What Asteroid 2004 BL86 and Hawaii Have in Common

Toes of a pahoehoe flow advance across a road in Kalapana on the east rift zone of Kilauea Volcano, Hawaii and the binary asteroid 2004 BL86. Credit: U.S. Geological Survey (left) and NASA/JPL-Caltech

At first glance, you wouldn’t think Hawaii has any connection at all with asteroid 2004 BL86, the one that missed Earth by 750,000 miles (1.2 million km) just 3 days ago. One’s a tropical paradise with nightly pig roasts, beaches and shave ice; the other an uninhabitable ball of bare rock untouched by floral print swimsuits.

But Planetary Science Institute researchers Vishnu Reddy and Driss Takir would beg to differ.

Using NASA’s Infrared Telescope Facility on Mauna Kea, Hawaii they discovered that the speedy “space mountain” has a composition similar to the very island from which they made their observations – basalt.

“Our observations show that this asteroid has a spectrum similar to V-type asteroids,” said Reddy. “V-type asteroids are basalt, similar in composition to lava flows we see in Hawaii.

Minerals on the surface of an object like the moon or an asteroid absorb particular wavelengths of light to create a series of "blank spaces" or absorption lines that are unique to a particular element or compound. Credit: NASA
Minerals on the surface of an object like the moon or an asteroid absorb wavelengths of light to create a series of “blank spaces” or absorption lines that are unique to a particular element or compound. Credit: NASA

The researchers used a spectrograph to study infrared sunlight reflected from 2004 BL86 during the flyby. A spectrograph splits light into its component colors like the deli guy slicing up a nice salami. Among the colors are occasional empty spaces or what astronomers call absorption lines, where minerals such as olivine, pyroxene and plagioclase on the asteroid’s surface have removed or absorbed particular slices of sunlight.

You're looking straight down on the 310-mile-wide Rheasilvea crater / impact basin on the asteroid Vesta. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
You’re looking straight down into the 310-mile-wide (500 km) Rheasilvea crater / impact basin on the asteroid Vesta. It’s though that many of the Vesta-like asteroids, including 2004 BL86, originated from the impact. It Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

These are the same materials that not only compose earthly basalts – all that dark volcanic rock that underlies Hawaii’s reefs and resorts – but also Vesta, considered the source of V-type asteroids. It’s thought that the impact that hollowed out the vast Rheasilvia crater at Vesta’s south pole blasted chunks of mama asteroid into space to create a family of smaller siblings called vestoids.

 

This animation, created from individual radar images, clearly show the rough outline of 2004 BL86 and its newly-discovered moon. Credit: NASA/JPL-Caltech
This animation, created from individual radar images, shows the binary asteroid 2004 BL86 on January 26th.  The moon’s orbital period is about 13.8 hours. Credit: NASA/JPL-Caltech

So it would appear that 2004 BL86 could be a long-lost daughter born through impact and released into space to later be perturbed by Jupiter into an orbit that periodically brings it near Earth. Close enough to watch in wonder as it inches across the field of view of our telescopes like it did earlier this week.

The little moonlet may or may not be related to Vesta, but its presence makes 2004 BL86 a binary asteroid, where each object revolves about their common center of gravity. While the asteroid is unlikely to become future vacation destination, there will always be Hawaii to satisfy our longings for basalt.

Amazing Impact Crater Where a Triple Asteroid Smashed into Mars

A triple crater in Elysium Planitia on Mars. Credit: NASA/JPL/University of Arizona.

At first glance, you many not guess that this feature on Mars is an impact crater. The reason it looks so unusual is that it likely is a triple impact crater, formed when three asteroids struck all at once in the Elysium Planitia region.

Why do planetary scientists think the three craters did not form independently at different times?

“The ejecta blanket appears to be uniform around the triple-crater showing no signs of burial or overlapping ejecta from overprinting craters,” write scientists Eric Pilles, Livio Tornabene, Ryan Hopkins, and Kayle Hansen on the HiRISE website. “The crater rims are significantly stunted where the craters overlap.”

This oblong-shaped crater could have been created from a triple asteroid, or it could have been a binary asteroid, and one broke apart, creating the three overlapping craters. The team says the two larger craters must have been produced by asteroids of approximately the same size, probably on the order of a few hundred meters across.

“The northern crater might have been created by a smaller asteroid, which was orbiting the larger binary pair, or when one of the binary asteroids broke up upon entering the atmosphere,” the team explained. “The shape of the triple-crater is oblong, suggesting an oblique impact; therefore, another alternative would be that the asteroid split upon impact and ricocheted across the surface, creating additional craters.”

Studying craters on Mars — and there are lots of them, thanks to Mars’ sparse atmosphere — can help estimate the ages of different terrains, as well as revealing materials such as ice or minerals that get exposed from the impact.

HiRISE is the amazing camera on board the Mars Reconnaissance Orbiter.

Dawn Captures Best Images Ever of “Hipster Planet” Ceres

Animation of Ceres made from images acquired by Dawn on Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

This is the second animation from Dawn this year showing Ceres rotating, and at 43 pixels across the images are officially the best ever obtained!

NASA’s Dawn spacecraft is now on final approach to the 950 km (590 mile) dwarf planet Ceres, the largest world in the main asteroid belt and the biggest object in the inner Solar System that has yet to be explored closely. And, based on what one Dawn mission scientist has said, Ceres could very well be called the Solar System’s “hipster planet.”

“Ceres is a ‘planet’ that you’ve probably never heard of,” said Robert Mase, Dawn project manager at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re excited to learn all about it with Dawn and share our discoveries with the world.”

Originally classified as a planet, Ceres was later categorized as an asteroid and then reclassified as a dwarf planet in 2006 (controversially along with far-flung Pluto.) Ceres was first observed in 1801 by astronomer Giuseppe Piazzi who named the object after the Roman goddess of agriculture, grain crops, fertility and motherly relationships. (Its orbit would later be calculated by German mathematician Carl Gauss.)

“You may not realize that the word ‘cereal’ comes from the name Ceres,” said Marc Rayman, mission director and chief engineer of the Dawn mission at JPL. “Perhaps you already connected with the dwarf planet at breakfast today.”

Ceres: part of this nutritionally-balanced Solar System!

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart. Credit: NASA.

The animation above was made from images taken by Dawn framing camera on January 25, 2015 from a distance of about 237,000 km (147,000 miles). These are now the highest-resolution views to date of the dwarf planet, 30% more detailed than those obtained by Hubble in January 2004.

And there’s that northern white spot again too… seen in observations from earlier this month and in the 2003-04 HST images, scientists still aren’t quite sure what it is. A crater wall? An exposed ice deposit? Something else entirely? We will soon find out.

“We are already seeing areas and details on Ceres popping out that had not been seen before. For instance, there are several dark features in the southern hemisphere that might be craters within a region that is darker overall,” said Carol Raymond, Dawn deputy principal investigator at JPL.

Full-frame image from Dawn of Ceres on approach, acquired Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)
Full-frame image from Dawn of Ceres on approach, acquired Jan. 25, 2015. (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

From now on, every observation of Ceres by Dawn will be the best we’ve ever seen! This new chapter of the spacecraft’s adventure has only just begun.

Dawn is scheduled to arrive at Ceres on March 6. Follow the progress of the Dawn mission here.

Source: NASA/JPL

*(Does this mean that Ceres has now gone “mainstream?” Hmm… oh well, it’s still cool.)

Are Asteroids the Future of Planetary Science?

The asteroid Vesta as seen by the Dawn spacecraft. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA

I don’t think I ever learned one of those little rhymes – My Very Educated Mother Just Served Us Nine Pizzas – to memorize the order of the planets, but if I had, it would’ve painted for me a minimalist picture of the solar system. (Side question: what is my Very Educated Mother serving now that we only have Dwarf Pizzas?) After all, much of the most exciting work in planetary science today happens not at the planets, but around them.

Ask an astronomer where in the solar system she’d like to visit next and you’re just as likely to hear Europa, Enceladus, Titan, or Triton as you are Venus, Mars, or Neptune. Our solar system hosts eight planets but nearly 200 known moons. And moons, it turns out, are just the start. We’ve detected more than a million asteroids; surely that’s just a fraction of what’s lurking beyond our limits of observation. Let’s not even think about the billions, perhaps even trillions, of Kuiper belt and Oort cloud objects – we could be here all day! So, while the planets may dominate the solar system gravitationally, they are pitiful numerically.

If there is one thing that the study of exoplanets has taught us in the last twenty years, it’s that the Universe thrives on chance. Given enough planets (and there appear to be gazillions out there!), practically anything can happen. Want a planet with a double sunset? We’ve got that, but perhaps you’d prefer one with three! How about a planet whose temperature is nearly half that of the surface of the Sun? No problem there. I can even offer you a planet ten times more massive than Jupiter, but nearly 20 times closer to its star than Mercury (probably not the best place for your first off-world vacation home…). The point is, with only a few thousand planets discovered, what we’ve seen already is astonishing. Imagine what those million asteroids could be hiding.

In fact, asteroids might be the next great frontier in planetary science. Let’s find out why.

An artist's impression of the rings around Chariklo. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)
An artist’s impression of the rings around Chariklo. Credit:
ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)

Suppose I ask you to think about the planet Saturn. What’s the first thing that jumps to mind? Probably its rings. And, if you were paying attention around the time you learned one of those nifty rhymes, you might recall that Jupiter, Uranus, and Neptune also have rings. But, did you know that at least one asteroid is also home to a ring system? Called Chariklo, it’s the largest known of a family of asteroids trapped between the orbits of the outer planets. Early last year, astronomers reported the detection of a ring system about this 250-kilometer sized object. I say a ring system because there appear to be at least two distinct rings encircling Chariklo. Discovering this new system is more than just an additional data point. Perhaps the paramount question facing the field of planetary rings today is how they formed and how long they can last; the existence of rings around a tiny asteroid tells a very different story than that implied by the giant planets.

Of course, rings haven’t been the biggest planetary science story of the last decade (much to my chagrin as a rings researcher!). That honor might instead lie with geysers. The 2005 discovery of an enormous water plume emanating from the surface of Saturn’s moon Enceladus changed the way we looked at the icy moons of the solar system. Eight years later, astronomers using Hubble claimed to have found a similar phenomenon at Jupiter’s moon Europa (now they’re not so sure). But geysers, too, might not be the sole province of planetary moons. Just last year, researchers with the Herschel Space Telescope found the first evidence for water vapor emanating from the surface of the enormous asteroid Ceres! There’s more good news: unlike Europa, with its off-in-the-future mission, the Dawn spacecraft is on its way to Ceres right now. It will arrive in just under two months and provide a close-up look at the second confirmed off-world geyser.

Speaking of moons, it probably won’t surprise you to learn that asteroids have those, too! In fact, the number of asteroids with known satellites is far too long to enumerate here. But, they are not merely numerous; the variety of asteroid moons seems to be nearly as large as the variety of asteroids themselves. Like with the planets, many asteroids dwarf their moons. Others, though, are more like binary systems in which both bodies are approximately the same size. And, although we generally know little about their shape, the variety in this realm also appears tremendous.

An artist's conception of how an unmanned spacecraft might redirect an asteroid into lunar orbit. Credit: NASA
An artist’s conception of how an unmanned spacecraft might redirect an asteroid into lunar orbit. Credit: NASA

Ultimately, though, it’s not their number or their variety that might make asteroids the future of planetary science; the laws of physics are on their side. It’s no accident that NASA intends to send astronauts to land on an asteroid long before they attempt to touch down on Mars. Neither is it a coincidence that at least three missions (Hayabusa, Hayabusa 2, and OSIRIS-REx) will have returned, or at least attempted to, samples from an asteroid to the Earth before NASA’s ambitious plan to do the same at Mars. The gravitational tug on the surface of the Red Planet is more than thirteen times more powerful than that of even the largest asteroid.

We’re seeing this accessibility in action already. Hayabusa returned a sample of asteroid Itokawa back in 2010 and its successor is already on its way. And, remember Dawn on its way to Ceres? It turns out that wasn’t its first stop. Before setting out for the solar system’s largest asteroid, the mission spent fourteen months in orbit about the asteroid Vesta. When it arrives at Ceres in March, Dawn will become the first spacecraft in history to orbit two extraterrestrial bodies.

Dawn is, I think, a signal of things to come. Asteroids, in general, and the main asteroid belt, in particular, offer the tantalizing opportunity to visit a variety of different worlds in one fell swoop. These are places that are closer to us, easier to approach, and just as scientifically interesting as the classical celestial worlds. Does this mean that the world’s science agencies will or even should abandon the study of the planets? Of course not. No asteroid looks like the cloud tops of Jupiter or the methane lakes of Titan or the intense heat of Venus. I’m not at all trying to limit the worlds which we visit. Quite the opposite, in fact: we’ve suddenly found a million new places to go!

News Flash: Asteroid Flying Past Earth Today Has Mini-Moon!

This animation, created from individual radar images, clearly show the rough outline of 2004 BL86 and its newly-discovered moon. Credit: NASA/JPL-Caltech

Wonderful news! Asteroid 2004 BL86, which passed closest to Earth today at a distance of 750,000 miles (1.2 million km), has a companion moon. Scientists working with NASA’s 230-foot-wide (70-meter) Deep Space Network antenna at Goldstone, California, have released the first radar images of the asteroid which show the tiny object in orbit about the main body.

While these are the first images of it, the “signature” of the satellite was seen in light curve data reported earlier by Joseph Pollock (Appalachian State University, North Carolina) and Petr Prave (Ondrejov Observatory, Czech Republic) according to Lance Benner who works with the radar team at Goldstone.

2004 BL86 measures about 1,100 feet (325 meters) across while its moon is approximately 230 feet (70 meters) across. The asteroid made its closest approach today (Jan. 26th) at 10:19 a.m. (CST), however it will peak in brightness this evening around 10 p.m. (4:00 UT) at magnitude +9.0. Unlike some flybys, 2004 BL86 will remain within a few tenths of a magnitude of peak brightness from 6 p.m. tonight (CST) through early tomorrow morning, so don’t miss the chance to see it in your telescope.

Don’t expect to see the diminutive moon visually – the entire system will only appear as a point of light, but I’m sure you’ll agree it’s cool just knowing it’s there.

The double asteroid (90) Antiope and S/2000 (90) 1. The two objects are separated by 171 km, and they perform their celestial dance in 16.5 hours. The adaptive optics observations could, however, never resolve the shape of the individual components as they are too small. Credit: ESO
The double asteroid (90) Antiope and its companion S/2000 (90) 1. The two objects are separated by 106 miles (171 km), and they perform their celestial dance in 16.5 hours. The adaptive optics observations couldn’t resolve the shape of the individual components as they are too small. Credit: ESO

Among near-Earth asteroids, about 16% that are about 655 feet (200 meters) or larger are either binary or triple systems. While that’s not what you’d call common, it’s not unusual either. To date, we know of 240 asteroids with a single moon, 10 triple systems and the sextuple system of Pluto (I realize that’s stretching a bit, since Pluto’s a dwarf planet) – 268 companions total. 52 of those are near-Earth asteroids.

With a resolution of 13 feet (4-meters) per pixel we can at least see the roughness of the the main body’s surface and perhaps imagine craters there. No details are visible on the moon though it does appear elongated. I’m surprised how round the main body is given its small size. An object that tiny doesn’t normally have the gravity required to crush itself into a sphere. Yet another fascinating detail needing our attention.

Of course the main asteroid will get your attention tonight. Please check out our earlier story on 2004 BL86 which includes more details as well as charts to help you track it as it flies across Cancer the Crab tonight. This is the best view we’re going to get of it for the next two centuries.

Here’s Ceres Compared to All the Other Asteroids We’ve Visited

Ceres compared to asteroids visited to date, including Vesta, Dawn's mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.

When the Dawn mission was in its planning stages, Ceres was considered an asteroid. But in 2006, a year before the mission launched, the International Astronomical Union formed a new class of solar system objects known as dwarf planets, and since by definition a dwarf planet is spherical and travels in an orbit around the Sun, Ceres fit that definition perfectly.

But since it’s located in the Asteroid Belt, we still tend to think of Ceres as an asteroid. So, how does Ceres compare to other asteroids?

Dr. Paul Schenk, who is a participating scientist on the Dawn mission, recently put together some graphics on his website and the one above compares Ceres to other asteroids that we’ve visited with spacecraft.

Of course, Ceres is bigger (it’s the biggest object in the Asteroid Belt) and more spherical than the other asteroids. When it comes right down to it, Ceres doesn’t look much like an asteroid at all!

“Ceres is most similar in size to several of Saturn’s icy moons and may be similar internally as well, being composed of 25% water ice by mass,” Schenk noted on his website.

 Comparisons of Ceres with other prominent icy objects.  Dione is Ceres' closest twin in size and mass. Image credit: NASA/ESA. Compiled by Paul Schenk.
Comparisons of Ceres with other prominent icy objects. Dione is Ceres’ closest twin in size and mass. Image credit: NASA/ESA. Compiled by Paul Schenk.

And water is one of the most interesting and mysterious aspects of Ceres. A year ago, the Herschel space telescope discovered water vapor around Ceres, and the vapor could be emanating from water plumes — much like those that are on Saturn’s moon Enceladus – or it could be from cryovolcanism from geysers or icy volcano.

“The water vapor question is one of the most interesting things we will look for,” Schenk told Universe Today. “What is its source, what does it indicate about the interior and activity level within Ceres? Is Ceres active, very ancient, or both? Does it go back to the earliest Solar System? Those are the questions we hope to answer with Dawn.”

Some scientists also think Ceres may have an ocean and possibly an atmosphere, which makes Dawn’s arrival at Ceres in March one of the most exciting planetary events of 2015, in addition to New Horizon’s arrival at Pluto.

“Since we don’t know why the water vapor venting has happened, or even if it continues, it’s hard to say much more than that,” Schenk said via email, “but it is theoretically possible that some liquid water still exists within Ceres. Dawn will try to determine if that is true.”

One of the possibilities that has been discussed is that if the water vapor is confirmed, Ceres could potentially host microbial life. I asked Schenk what other factors would have to be present in order for that to have occurred?

“The presence of carbon molecules is often regarded as necessary for life,” he replied, “and we think we see that on the surface spectroscopically in the form of carbonates and clays. So, I think the questions will be, whether there is actually liquid water of any kind, whether the carbon compounds are just a surface coating or in the interior, and whether Ceres has ever been warm. If those are true then some sort of prebiotic or biotic activity is in play.”

Since we do not know the answer to any of these questions yet, Schenk says Dawn’s visit to Ceres should be interesting!

On thing of note is that Dawn is now closing in on Ceres and just today, the team released the best image we have yet of Ceres, which you can see in our article here.

Read more of Schenk’s article, “Year of the ‘Dwarves’: Ceres and Pluto Get Their Due.”

Keep tabs on the Dawn mission by following Universe Today, or see the Dawn mission website.

Here’s Dawn’s Best View of Ceres Yet

Animation of Ceres made from Dawn images acquired on Jan. 13, 2015 (Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI)

Just sit back and watch the world turn… or should I say, watch the dwarf planet turn in this fascinating animation from Dawn as the spacecraft continues on its ion-powered approach to Ceres!

The images were captured by Dawn’s framing camera over the course on an hour on Jan. 13 at a distance of 238,000 miles (383,000 km) from Ceres. At 590 miles (950 km) wide Ceres is the largest object in the main asteroid belt.

“Already, the [latest] images hint at first surface structures such as craters,” said Andreas Nathues, lead investigator for the framing camera team at the Max Planck Institute for Solar System Research in Gottingen, Germany. “We have identified all of the features seen by Hubble on the side of Ceres we have observed, and there are also suggestions of remarkable structures awaiting us as we move even closer.”

Although these latest 27-pixel images from Dawn aren’t quite yet better than Hubble’s images from Jan. 2004, very soon they will be.

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart

“The team is very excited to examine the surface of Ceres in never-before-seen detail,” said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. “We look forward to the surprises this mysterious world may bring.”

Launched Sept. 27, 2007, Dawn previously spent over 13 months in orbit around the asteroid/protoplanet Vesta from 2011–12 and is now on final approach to Ceres. On March 6 Dawn will arrive at Ceres, becoming the first spacecraft to enter orbit around two different target worlds.

Read more: Find Out How “Crazy Engineering” is Getting Dawn to Ceres

Learn more at JPL’s Dawn mission site here, and find out where Dawn is right now here.

Also, read more from the Max Planck Institute for Solar System Research here.

Source: NASA/MPI

Big Asteroid 2004 BL86 Buzzes Earth on January 26: How to See it in Your Telescope

Artist view of an asteroid passing Earth. Credit: ESA/P.Carril

A lot of asteroids pass near Earth every year. Many are the size of a house, make close flybys and zoom out of the headlines. 2004 BL86 is a bit different. On Monday evening January 26th, it will become the largest asteroid to pass closest to Earth until 2027 when 1999 AN10 will approach within one lunar distance.

Big is good. 2004 BL86 checks in at 2,230 feet (680-m) wide or nearly half a mile. Add up its significant size and relatively close approach – 745,000 miles (1.2 million km) – and something wonderful happens. This newsy space rock is expected to reach magnitude +9.0, bright enough to see in a 3-inch telescope or even large binoculars.

This graphic depicts the passage of asteroid 2004 BL86, which will come no closer than about three times the distance from Earth to the moon on Jan. 26, 2015. Due to its orbit around the sun, the asteroid is currently only visible by astronomers with large telescopes who are located in the southern hemisphere. But by Jan. 26, the space rock's changing position will make it visible to those in the northern hemisphere. Click to see an animation. Credit: NASA/JPL-Caltech
This graphic depicts the passage of asteroid 2004 BL86, which will safely pass by the Earth on January 26th. Closest approach occurs around 10 a.m (CST) that day. The asteroid is currently only visible by astronomers with large telescopes who are located in the southern hemisphere. But by Jan. 26, the space rock’s changing position will make it visible to those in the northern hemisphere. Click to see an animation. Credit: NASA/JPL-Caltech

This is a rare opportunity then to see an Earth-approaching asteroid so easily. All you need is a good map as 2004 BL86 will be zipping along at two arc seconds per second or two degrees (four Moon diameters) per hour. That means you’ll see it move in real time like a slow satellite inching its way across the sky. Cool!

As you can see from its name, 2004 BL86 was discovered 11 years ago in 2004 by the Lincoln Near-Earth Asteroid Research (LINEAR), an MIT Lincoln Laboratory program to track near-Earth objects  funded by the U.S. Air Force and NASA. As of September 15, 2011, the search has swept up 2,423 new asteroids and 279 new comets.

Map showing the hourly progress of 2004 BL86 Monday evening January 26th as it treks across Cancer the Crab not far from Jupiter. Stars are shown to magnitude +9. The number at the tick marks show the time (CST) each hour starting at 6 p.m., then 7 p.m., 8 p.m. and so on. Click for a larger version. Created with Chris Marriott's SkyMap program
Map showing the hourly progress of 2004 BL86 Monday evening January 26th as it treks across Cancer the Crab not far from Jupiter. Stars are shown to magnitude +9. Numbers at the tick marks show the time (CST) each hour starting at 6 p.m., then 7 p.m., 8 p.m. and so on. Click for a larger version. Created with Chris Marriott’s SkyMap program

All asteroids with well-known orbits receive a number. The first asteroid, 1 Ceres, was discovered in 1801. The 4,150th asteroid, 4150 Starr and named for the Beatles’ Ringo Starr, was found in 1984. 2004 BL86 will likely be the highest-numbered asteroid any of us will ever see. How does 357,439 sound to you?

Some observers prefer a black on white map for tracking asteroids and deep sky objects. Click to view a larger version. Created with Chris Marriott's SkyMap program
Some observers prefer a black on white map for tracking asteroids and deep sky objects. Click to view a larger version. Created with Chris Marriott’s SkyMap program

Observers in the Americas, Europe and Africa will have the best seats for viewing the asteroid, which will shine brightest between 7 p.m. and midnight CST from a comfortably high perch in Cancer the Crab not far from Jupiter. The half-moon will also be out but over in the western sky, so shouldn’t get in the way of seeing our speedy celeb.

Not only will 2004 BL86 pass near a few fairly bright stars but the Beehive Cluster (M44) will temporarily gain a new member between 11 p.m. and midnight as the asteroid buzzes across the well-known star cluster.

“Monday, January 26 will be the closest asteroid 2004 BL86 will get to Earth for at least the next 200 years,” said Don Yeomans, who’s retiring as manager of NASA’s Near Earth Object Program Office at the Jet Propulsion Laboratory in Pasadena, California, after 16 years in the position.

More detailed map showing the hourly position of the asteroid through central Cancer. Stars plotted to magnitude +9.5. Created with Chris Marriott's SkyMap software
More detailed map showing the hourly position of the asteroid through central Cancer. Stars plotted to magnitude +9.5. Click to get a larger version. Created with Chris Marriott’s SkyMap software

To learn more about the space rock and acquire close-ups of its surface, NASA’s Deep Space Network antenna at Goldstone, California, and the Arecibo Observatory in Puerto Rico will attempt to ping the asteroid with microwaves to create radar-generated images of the asteroid during the days surrounding its closest approach to Earth.

“When we get our radar data back the day after the flyby, we will have the first detailed images,” said radar astronomer Lance Benner of JPL, principal investigator for the Goldstone radar observations of the asteroid. “At present, we know almost nothing about the asteroid, so there are bound to be surprises.”

NASA's Deep Space Network will be watching during 2004 BL86's flyby Monday Jan. 26. Credit: NASA
NASA’s Deep Space Network will be watching during 2004 BL86’s flyby Monday Jan. 26. Credit: NASA

While 2004 BL86 will be brightest Monday night, that’s not the only time amateur astronomers might see it. It comes into view for southern hemisphere observers around magnitude +13 on Jan. 24 and leaves the scene at a similar brightness high in the northeastern sky in the northern hemisphere on the 29th. If you use a star-charting program like Starry Night, Guide, MegaStar and others, you can get updated orbital element packages HERE.  Just select your program and download the Observable Unusual Minor Planets file. Open it in your software and create maps for the entire apparition.

One last observing tip before you go your own way. Close asteroids will sometimes be a little bit off a particular track depending on your location. Not much but enough that I recommend you scan not just the single spot where you expect to see it but also nearby in the field of view. If you see a “star” on the move – that’s it.

As always, Dr. Gianluca Masi, Italian astrophysicist, will share his live coverage of the event beginning at 1:30 p.m. (19:30 UT) Jan. 26th.

Let us know if you see our not-so-little cosmic friend. Good luck!

Faster-Than-Light Lasers Could “Illuminate” the Universe

The Very Large Telescoping Interferometer firing it's adaptive optics laser. Credit: ESO/G. Hüdepohl

It’s a cornerstone of modern physics that nothing in the Universe is faster than the speed of light (c). However, Einstein’s theory of special relativity does allow for instances where certain influences appear to travel faster than light without violating causality. These are what is known as “photonic booms,” a concept similar to a sonic boom, where spots of light are made to move faster than c.

And according to a new study by Robert Nemiroff, a physics professor at Michigan Technological University (and co-creator of Astronomy Picture of the Day), this phenomena may help shine a light (no pun!) on the cosmos, helping us to map it with greater efficiency.

Consider the following scenario: if a laser is swept across a distant object – in this case, the Moon – the spot of laser light will move across the object at a speed greater than c. Basically, the collection of photons are accelerated past the speed of light as the spot traverses both the surface and depth of the object.

The resulting “photonic boom” occurs in the form of a flash, which is seen by the observer when the speed of the light drops from superluminal to below the speed of light. It is made possible by the fact that the spots contain no mass, thereby not violating the fundamental laws of Special Relativity.

An image of NGC 2261 (aka. Hubble's Variable Nebula) by the Hubble space telescope. Credit: HST/NASA/JPL.
An image of NGC 2261 (aka. Hubble’s Variable Nebula) by the Hubble space telescope. Image Credit: HST/NASA/JPL.

Another example occurs regularly in nature, where beams of light from a pulsar sweep across clouds of space-borne dust, creating a spherical shell of light and radiation that expands faster than c when it intersects a surface. Much the same is true of fast-moving shadows, where the speed can be much faster and not restricted to the speed of light if the surface is angular.

At a meeting of the American Astronomical Society in Seattle, Washington earlier this month, Nemiroff shared how these effects could be used to study the universe.

“Photonic booms happen around us quite frequently,” said Nemiroff in a press release, “but they are always too brief to notice. Out in the cosmos they last long enough to notice — but nobody has thought to look for them!”

Superluminal sweeps, he claims, could be used to reveal information on the 3-dimensional geometry and distance of stellar bodies like nearby planets, passing asteroids, and distant objects illuminated by pulsars. The key is finding ways to generate them or observe them accurately.

For the purposes of his study, Nemiroff considered two example scenarios. The first involved a beam being swept across a scattering spherical object – i.e. spots of light moving across the Moon and pulsar companions. In the second, the beam is swept across a “scattering planar wall or linear filament” – in this case, Hubble’s Variable Nebula.

Artist view of an asteroid (with companion) passing near Earth. Credit: P. Carril / ESA
Photonic booms caused by laser sweeps could offer a new imaging technique for mapping out passing asteroids. Credit: P. Carril / ESA

In the former case, asteroids could be mapped out in detail using a laser beam and a telescope equipped with a high-speed camera. The laser could be swept across the surface thousands of times a second and the flashes recorded. In the latter, shadows are observed passing between the bright star R Monocerotis and reflecting dust, at speeds so great that they create photonic booms that are visible for days or weeks.

This sort of imaging technique is fundamentally different from direct observations (which relies on lens photography), radar, and conventional lidar. It is also distinct from Cherenkov radiation – electromagnetic radiation emitted when charged particles pass through a medium at a speed greater than the speed of light in that medium. A case in point is the blue glow emitted by an underwater nuclear reactor.

Combined with the other approaches, it could allow scientists to gain a more complete picture of objects in our Solar System, and even distant cosmological bodies.

Nemiroff’s study accepted for publication by the Publications of the Astronomical Society of Australia, with a preliminary version available online at arXiv Astrophysics

Further reading:
Michigan Tech press release
Robert Nemiroff/Michigan Tech

Asteroids Don’t Break Up Like You Think They Do: Study

Artist's impression of an asteroid breaking up. Credit: NASA/JPL-Caltech

The early Solar System was a shooting gallery. Smaller-body collisions happened far more frequently than we see it today, pockmarking the Moon and Mercury. On a larger scale, simulation show the Earth came close to blowing apart when a Mars-sized object crashed into us long ago.

So we’d be forgiven for thinking that it’s asteroid collisions that cause these tiny bodies to break up, given their numbers and the history of our neighborhood. But it turns out, a new study says, that the larger asteroids likely have another way of coming apart.

“For asteroids about 100 meters [328 feet] in diameter collisions are not the primarily cause of break ups – rapid rotation is,” the Smithsonian Astrophysical Observatory stated.

“Moreover, because the rate of collisions depends on the numbers and sizes of objects but rotation does not, their results are in strong disagreement with previous models of collisionally-produced small asteroids.”

Most near-Earth asteroids fall into three classes named after the first asteroid discovered in that class. Apollo and Aten asteroids cross Earth's orbit; Amors orbit just beyond Earth but cross Mars' orbit. Credit: Wikipedia
Most near-Earth asteroids fall into three classes named after the first asteroid discovered in that class. Apollo and Aten asteroids cross Earth’s orbit; Amors orbit just beyond Earth but cross Mars’ orbit. Credit: Wikipedia

It turns out that rotation has a strong effect on such a small body. First, the asteroid is emitting stuff that can produce a spin — water evaporating, or its surface expanding as heat from the Sun strikes it. Also, the Sun’s pressure on the asteroid creates a rotation. Between these different effects, at the right (or wrong) moment it can cause a catastrophic breakup.

As a simulation (coupled with observations from the Pan-STARRS telescope), the research is not done with complete certainty. But the model shows 90% confidence that asteroids in the so-called “main belt” (between Mars and Jupiter”) experience disruptions in this way, at least once per year.

The research was published in the journal Icarus and is also available in preprint version on Arxiv. It was led by Larry Denneau at the University of Hawaii.

Source: Smithsonian Astrophysical Observatory