA’s current Red Planetrovers and a flight-qualified robotic arm developed for the Defense Advanced Research Projects Agency (DARPA).
“The arm is capable of seven-degrees-of-freedom to mimic the full functionally of a human arm. It has heritage from the arm on Mars right now on Curiosity as well as ground based programs from DARPA,” Reed told me.
“It has three degrees of freedom at our shoulder, two at our elbow and two more at the wrist. So I can hold the hand still and move the elbow.”
The arm will also be equipped with a variety of interchangeable “hands” that are basically tools to carry out different tasks with the asteroid such as grappling, drilling, sample gathering, imaging and spectrometric analysis, etc.
The ARRM spacecraft will carefully study, characterize and photograph the asteroid in great detail for about a month before attempting the boulder capture.
Why does the arm need all this human-like capability?
“When we arrive at an asteroid that’s 100 million miles away, we are not going to know the fine local geometry until we arrive,” Reed explained to Universe Today.
“Therefore we need a flexible enough arm that can accommodate local geometries at the multi-foot scale. And then a gripper tool that can handle those geometry facets at a much smaller scale.”
“Therefore we chose seven-degrees-of-freedom to mimic humans very much by design. We also need seven-degrees-of-freedom to conduct collision avoidance maneuvers. You can’t do that with a six-degree-of-freedom arm. It has to be seven to be a general purpose arm.”
How will the ARRM capture module work to snatch the boulder off the asteroid?
“So the idea is you come to the mother asteroid and touch down and make contact on the surface. Then you hold that position and the two arms reach out and grab the boulder.”
“Once its grabbed the boulder, then the legs straighten and pull the boulder off the surface.”
“Then the arms nestle the asteroid onto a cradle. And the legs then change from a contact system to become a restraint system. So the legs wrap around the boulder to restrain it for the 100 million mile journey back home.
“After that the little arms can let go – because the legs have wrapped around and are holding the asteroid.”
“So now the arm can also let go of the gripper system and pick up a different tool to do other things. For example they can collect a sample with another tool. And maybe assist an astronaut after the crew arrives.”
“During the 100 million mile journey back to lunar orbit they can be also be preparing the surface and cutting into it for later sample collection by the astronauts.”
Be sure to watch this video animation:
Since the actual asteroid encounter will occur very far away, the boulder grappling will have to be done fully autonomously since there will be no possibility for real time communications.
“The return time for communications is like about 30 minutes. So ‘human in the loop’ control is out of the question.
“Once we get into hover position over the landing site we hit the GO button. Then it will be very much like at Mars and the seven minutes of terror. It will take awhile to find out if it worked.”
Therefore the team at Goddard has already spent years of effort and practice sessions just to get ready for working with the early engineering version of the arm to maximize the probability of a successful capture.
“In this facility we put systems together to try and practice and rehearse and simulate as much of the mission as is realistically possible.”
“It took a lot of effort to get to this point, in the neighborhood of four years to get the simulation to behave correctly in real time with contact dynamics and the robotic systems. So the arm has to touch the boulder with force torque sensors and feed that into a computer to measure that and move the actuators to respond accordingly.”
“So the capture of the boulder is autonomous. The rest is teleoperated from the ground, but not the capture itself.”
How realistic are the rehearsals?
“We are practicing here by reaching out with the arm to grasp the client target using autonomous capture [procedures]. In space the client [target] is floating and maybe tumbling. So when we reach out with the arm to practice autonomous capture we make the client tumble and move – with the inertial properties of the target we are practicing on.”
“Now for known objects like satellites we know the mass precisely. And we can program all that inertial property data in very accurately to give us much more realistic simulations.”
“We learned from all our astronaut servicing experiences in orbit is that the more we know for the simulations, the easier and better the results are for the astronauts during an actual mission because you simulated all the properties.”
“But with this robotic mission to an asteroid there is no backup like astronauts. So we want to practice here at Goddard and simulate the space environment.”
ARRM will launch by the end of 2020 on either an SLS, Delta IV Heavy or a Falcon Heavy. NASA has not yet chosen the launch vehicle.
Several candidate asteroids have already been discovered and NASA has an extensive ongoing program to find more.
Again, this robotic technology was selected for development for ARRM because it has a lot in common with other objectives like fixing communications satellites, refueling satellites and building large telescopes in the future.
NASA is also developing other critical enabling technologies for the entire ARM project like solar electric propulsion that will be the subject of another article.
Therefore NASA is leveraging one technology development program into multiple spaceflight objectives that will greatly assist its plans to send ‘Humans to Mars’ in the 2030s with the Orion crew module launched by the monster Space Launch System (SLS) rocket.
The maiden uncrewed launch of the Orion/SLS stack is slated for November 2018.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Trick or treat! I think we’re definitely in for a treat. 2015 TB145 will fly past Earth at a safe distance slightly farther than the moon’s orbit on Oct. 31 at 12:05 p.m. CDT (17:05 UT). Estimated at 1,300 feet (400-meters) across, this Great Pumpkin of an asteroid will be big enough and close enough to show in small telescopes.
The close approach of such of TB145 will make for great science opportunities, too. Several optical observatories and the radar capabilities of the agency’s Deep Space Network at Goldstone, California will be tracking this flying mountain as will many amateur astronomers. The 110-foot (34-meter) Goldstone antenna will ping the asteroid with radio waves; the returning echoes will be collected by dishes in West Virginia and Puerto Rico and used to construct images showing the object’s surface features, shape and dimensions. NASA scientists hope to obtain radar images of the asteroid as fine as about 7 feet (2 meters) per pixel.
“The close approach of 2015 TB145 at about 1.3 times the distance of the moon’s orbit, coupled with its size, suggests it will be one of the best asteroids for radar imaging we’ll see for several years,” said Lance Benner, of JPL, who leads NASA’s asteroid radar research program. “We plan to test a new capability to obtain radar images with two-meter resolution for the first time and hope to see unprecedented levels of detail.”
Astronomers first nabbed asteroid 2015 TB145 on Oct. 10, 2015, using the University of Hawaii’s Pan-STARRS-1 (Panoramic Survey Telescope and Rapid Response System) telescope atop Mt. Haleakala in Maui. According to the catalog of near-Earth objectskept by the Minor Planet Center, this is the closest currently known approach by an object this large until asteroid 1999 AN10 (about 2,600 feet or 800-m in size) zips by at about 1 lunar distance in August 2027.
The gravitational influence of the asteroid is so small it will have no detectable effect on the Moon or anything here on Earth, including our planet’s tides or tectonic plates. But the planet will certainly have an effect on the asteroid. Earth’s gravity will deflect TB145’s path during the close approach, making it tricky this far out to create an accurate map of its flight across the sky. That’s why the two maps I’ve included with this article are only approximate. As we get closer to Halloween, further refinements in the asteroid’s orbit will allow for more accurate path-making.
Because the asteroid passes so near Earth, parallax will shift its path north or south up to 1/2°. Parallax is the apparent shift in an object’s position against the more distant background stars depending on the observer’s location on Earth. You can see how parallax works using your eyes and a finger. Stick your arm straight out in front of you and hold up your index finger. Open and close your right and then your left eye in a back and forth blinking pattern and watch your finger jump back and forth across the more distant background. Each eye sees the thumb from a slightly different perspective, causing it to shift position against the distant scene.
This happens all the time with the Moon. You might see it conjunct with a bright planet where skywatchers on the opposite side of the planet see an occultation. That’s why it’s best to make your own map of TB145’s wild ride across the sky. When closest to Earth, the asteroid will cover a Full Moon diameter about every 3 minutes as it tears by us at 22 miles per second (35 km/sec). Without a good map, it’ll get away from you.
Method #1: Using Stellarium
Download the free sky-plotting program Stellarium. Once you’ve set your location, either hit F2 or click on the Configuration icon in the lower left corner of your screen. Now select the Plugins tab then Solar System Editor. Click on Configure at the bottom of the tab, choose Solar System and click Import orbital elements in MPC format.
Next, select the Asteroids option and then from the bookmarks list, choose MPCORB: near-Earth asteroids (NEAs) and then Get orbital elements. Allow the list — a very large one — to load then scroll through it until you find 2015 TD145 and put a check mark in the box. Then click Add objects.
Still with me? OK, close the Solar System editor and press F3 or select the magnifying glass icon in the lower left corner of your screen, then type in the asteroid’s name exactly as 2015 TD145. Hit enter and you’ll see a set of rotating red crosshairs. Bingo! This where the asteroid will be at the time you chose. You can adjust your magnitude range, field of view and even download additional files of fainter stars and deep sky objects. Unfortunately, Stellarium can’t draw an arc showing TB145’s changing position with time. Cross your fingers that appears in the next iteration.
Method #2: Download up-to-date orbital elements into your sky-charting program
Let’s say you already have a sky-charting program like Guide, Dance of the Planets, MegaStar or Starry Night. Go to the Minor Planet &Comet Ephemeris Serviceand type in 2015 TB145 in the big, blank box. Next, scroll down and select your program from the list and click on Get Ephemerides/HTML page. Save the file of orbital elements that pops up and place into the appropriate folder in your program. Open your program, select 2015 TB145 and make a chart!
Method #3: Manually input orbital elements into your program
You can also go to JPL’s Horizons site for the very latest orbital elements you can manually input in your program. 2015 TB145 is expected to be as bright as magnitude +10.1 (no problem in a 4.5-inch scope) but that occurs during the afternoon for the Americas. The Middle East and Asia are the place to be for closest approach. Peak brightness over the U.S. will occur before dawn on Halloween, so you can begin observation around 11 p.m. local time Friday evening October 30 when Orion comes up in the east. The asteroid starts shines at around magnitude +11-11.5 that evening and brightens overnight to around +10.3-10.5 before dawn for the Americas.
A word about tracking fast-moving asteroids. I’ve found that the best way to catch sight of one is to “camp” at the place they’ll pass at a certain time. Say you want to see TB145 at 1:15 a.m. October 31. Make a chart that shows its position every 15 minutes. Five minutes before it arrives at the 1:15 a.m. spot, point your telescope there and wait for a “moving star” to enter the field of view. If you don’t see it right way, wait a few minutes and pan around to the north and south of the location. By the way, the asteroid will pass less than a degree northwest of the Crab Nebula (M1) in Taurus around 10:30 UT (5:30 a.m. CDT).
Be aware that the bright, waning gibbous Moon will be within 10° of the asteroid when it’s best visible in the Americas. While this will make observing the asteroid more challenging, don’t let it stop you from trying. If bad weather gets in the way, Gianluca Masi has you covered. He’ll live-stream the flyby on his Virtual Telescope sitebeginning at 0:00 UT (7 p.m CDT) on October 31st.
One way or another, we’ll all have a shot at seeing the Great Pumpkin asteroid this Halloween.
UPDATE Oct. 27, 2015: There’s been some discussion about TB145’s orbit resembling that of a comet along with speculation it might be a dead or dormant comet. Amateur and professional astronomers have been watching it closely, looking for hints of activity such as a fuzzy coma. So far, photos show the asteroid as completely stellar.
I also wanted to update you on its visibility. Those with 10-inch or larger telescopes can begin looking for the object Thursday night Oct. 29th when it reaches magnitude +13.5. The following night it leaps to +11.5 with a peak brightness of +10.0 occurring around 14:00 UT (9 a.m. CDT) on Halloween. TB145 fades rapidly thereafter – down to 15th magnitude just 8 hours later.
OSIRIS-Rex, the first American spacecraft ever aimed at snatching pristine samples from the surface of an asteroid and returning them to Earth for exquisite analysis by researchers world-wide with the most advanced science instruments has successfully completed its assembly phase and moved into the “test drive” phase – just ten months before blastoff, following installation of all its science instruments at Lockheed Martin Space Systems facilities, near Denver, Colorado.
The launch window for OSIRIS-REx opens next fall on September 3, 2016 on a seven-year journey to asteroid Bennu and back. Bennu is a carbon-rich asteroid. OSIRIS-Rex will eventually return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.
The science payload installation was recently completed with attachment of the vehicles three camera instrument suite of cameras and spectrometers known as OCAMS (OSIRIS-REx Camera Suite), which was was designed and built by the University of Arizona’s Lunar and Planetary Laboratory.
OCAMS trio of instruments, PolyCam, MapCam and SamCam, will survey and globally map the surface of Bennu up close at a distance ranging from approximately 5 km to 0.7 km.
“PolyCam, MapCam and SamCam will be our mission’s eyes at Bennu,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, in a statement.
“OCAMS will provide the imagery we need to complete our mission while the spacecraft is at the asteroid.”
“All in all it was flawless installation, with the three cameras and the control electronics making it on the spacecraft well in advance of when we originally planned these activities. In general, the OSIRIS-REx ATLO (assembly, test and launch operations) flow has gone smoothly,” said Lauretta in a blog update.
For the next five months, NASA’s OSIRIS-REx which stands for Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer will undergo a rigorous regime of critical environmental testing to ensure the probe will survive the unforgiving extremes of vacuum, vibration and extreme temperatures it will experience during launch and throughout the life of its planned eight year mission.
The asteroid sampling spacecraft is tracking on budget and ahead of schedule.
“OSIRIS-REx is entering environmental testing on schedule, on budget and with schedule reserves,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.
“This allows us to have flexibility if any concerns arise during final launch preparations.”
Bennu is a near-Earth asteroid and was selected for the sample return mission because it “could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth,” says NASA.
The spacecraft is equipped with a suite of five science instruments to remotely study the 492 meter wide asteroid.
The instruments were all installed as planned on the spacecraft deck over the past few months so they can all be subjected to the environmental testing together with the spacecraft bus.
“This milestone marks the end of the design and assembly stage,” said Lauretta, in a statement.
“We now move on to test the entire flight system over the range of environmental conditions that will be experienced on the journey to Bennu and back. This phase is critical to mission success, and I am confident that we have built the right system for the job.”
The tests will “simulate the harsh environment of space, including acoustical, separation and deployment shock, vibration, and electromagnetic interference. The simulation concludes with a test in which the spacecraft and its instruments are placed in a vacuum chamber and cycled through the extreme hot and cold temperatures it will face during its journey to Bennu,” say NASA officials.
Video caption: Engineers at Lockheed Martin move the OSIRIS-REx spacecraft onto a rotation fixture. This fixture supports the full weight of the spacecraft and acts as a hinge, orienting the spacecraft at a 90 degree angle, which allows engineers to access the top of the spacecraft much more easily. Credits: Lockheed Martin Corporation
The testing is done to uncover any issues lurking prior next September’s planned liftoff.
“This is an exciting time for the program as we now have a completed spacecraft and the team gets to test drive it, in a sense, before we actually fly it to asteroid Bennu,” said Rich Kuhns, OSIRIS-REx program manager at Lockheed Martin Space Systems.
“The environmental test phase is an important time in the mission as it will reveal any issues with the spacecraft and instruments, while here on Earth, before we send it into deep space.”
After the testing is complete by next May, the spacecraft will ship from Lockheed Martin’s Denver facility to NASA’s Kennedy Space Center, where it will undergo final prelaunch preparations and transport to the launch pad at Cape Canaveral.
OSIRIS-REx is scheduled for launch in September 2016 from Cape Canaveral Air Force Station in Florida aboard a United Launch AllianceAtlas V 411 rocket, which includes a 4-meter diameter payload fairing and one solid rocket motor. Only three Atlas V’s have been launched in this configuration.
“This is an exciting time,” says Lauretta.
The spacecraft will reach Bennu in 2018. OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023 for study by researchers here with all the most sophisticated science instruments available.
Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.
OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.
OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
“Bizarre.” “Interesting.” “Giant transit”. That were the reactions of Planet Hunters project volunteers when they got their first look at the light curve of the otherwise normal sun-like star KIC 8462852 nearly.
Of the more than 150,000 stars under constant observation during the four years of NASA’s primary Kepler Mission (2009-2013), this one stands alone for the inexplicable dips in its light. While almost certainly naturally-caused, some have suggested we consider other possibilities.
You’ll recall that the orbiting Kepler observatory continuously monitored stars in a fixed field of view focused on the constellations Lyra and Cygnus hoping to catch periodic dips in their light caused by transiting planets. If a drop was seen, more transits were observed to confirm the detection of a new exoplanet.
And catch it did. Kepler found 1,013 confirmed exoplanets in 440 star systems as of January 2015 with 3,199 unconfirmed candidates. Measuring the amount of light the planet temporarily “robbed” from its host star allowed astronomers to determine its diameter, while the length of time between transits yielded its orbital period.
Volunteers with the Planet Hunters project, one of many citizen science programs under the umbrella of Zooniverse, harness the power of the human eye to examine Kepler light curves (a graph of a star’s changing light intensity over time), looking for repeating patterns that might indicate orbiting planets. They were the first to meet up with the perplexing KIC 8462852.
This magnitude +11.7 star in Cygnus, hotter and half again as big as the Sun, showed dips all over the place. Around Day 800 during Kepler’s run, it faded by 15% then resumed a steady brightness until Days 1510-1570, when it underwent a whole series of dips including one that dimmed the star by 22%. That’s huge! Consider that an exo-Earth blocks only a fraction of a percent of a star’s light; even a Jupiter-sized world, the norm among extrasolar planets, soaks up about a percent.
Exoplanets also show regular, repeatable light curves as they enter, cross and then exit the faces of their host stars. KIC 8462852’s dips are wildly a-periodic.
Whatever’s causing the flickering can’t be a planet. With great care, the researchers ruled out many possibilities: instrumental errors, starspots (like sunspots but on other stars), dust rings seen around young, evolving stars (this is an older star) and pulsations that cover a star with light-sucking dust clouds.
What about a collision between two planets? That would generate lots of material along with huge clouds of dust that could easily choke off a star’s light in rapid and irregular fashion.
A great idea except that dust absorbs light from its host star, warms up and glows in infrared light. We should be able to see this “infrared excess” if it were there, but instead KIC 8462852 beams the expected amount of infrared for a star of its class and not a jot more. There’s also no evidence in data taken by NASA’s Wide-field Infrared Survey Explorer (WISE) several years previously that a dust-releasing collision happened around the star.
After examining the options, the researchers concluded the best fit might be a shattered comet that continued to fragment into a cascade of smaller comets. Pretty amazing scenario. There’s still dust to account for, but not as much as other scenarios would require.
Being fragile types, comets can crumble all by themselves especially when passing exceptionally near the Sun as sungrazing comets are wont to do in our own Solar System. Or a passing star could disturb the host star’s Oort comet cloud and unleash a barrage of comets into the inner stellar system. It so happens that a red dwarf star lies within about 1000 a.u. (1000 times Earth’s distance from the Sun) of KIC 8462852. No one knows yet whether the star orbits the Kepler star or happens to be passing by. Either way, it’s close enough to get involved in comet flinging.
So much for “natural” explanations. Tabetha Boyajian, a postdoc at Yale, who oversees the Planet Hunters and the lead author of the paper on KIC 8462852, asked Jason Wright, an assistant professor of astronomy at Penn State, what he thought of the light curves. “Crazy” came to mind as soon he set eyes on them, but the squiggles stirred a thought. Turns out Wright had been working on a paper about detecting transiting megastructures with Kepler.
In a recent blog, he writes: “The idea is that if advanced alien civilizations build planet-sized megastructures — solar panels, ring worlds, telescopes, beacons, whatever — Kepler might be able to distinguish them from planets.” Let’s assume our friendly aliens want to harness the energy of their home star. They might construct enormous solar panels by the millions and send them into orbit to beam starlight down to their planet’s surface. Physicist Freeman Dyson popularized the idea back in the 1960s. Remember the Dyson Sphere, a giant hypothetical structure built to encompass a star?
From our perspective, we might see the star flicker in irregular ways as the giant panels circled about it. To illustrate this point, Wright came up with a wonderful analogy:
“The analogy I have is watching the shadows on the blinds of people outside a window passing by. If one person is going around the block on a bicycle, their shadow will appear regularly in time and shape (like a regular transiting planet). But crowds of people ambling by — both directions, fast and slow, big and large — would not have any regularity about it at all. The total light coming through the blinds might vary like — Tabby’s star.”
Even Wright admits that the “alien hypothesis” should be seen as a last resort. But to make sure no stone goes unturned, Wright, Boyajian and several of the Planet Hunters put together a proposal to do a radio-SETI search with the Green Bank 100-meter telescope. In my opinion, this is science at its best. We have a difficult question to answer, so let’s use all the tools at our disposal to seek an answer.
In the end, it’s probably not an alien megastructure, just like the first pulsar signals weren’t sent by LGM-1 (Little Green Men). But whatever’s causing the dips, Boyajian wants astronomers to keep a close watch on KIC 8462852 to find out if and when its erratic light variations repeat. I love a mystery, but answers are even better.
In February of 2014, NASA’s Discovery Program put out the call for mission proposals, one or two of which will have the honor of taking part in Discovery Mission Thirteen. Hoping to focus the next round of exploration efforts to places other than Mars, the five semifinalists (which were announced this past September) include proposed missions to Venus, Near-Earth Objects, and asteroids.
When it comes to asteroid exploration, one of the possible contenders is Lucy – a proposed reconnaissance orbiter that would study Jupiter‘s Trojan Asteroids. In addition to being the first mission of its kind, examining the Trojans Asteroids could also lead to several scientific finds that will help us to better understand the history of the Solar System.
By definition, Trojan are populations of asteroids that share their orbit with other planets or moons, but do not collide with it because they orbit in one of the two Lagrangian points of stability. The most significant population of Trojans in the Solar System are Jupiter’s, with a total of 6,178 having been found as of January 2015. In accordance with astronomical conventions, objects found in this population are named after mythical figures from the Trojan War.
There are two main theories as to where Jupiter’s Trojans came from. The first suggests that they formed in the same part of the Solar System as Jupiter and were caught by the gas giant’s gravity as it accumulated hydrogen and helium from the protoplanetary disk. Since they would have shared the same approximate orbit as the forming gas giant, they would have been caught in its gravity and orbited it ever since.
The second theory, part of the Nice model, proposes that the Jupiter Trojans were captured about 500-600 million years after the Solar System’s formation. During this period Uranus, Neptune – and to a lesser extent, Saturn – moved outward, whereas Jupiter moved slightly inward. This migration could have destabilized the primordial Kuiper Belt, throwing millions of objects into the inner Solar System, some of which Jupiter then captured.
In either case, the presence of Trojan asteroids around Jupiter can be traced back to the early Solar System. Studying them therefore presents an opportunity to learn more about its history and formation. And if in fact the Trojans are migrant from the Kuiper Belt, it would also be a chance for scientists to learn more about the most distant reaches of the solar system without having to send a mission all the way out there.
The mission would be led by Harold Levison of the Southwest Research Institute (SwRI) in Boulder, Colorado, with the Goddard Space Center managing the project. Its targets would most likely include asteroid (3548) Eurybates, (21900) 1999 VQ10, (11351) 1997 TS25, and the binary (617) Patroclus/Menoetius. It would also visit a main-belt asteroid (1981 EQ5) on the way.
The spacecraft would perform scans of the asteroids and determine their geology, surface features, compositions, masses and densities using a sophisticated suite of remote-sensing and radio instruments. In addition, during it’s proposed 11-year mission, Lucy would also gather information on the asteroids thermal and other physical properties from close range.
The project is named Lucy in honor of one of the most influential human fossils found on Earth. Discovered in the Awash Valley of Ethiopia in 1974, Lucy’s remains – several hundred bone fragments that belonged to a member the hominid species of Australopithecus afarensis – proved to be an extraordinary find that advanced our knowledge of hominid species evolution.
Levison and his team are hoping that a similar find can be made using the probe of the same name. As he and his colleagues describe it, the Lucy mission is aimed at “Surveying the diversity of Trojan asteroids: The fossils of planet formation.”
“This is a once-in-a-lifetime opportunity,” said Levinson. “Because the Trojan asteroids are remnants of that primordial material, they hold vital clues to deciphering the history of the solar system. These asteroids are in an area that really is the last population of objects in the solar system to be visited.”
The payload is expected to include three complementary imaging and mapping instruments, including a color imaging and infrared mapping spectrometer, a high-resolution visible imager, and a thermal infrared spectrometer. NASA has also offered an additional $5 to $30 million in funding if mission planners choose to incorporate a laser communications system, a 3D woven heat shield, a Deep Space atomic clock, and/or ion engines.
As one of the semifinalists, the Lucy mission has received $3 million dollars to conduct concept design studies and analyses over the course of the next year. After a detailed review and evaluation of the concept studies, NASA will make the final selections by September 2016. In the end, one or two missions will receive the mission’s budget of $450 million (not including launch vehicle funding or post-launch operations) and will be launched by 2020 at the earliest.
In February of 2014, NASA put out the call for submissions for the thirteenth mission of their Discovery Program. In keeping with the program’s goal of mounting low-cost, highly focused missions to explore the Solar System, the latest program is focused on missions that look beyond Mars to new research goals. On September 30th, 2015, five semifinalists were announced, which included proposals for sending probes back to Venus, to sending orbiters to study asteroids and Near-Earth Objects.
Among the proposed NEO missions is the Near Earth Object Camera, or NEOCam. Consisting of a space-based infrared telescope designed to survey the Solar System for potentially hazardous asteroids, the NEOCam would be responsible for discovering and characterizing ten times more near-Earth objects than all NEOs that have discovered to date.
If deployed, NEOCam will begin discovering approximately one million asteroids in the Main Belt and thousands of comets in the course of its 4 year mission. However, the primary scientific goal of NEOCam is to discover and characterize over two-thirds of the asteroids that are larger that 140 meters, since it is possible some of these might pose a threat to Earth someday.
The technical term is Potentially Hazardous Objects (PHO), and it applies to near-Earth asteroids/comets that have an orbit that will allow them to make close approaches to Earth. And measuring more than 140 meters in diameter, they are of sufficient size that they could cause significant regional damage if they struck Earth.
In fact, a study conducted in 2010 through the Imperial College of London and Purdue University found that an asteroid measuring 50-meters across with a density of 2.6 grams per cubic centimeter and a speed of 12.7 kps could generate 2.9 Megatons of airburst energy once it passed through our atmosphere. To put that in perspective, that’s the equivalent of about nine W87 thermonuclear warheads!
By comparison, the meteor that appeared over the small Russian community of Chelyabinsk in 2013 measured only 20 meters across. Nevertheless, the explosive airbust caused by it entering our atmosphere generated only 500 kilotons of energy, creating a zone of destruction tens of kilometers wide and injuring 1,491 people. One can imagine without much effort how much worse it would have been had the explosion been six times as big!
What’s more, as of August 1st, 2015, NASA has listed a total of 1,605 potentially hazardous asteroids and 85 near-Earth comets. Among these, there are 154 PHAs believed to be larger than one kilometer in diameter. This represents a tenfold increase in discoveries since the end of the 1990s, which is due to several astronomical surveys being performed (as well as improvements in detection methods) over the past two and a half decades.
As a result, monitoring and characterizing which of these objects is likely to pose a threat to Earth in the future has been a scientific priority in recent years. It is also why the U.S. Congress passed the “George E. Brown, Jr. Near-Earth Object Survey Act” in 2005. Also known as the “NASA Authorization Act of 2005”, this Act of Congress mandated that NASA identify 90% of all NEOs that could pose a threat to Earth.
If deployed, NEOCam will monitor NEOs from the Earth–Sun L1 Lagrange point, allowing it to look close to the Sun and see objects inside Earth’s orbit. To this, NEOCam will rely on a single scientific instrument: a 50 cm diameter telescope that operates at two heat-sensing infrared wavelengths, to detect the even the dark asteroids that are hardest to find.
By using two heat-sensitive infrared imaging channels, NEOCam can also make accurate measurements of NEO and gain valuable information about their sizes, composition, shapes, rotational states, and orbits. As Dr. Amy Mainzer, the Principal Investigator of the NEOCam mission, explained:
“Everyone wants to know about asteroids hitting the Earth; NEOCam is designed to tackle this issue. We expect that NEOCam will discover about ten times more asteroids than are currently known, plus millions of asteroids in the main belt between Mars and Jupiter. By conducting a comprehensive asteroid survey, NEOCam will address three needs: planetary defense, understanding the origins and evolution of our solar system, and finding new destinations for future exploration.”
Dr. Mainzer is no stranger to infrared imaging for the sake of space exploration. In addition to being the Principal Investigator on this mission and a member of the Jet Propulsion Laboratory, she is also the Deputy Project Scientist for the Wide-field Infrared Survey Explorer (WISE) and the Principal Investigator for the NEOWISE project to study minor planets.
She has also appeared many times on the History Channel series The Universe, the documentary featurette “Stellar Cartography: On Earth”, and serves as the science consultant and host for the live-action PBS Kids series Ready Jet Go!, which will be debuting in the winter of 2016. Under her direction, the NEOCam mission will also study the origin and ultimate fate of our solar system’s asteroids, and finding the most suitable NEO targets for future exploration by robots and humans.
Proposals for NEOCam have been submitted a total of three times to the NASA Discovery Program – in 2006, 2010, and 2015, respectively. In 2010, NEOCam was selected to receive technology development funding to design and test new detectors optimized for asteroid and comet detection and discovery. However, the mission was ultimately overruled in favor of the Mars InSight Lander, which is scheduled for launch in 2016.
As one of the semifinalists for Discovery Mission 13, the NEOCam mission has received $3 million for year-long studies to lay out detailed mission plans and reduce risks. In September of 2016, one or two finalist will be selected to receive the program’s budget of $450 million (minus the cost of a launch vehicle and mission operations), and will launch in 2020 at the earliest.
In related news, NASA has confirmed that the asteroid known as 86666 (2000 FL10) will be passing Earth tomorrow. No need to worry, though. At its closest approach, the asteroid will still be at a distance of 892,577 km (554,000 mi) from Earth. Still, every passing rock underlines the need for knowing more about NEOs and where they might be headed one day!
In their drive to set exploration goals for the future, NASA’s Discovery Program put out the call for proposals for their thirteenth Discovery mission in February 2014. After reviewing the 27 initial proposals, a panel of NASA and other scientists and engineers recently selected five semifinalists for additional research and development, one or two of which will be launching by the 2020s.
With an eye to Venus, near-Earth objects and asteroids, these missions are looking beyond Mars to address other questions about the history and formation of our Solar System. Among them is the proposed Psyche mission, a robotic spacecraft that will explore the metallic asteroid of the same name – 16 Psyche – in the hopes of shedding some light on the mysteries of planet formation.
Discovered by Italian astronomer Annibale de Gasparis on March 17th, 1852 – and named after a Greek mythological figure – Psyche is one the ten most-massive asteroids in the Asteroid Belt. It is also the most massive M-type asteroid, a special class pertaining to asteroids composed primarily of nickel and iron.
For some time, scientists have speculated that this metallic asteroid is in fact the survivor of a protoplanet. In this scenario, a violent collision with a planetesimal stripped off Psyche’s outer, rocky layers, leaving behind only the dense, metallic interior. This theory is supported by estimates of Psyche’s bulk density, spectra, and radar surface properties; all of which show it to be an object unlike any others in the Belt.
In addition, this composition of 16 Psyche is strikingly similar to that of Earth’s metal core. Given that astronomers think that larger planets like Venus, Earth and Mars formed from the collision and merger of smaller worlds, Psyche could be the remains of a protoplanet that did not get to create a larger body.
Had such a planetesimal been struck by a large enough object, it would have been able to lose its lower-mass exterior while keeping its core intact. Thus, studying this 250 km (155 mile) wide body, offers a unique opportunity to learn more about the interiors of planets and large moons, whose cores are hidden beneath many miles of rock.
Dr. Linda Elkins-Tanton of Arizona State University’s School of Earth and Space Exploration is the Principle Investigator of this mission. As she and her team stated in their mission proposal paper, which was originally submitted as part of the 45th Lunar and Planetary Science Conference (2014):
“This mission would be a journey back in time to one of the earliest periods of planetary accretion, when the first bodies were not only differentiating, but were being pulverized, shredded, and accreted by collisions. It is also an exploration, by proxy, of the interiors of terrestrial planets and satellites today: we cannot visit a metallic core any other way.
“For all of these reasons, coupled with the relative accessibility to low- cost rendezvous and orbit, Psyche is a superb target for a Discovery-class mission that would characterize its geology, shape, elemental composition, magnetic field , and mass distribution.”
A robotic mission to Pysche would also help astronomers learn more about metal worlds, a type of solar system object that scientists know very little about. But perhaps the greatest reason to study 16 Psyche is the fact that it is unique. So far, this body is the only metallic core-like body that has been discovered in the Solar System.
The proposed spacecraft would orbit Psyche for six months, studying its topography, surface features, gravity, magnetism, and other characteristics. The mission would also be cost-effective and quick to launch, since it is largely based on technology that went into the making of NASA’s Dawn probe. Currently in orbit around Ceres, the Dawn mission has demonstrated the effectiveness of many new technologies, not the least of which was the xenon ion thruster.
The Psyche orbiter mission was selected as one of the Discovery Program’s five semifinalists on September 30th, 2015. Each proposal has received $3 million for year-long studies to lay out detailed mission plans and reduce risks. One or two finalist will be selected to receive the program’s budget of $450 million (minus the cost of a launch vehicle and mission operations) and will launch in 2020 at the earliest.