10 Space Science Stories to Watch in 2015

Credit:

A new Avengers movie. A reboot of the Star Wars franchise. The final installment of the Hunger Games. The Martian makes it to the big screen. Yup, even if the zombie apocalypse occurs in 2015, it’ll still be a great year. But trading science fiction for fact, we’re also on track for a spectacular year in space science and exploration as well.

Humanity will get its first good look at Ceres and Pluto, giving us science writers some new pics to use instead of the same half dozen blurry dots and artist’s conceptions. SpaceX will also attempt a daring landing on a sea platform, and long duration missions aboard the International Space Station will get underway. And key technology headed to space and on Earth may lead the way to opening up the window of gravitational wave astronomy on the universe. Here’s 10 sure-fire bets to watch for in the coming year from Universe Today:

Credit
LISA Pathfinder deployed at L1. Credit: ESA/Artist’s concept.

10. LISA Pathfinder

A precursor to a full-fledged gravitational wave detector in space, LISA Pathfinder will be launching atop a Vega rocket from Kourou, French Guiana in July 2015. LISA stands for the Laser Interferometer Space Antenna, and the Pathfinder mission will journey to the L1 Lagrange point between the Earth and the Sun to test key technologies. LISA Pathfinder will pave the way for the full fledged LISA space platform, a series of three free flying spacecraft proposed for launch in the 2030s.

Credit:
Looking down one of the arms of LIGO Hanford. Credit: Photo by author.

9. AdLIGO Goes Online

And speaking of gravitational waves, we may finally get the first direct detection of the same in 2015, when Advanced LIGO is set to go online. Comprised of two L-shaped detectors, one based in Livingston Louisiana, and another in Hanford Washington, AdLIGO will feature ten times the sensitivity of the original LIGO observatory. In fact, as was the case of the hunt for the Higgs-Boson by CERN, a non-detection of gravitational waves by AdLIGO would be a much stranger result!

Credit
A replica of the Hubble Space Telescope on display at the Kennedy Space Center. Credit: Photo by author.

8. Hubble Turns 25

Launched on April 24th, 1990 aboard the Space Shuttle Discovery, the Hubble Space Telescope celebrates 25 years in space in 2015. The final servicing mission in 2009 gave Hubble a reprieve from the space junk scrap heap, and the orbiting telescope is still going strong. Hubble has no less than pushed the limits in modern astronomy to become a modern icon of the space age.

Credit:
MESSENGER wraps up its mission in 2015. Credit: NASA/MESSENGER/JPL/APL.

7. The End of MESSENGER

NASA’s Mercury exploring spacecraft wraps up its mission next year. Launched in 2004, MESSENGER arrived in orbit around Mercury after a series of flybys on March 18th, 2011. MESSENGER has mapped the innermost world in detail, and studied the space environment and geology of Mercury. In late March 2015, MESSENGER will achieve one final first, when it impacts the surface of Mercury at the end of its extended mission.

Credit:
Akatsuki on Earth prior to departure. Credit: JAXA.

6. Akatsuki at Venus

This Japanese spacecraft missed orbital insertion a few years back, but gets a second chance at life in 2015. Launched in 2010 atop an H-IIA rocket from the Tanegashima Space Center in Japan, Akatsuki failed to enter orbit around Venus at the end of 2010, and instead headed out for a heliocentric path around the Sun. Some quick thinking by JAXA engineers led to a plan to attempt to place Akatsuki in Venusian orbit in November 2015. This would be a first for the Japanese space agency, as attempts by JAXA at placing a spacecraft in orbit around another planet – including the Mars Nozomi probe – have thus far failed.

autonomous_spaceport_drone_ship
The target for the Falcon-9 first stage later next week. Credit: SpaceX.

5. SpaceX to Attempt to Land on a Sea Platform

It’ll definitely rock if they pull it off next week: on January 6th, a SpaceX Falcon 9 rocket will lift off from Cape Canaveral with its Dragon spacecraft headed to the International Space Station on mission CRS-5. Sure, these resupply missions are becoming routine, but after liftoff, SpaceX is attempting something new and daring: landing the Falcon-9 first stage Buck Rodgers style, “fins first” on a floating barge. This is the next step in ultimately proving the feasibility of having the rocket fly back to the launch site for eventual reuse. If nothing else, expect some stunning video of the attempt soon!

credit
An artist’s concept of an asteroid retrieval mission. Credit: NASA.

4. NASA to Decide on an Asteroid Mission

Some major decisions as to the fate and the future of manned space exploration are due next year, as NASA is expected to decide on the course of action for its Asteroid Redirect Mission. The current timeline calls for the test of the SLS rocket in 2018, and the launch of a spacecraft to recover an asteroid and place it in orbit around the Moon in 2019. If all goes according to plan – a plan which could always shift with the political winds and future changes in administrations – we could see astronauts exploring a captured asteroid by the early 2020s.

Credit: NASA/Roscomos.
Astronaut Scott Kelly (left), and cosmonaut Mikhail Korniyenko. Credit: NASA/Roscomos.

3. Long Duration ISS Missions

Beginning in 2015, astronauts and cosmonauts will begin year-long stays aboard the ISS to study the effects of long duration space missions. In March of 2015, cosmonaut Mikhail Korniyenko and U.S. astronaut Scott Kelly will launch as part of Expedition 43 headed to the ISS. The Russians have conducted stays in space longer than a year aboard the Mir space station, but Kelly’s stay aboard the ISS will set a duration record for NASA astronauts. Perhaps, a simulated “Mars mission” aboard the ISS could be possible in the coming years?

credit
An artist’s concept of Dawn approaching 1 Ceres. Credit: NASA/JPL.

2. Dawn at Ceres

Fresh off of exploring Vesta, NASA’s Dawn spacecraft will become the first mission to enter orbit around a second object, the asteroid 1 Ceres next year in April 2015. The largest asteroid and the first object of its kind discovered on the first day of the 19th century, Ceres looks to be a fascinating world in its own right. Does it possess water ice? Active geology? Moons of its own? If Dawn’s performance at Vesta was any indication, we’re in for another exhilarating round of space exploration!

credit
And artist’s conception of New Horizons at Pluto. Credit: NASA/JPL/Thierry Lombry.

1. New Horizons at Pluto

An easy No. 1,we finally get our first good look at Pluto in July, as NASA’s New Horizons spacecraft flies less than 14,000 kilometres from the surface of the distant world. Launched in 2006, New Horizons will “thread the needle” between Pluto and Charon in a flurry of activity as it passes by. New Horizons will then turn back as it passes into the shadows of Pluto and Charon and actually view the two worlds as they occult the distant Sun. And from there, New Horizons will head out to explore Kuiper Belt Objects of opportunity.

And these are just the top stories that are slated to be big news in space in 2015. Remember, another Chelyabinsk meteor or the next big comet could drop by at any time… space news can be unpredictable, and its doubtless that 2015 will have lots more surprises in store.

 

 

Work Those Quads: Our Guide to the 2015 Quadrantid Meteors

Don't fear the moonlight... Credit and copyright: John Chumack.

Quick… what’s the only major meteor shower named after a defunct constellation?  If you said the January Quadrantids, you’d be correct, as this often elusive but abrupt meteor shower is set to peak this coming weekend early in 2015.

And we do mean early, as in the night of January 3rd going into the morning of January 4th. This is a bonus, as early January means long dark nights for northern hemisphere observers. But the 2015 Quadrantids also has two strikes going against them however: first, the Moon reaches Full just a day later on January 5th, and second, January also means higher than average prospects for cloud cover (and of course, frigid temps!) for North American observers.

Jan 4th 3AM local. Starry Night Education Software.
The rising radiant of the Quads on the morning of January 4th at 3AM local. Note that the Moon and Jupiter are on the scene as well. Created using Starry Night Education software.

Don’t despair, however. In meteor shower observing as in hockey, you miss 100% of the shots that you don’t take.

Sorry for the sports analogy. The radiant for the Quadrantids is located in the modern day constellation of Draco near the Hercules-Boötes border at a right ascension 15 hours, 18 minutes and declination +49.5 degrees north. This puts it very near the +3.3 magnitude star Iota Draconis (Edasich).

Quads 2UT. Credit: Orbitron
The orientation of the Earth’s shadow at the predicted peak of the Quads on January 4th,  2:00 UT. Credit: Orbitron.

In 2015, bets are on for the Quadrantids to peak centered on 2:00 UT January 4th (9:00 PM EST on the 3rd), favoring northern Europe pre-dawn. The duration for the Quadrantids is short lived, with an elevated rate approaching 100 per hour lasting only six hours in duration. Keep in mind, of course, that it’ll be worth starting your vigil on Saturday morning January 3rd in the event that the “Quads” kick off early! I definitely wouldn’t pass up on an early clear morning on the 3rd, just in case skies are overcast on the morning of the 4th

Due to their high northern radiant, the Quadrantids are best from high northern latitudes and virtually invisible down south of the equator.  Keep in mind that several other meteor showers are active in early January, and you may just spy a lingering late season Geminid or Ursid ‘photobomber’ as well among the background sporadics.

Photo by author
Avast: ye ole Mural Quadrant spied at the Columbia River Maritime Museum in Astoria, Oregon. Photo by author.

Moonset on the morning of the 4th occurs around 6 AM local, giving observers a slim one hour moonless window as dawn approaches. Blocking the Moon out behind a building or hill when selecting your observing site will aid you in your Quadrantid quest.

Stellarium
The approximate realm of the “Mural Quadrant” overlaid on modern day constellations. Credit Stellarium.

Antonio Brucalassi made the first historical reference to the Quadrantids, noting that “the atmosphere was traversed by… falling stars” on the morning of January 2nd, 1825. It’s interesting to note that the modern day peak for the Quads has now drifted a few days to the fourth, due mostly to the leap year-induced vagaries of our Gregorian calendar. The early January meteor shower was noted throughout the 19th century, and managed to grab its name from the trendy 19th century constellation of Quadrans Muralis, or the Mural Quadrant. Hey, we’re lucky that other also-rans, such as Lumbricus the ‘Earthworm’ and Officina Typograhica the ‘Printing Office’ fell to the wayside when the International Astronomical Union formalized the modern 88 constellations in 1922. Today, we know that the Quadrantids come from 2003 EH1, which is thought to be an extinct comet now trapped in the inner solar system on a high inclination, 5.5 year orbit. Could 2003 EH1 be related to the Great Comet of 1490, as some suggest? The enigmatic object reached perihelion in March of 2014, another plus in the positive column for the 2015 Quads.

What the heck is a Mural Quadrant?
What the heck is a Mural Quadrant? Like everything he did, Tycho Brahe super-sized his quadrant, depicted here. Credit: Wikimedia Commons.

Previous years for the Quadrantids have yielded the following Zenithal Hourly Rate (ZHR) maximums as per the International Meteor Organization:

2011= 90

2012= 83

2013= 137

2014= +200

The Quadrantid meteor stream has certainly undergone alterations over the years as a result of encounters with the planet Jupiter, and researchers have suggested that the shower may go the way of the 19th century Andromedids and become extinct entirely in the centuries to come.

Don’t let cold weather deter you, though be sure to bundle up, pour a hot toddy (or tea or coffee, as alcohol impacts the night vision) and keep a spare set of batteries in a warm pocket for that DSLR camera, as cold temps can kill battery packs quicker than you can say Custos Messium, the Harvest Keeper.

And though it may be teeth-chatteringly cold where you live this weekend, we actually reach our closest point to the Sun this Sunday, as Earth reaches perihelion on January 4th at around 8:00 UT, just 5 hours after the Quads are expected to peak. We’re just over 147 million kilometres from the Sun at perihelion, a 5 million kilometre difference from aphelion in July. Be thankful we live on a planet with a relatively circular orbit. Only Venus and Neptune beat us out in the true roundness department!

…and no, you CAN’T defy gravity around perihelion, despite the current ill conceived rumor going ‘round ye ole net…

And as a consolation prize to southern hemisphere observers, the International Space Station reaches a period of full illumination and makes multiple visible passes starting December 30th until January 3rd. This happens near every solstice, with the December season favoring the southern hemisphere, and June favoring the northern.

2003 Credit and Copyright: Frankie Lucena.
A 2003 south bound Quad nabbed from Cabo Rojo, Puerto Rico (Yes, that’s the Southern Cross!) Credit and Copyright: Frankie Lucena.

So don’t let the relatively bad prospects for the 2015 Quadrantids deter you: be vigilant, report those meteor counts to the IMO, send those meteor pics in to Universe Today and tweet those Quads to #Meteorwatch. Let’s “party like it’s 1899,” and get the namesake of an archaic and antiquated constellation trending!

2015: NASA’s Year of the Dwarf Planet

Two spacecraft, Dawn and New Horizon will reach their final objectives in 2015 - Dwarf Planets - Ceres and Pluto. (Credit: NASA, Illustration - T.Reyes)

Together, the space probes Dawn and New Horizons have been in flight for a collective 17 years. One remained close to home and the other departed to parts of the Solar System of which little is known. They now share a common destination in the same year: dwarf planets.

At the time of these NASA probes’ departures, Ceres had just lost its designation as the largest asteroid in our Solar System. Pluto was the ninth planet. Both probes now stand to deliver measures of new data and insight that could spearhead yet another revision of the definition of planet.

A comparison of the trajectories of New Horizon (left) and the Dawn missions (right). (Credit: NASA/JPL, SWRI, Composite- T.Reyes)
A comparison of the trajectories of New Horizons (left) and the Dawn missions (right). (Credit: NASA/JPL, SWRI, Composite- T.Reyes)

Certainly, NASA’s Year of the Dwarf Planet is an unofficial designation and NASA representatives would be quick to emphasize another dozen or more missions that are of importance during the year 2015. However, these two missions could determine the fate of billions or more small bodies just within our galaxy, the Milky Way.

If Ceres and Pluto are studied up close – mission success is never a sure thing – then what is observed could lead to a new, more certain and accepted definition of planet, dwarf planet, and possibly other new definitions.

The New Horizons mission became the first mission of NASA’s New Frontiers program, beginning development in 2001. The probe was launched on January 19, 2006, atop an Atlas V 551 (5 solid rocket boosters plus a third stage). Utilizing more compact and lightweight electronics than its predecessors to the outer planets – Pioneer 10 & 11, and Voyager 1 & 2 – the combination of reduced weight, a powerful launch vehicle, plus a gravity assist from Jupiter has lead to a nine year journey. On December 6, 2014, New Horizons was taken out of hibernation for the last time and now remains powered on until the Pluto encounter.

This "movie" of Pluto and its largest moon, Charon b yNASA's New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies - resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto's surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
This “movie” of Pluto and its largest moon, Charon, by NASA’s New Horizons spacecraft taken in July 2014 clearly shows that the barycenter – the center of mass of the two bodies – resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto’s surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

The arrival date of New Horizon is July 14, 2015. A telescope called the Long Range Reconnaissance Imager (LORRI) has permitted the commencement of observations while still over 240 million kilometers (150 million miles) from Pluto. The first stellar-like images were taken while still in the Asteroid belt in 2006.

Pluto was once the ninth planet of the Solar System. From its discovery in 1930 by Clyde Tombaugh until 2006, it maintained this status. In that latter year, the International Astronomical Union undertook a debate and then a membership vote that redefined what a planet is. The change occurred 8 months after New Horizons’ launch. There were some upset mission scientists, foremost of which was the principal investigator, Dr. Alan Stern, from the Southwest Research Institute in San Antonio, Texas. In a sense, the rug had been pulled from under them.

A gentleman’s battle ensued between opposing protagonists Dr. Stern and Dr. Michael Brown from Caltech. In 2001, Dr. Brown’s research team began to discover Kuiper belt objects (Trans-Neptunian objects) that rivaled the size of Pluto. Pluto suddenly appeared to be one of many small bodies that could likely number in the trillions within just one galaxy – ours. According to Dr. Brown, there could be as many as 200 objects in our Solar System similar to Pluto that, under the old definition, could be defined as planets. Dr. Brown’s work was the straw that broke the camel’s back – that is, it led to the redefinition of planet, and the native of Huntsville, Alabama, went on to write a popular book, How I Killed Pluto and Why It Had It Coming.

Dr. Stern’s story involving Pluto and planetary research is a longer and more circuitous one. Stern was the Executive Director of the Southwest Research Institute’s Space Science and Engineering Division and then accepted the position of Associate Administrator of NASA’s Science Mission Directorate in 2007. Clearly, after a nine year journey, Stern is now fully committed to New Horizons’ close encounter. More descriptions of the two protagonists of the Pluto debate will be included in a follow on story.

Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. (Image credit: NASA/JPL)
Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta, and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. (Image credit: NASA/JPL)

The JPL and Orbital Science Corporation developed Dawn space probe began its journey to the main asteroid belt on September 27, 2007. It has used gravity assists and flew by the planet Mars. Dawn spent 14 months surveying Vesta, the 4th largest asteroid of the main belt (assuming Ceres is still considered the largest). While New Horizons has traveled over 30 Astronomical Units (A.U.) – 30 times the distance from the Earth to the Sun – Dawn has remained closer and required reaching a little over 2 A.U. to reach Vesta and now 3 A.U. to reach Ceres.

The Dawn mission had the clear objective of rendezvous and achieving orbit with two asteroids in the main belt between Mars and Jupiter. Dawn was also sent packing the next generation of Ion Propulsion. It has proven its effectiveness very well, having used ion propulsion for the first time to achieve an orbit. Pretty simple, right? Not so fast.

As Dawn was passing critical design reviews during development, the redefinition of planet lofted its second objective – the asteroid 1 Ceres – to a new status. While Pluto was demoted, Ceres was promoted from its scrappy status of biggest of the asteroids – the debris, the leftovers of our solar system’s development – to dwarf planet. Even 4 Vesta is now designated a proto-planet.

Artist rendition of Dawn spacecraft orbiting Vesta(Credit: NASA/JPL-Caltech)
Artist rendition of Dawn spacecraft orbiting Vesta. (Credit: NASA/JPL-Caltech)

So now the stage is set. Dawn will arrive first at a dwarf planet – Ceres – in April. With a small, low gravity body and ion propulsion, the arrival is slow and cautious. If the two missions fair well and achieve their goals, 2015 is likely to become a pivotal year in the debate over the classification of non-stellar objects throughout the universe.

Just days ago, at the American Geophysical Union Conference in San Francisco, Dr. Stern and team described the status and more details of the goals of New Horizons. Since arriving, more moons of Pluto have been discovered. There is the potential that faint rings exist and Pluto may even harbor an interior ocean due to the tidal forces from its largest moon, Charon. And Dawn mission scientists have seen the prospects for Ceres’ change. Not just the status, the latest Hubble images of Ceres is showing bright spots which could be water ice deposits and could also harbor an internal ocean.

The Solar System is becoming a more crowded place. This picture shows the sizes of dwarf planets Pluto, Ceres, Eris, and Makemake as compared to Earth and Earth's Moon, here called "Luna." None of the distances between objects are to scale. (Credit: NASA)
The Solar System is becoming a more crowded place. This picture shows the sizes of dwarf planets Pluto, Ceres, Eris, and Makemake as compared to Earth and Earth’s Moon, here called “Luna.” None of the distances between objects are to scale. (Credit: NASA)

So other NASA missions notwithstanding, this is the year of the dwarf planet. NASA will provide Humanity with its first close encounters with the most numerous of small round – by their self-gravity – bodies in the Universe. They are now called dwarf planets but ask Dr. Stern and company, the public, and many other planetary scientists and you will discover that the jury is still out.

References:

JHU/APL New Horizons Mission Home Page

NASA Dawn Mission Home Page

Related Universe Today articles:

NASA’s New Horizons

NASA’s Dawn Mission

Rosetta’s Instruments Direct Scientists to Look Elsewhere for the Source of Earth’s Water

Illustration of a rocky planet being bombarded by comets. (Image credit: NASA/JPL-Caltech)
Illustration of a rocky planet being bombarded by comets. (Image credit: NASA/JPL-Caltech)

Where did all of our water come from? What might seem like a simple question has challenged and intrigued planetary scientists for decades. So results just released by Rosetta mission scientists have been much anticipated and the observations of the Rosetta spacecraft instruments are telling us to look elsewhere. The water of comet 67P/Churyumov-Gerasimenko does not resemble Earth’s water.

Because the Earth was extremely hot early in its formation, scientists believe that Earth’s original water should have boiled away like that from a boiling kettle. Prevailing theories have considered two sources for a later delivery of water to the surface of the Earth once conditions had cooled. One is comets and the other is asteroids. Surely some water arrived from both sources, but the question has been which one is the predominant source.

There are two areas of our Solar System in which comets formed about 4.6 billion years ago. One is the Oort cloud far beyond Pluto. Everything points to Comet 67P’s origins being the other birthplace of comets – the Kuiper Belt in the region of Neptune and Pluto. The Rosetta results are ruling out Kuiper Belt comets as a source of Earth’s water. Previous observations of Oort cloud comets, such as Hyakutake and Hale-Bopp, have shown that they also do not have Earth-like water. So planetary scientists must reconsider their models with weight being given to the other possible source – asteroids.

The question of the source of Earth’s water has been tackled by Earth-based instruments and several probes which rendezvous with comets. In 1986, the first flyby of a comet – Comet 1P/Halley, an Oort cloud comet – revealed that its water was not like the water on Earth. How the water from these comets –Halley’s and now 67P – differs from Earth’s is in the ratio of the two types of hydrogen atoms that make up the water molecule.

Illustration of the Rosetta spacecraft showing the location of the ROSINA mass spectrometer instrument, DFMS. The difference between a Deuterium and Hydrogen atom are also illustrated. A water molecule with Deuterium is known as heavy water due to the additional mass of D vs. H (an extra neutron). (Credit: ESA/Rosetta)
Illustration of the Rosetta spacecraft showing the location of the ROSINA mass spectrometer instrument, DFMS. The difference between a Deuterium and Hydrogen atom is also illustrated. A water molecule with Deuterium is known as heavy water due to the additional mass of Dueterium vs. Hydrogen (i.e., an extra neutron). (Credit: ESA/Rosetta)

Measurements by spectrometers revealed how much Deuterium  – a heavier form of the Hydrogen atom – existed in relation to the most common type of Hydrogen in these comets. This ratio, designated as D/H, is about 1 in 6000 in Earth’s ocean water. For the vast majority of comets, remote or in-situ measurements have found a ratio that is higher which does not support the assertion that comets delivered water to the early Earth surface, at least not much of it.

Most recently, Hershel space telescope observations of comet Hartley 2 (103P/Hartley) caused a stir in the debate of the source of Earth’s water. The spectral measurements of the comet’s light revealed a D/H ratio just like Earth’s water. But now the Hershel observation has become more of an exception because of Rosetta’s latest measurements.

A plot displaying the Deuterium/Hydrogen (D/H) ratio of Solar System objects. Only asteroids have a D/H ratio that matches the Earths and comets with the exception of two so far measured have higher ratios. Objects are grouped by color. Planets & moons (blue), chrondritic meteorites from the asteroid belt (grey), Oort cloud comets(purple), Jupiter family comets(pink). Diamond markers = In Situ measurements, Circles = remote astronomical measurements(Credit: Altwegg et al. 2014)
A plot displaying the Deuterium/Hydrogen (D/H) ratio of Solar System objects. Asteroids have a D/H ratio that matches that of the Earth, while comets – except for two measured to date – have higher ratios. Objects are grouped by color: planets & moons (blue), chrondritic meteorites from the asteroid belt (grey), Oort cloud comets (purple), and Jupiter family comets (pink). Diamond markers = In Situ measurements; circles = remote astronomical measurements. (Credit: Altwegg, et al. 2014)

The new measurements of 67P were made by the ROSINA Double Focusing Mass Spectrometer (DFMS) on board Rosetta. Unlike remote observations using light which are less accurate, Rosetta was able to accurately measure the quantities of Deuterium and common Hydrogen surrounding the comet. Scientists could then simply determine a ratio. The results are reported in the paper “67P/Churyumov-Gerasimenko, a Jupiter Family Comet with a high D/H ratio” by K. Altwegg, et al., published in the 10 December 2014 issue of Science.

New Rosetta mission findings do not exclude comets as a source of water in and on the Earth's crust but does indicate comets were a minor contribution. A four-image mosaic comprises images taken by Rosetta’s navigation camera on 7 December from a distance of 19.7 km from the centre of Comet 67P/Churyumov-Gerasimenko. (Credit: ESA/Rosetta/Navcam Imager)
New Rosetta mission findings do not exclude comets as a source of water in and on the Earth’s crust but does indicate comets were a minor contribution. A four-image mosaic comprises images taken by Rosetta’s navigation camera on 7 December from a distance of 19.7 km from the centre of Comet 67P/Churyumov-Gerasimenko. (Credit: ESA/Rosetta/Navcam Imager)

The ROSINA instrument observations determined a ratio of 5.3 ± 0.7 × 10-4, which is approximately 3 times the ratio of D/H for Earth’s water. These results do not exclude comets as a source of terrestrial water but they do redirect scientists to consider asteroids as the predominant source. While asteroids have much lower water content compared with comets, asteroids, and their smaller versions, meteoroids, are more numerous than comets. Every meteor/falling star that we see burning up in our atmosphere delivers a myriad of compounds, including water, to Earth. Early on, the onslaught of meteoroids and asteroids impacting Earth was far greater. Consequently, the small quantities of water added delivered by each could add up to what now lies in the oceans, lakes, streams, and even our bodies.

References:

D/H Ratio of Water on Earth Measured with DFMS

67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio

Rosetta fuels the debate on the Origin of Earth’s Water

The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets

Recent Universe Today related article:

What Percent of Earth is Water?

The Curious History of the Geminid Meteors

Credit

UPDATE: Tune in this Sunday as the good folks over at the Virtual Telescope Project feature a live webcast covering the Geminid meteor shower this Sunday on December 14th at 2:00 UT.

This weekend presents a good reason to brave the cold, as the Geminid meteor shower peaks on the morning of Sunday, December 14th. The Geminids are dependable, with a broad peak spanning several days, and would be as well known as their summer cousins the Perseids, were it not for the fact that they transpire in the dead of northern hemisphere winter.

But do not despair. While some meteor showers are so ephemeral as to be considered all but mythical in the minds of most meteor shower observers, the Geminids always deliver. We most recently caught a memorable display of the Geminids in 2012 from a dark sky locale in western North Carolina. Several meteors per minute pierced the Appalachian night, offering up one of the most memorable displays by this or any meteor shower in recent years.

The Geminids are worth courting frostbite for, that’s for sure. But there’s a curious history behind this shower and our understanding of meteor showers in general, one that demonstrates the refusal of some bodies in our solar system to “act right” and fit into neat scientific paradigms.

UK Meteor Observation Network
A composite of the 2013 Geminids. Credit: the UK Meteor Observation Network

It wasn’t all that long ago that meteor showers — let alone meteorites — were not considered to be astronomical in origin at all. Indeed, the term meteor and meteorology have the same Greek root meaning “of the sky,” suggesting ideas of an atmospheric origin. Lightning, hail, meteors, you can kind of see how they got there.

In fact, you could actually face ridicule for suggesting that meteors had an extraterrestrial source back in the day. President Thomas Jefferson was said to have done just that concerning an opinion espoused by Benjamin Silliman of a December 14th, 1807, meteorite fall in Connecticut, leading to the apocryphal and politically-tinged response attributed to the president that, “I would more easily believe that two Yankee professors would lie, than that stones would fall from heaven.”

Indeed, no sooner than The French Academy of Sciences considered the matter settled earlier in the same decade, then a famous meteorite fall occurred in Normandy on April 26th, 1803,… right on their doorstep. The universe, it seemed, was thumbing its nose at scientific enlightenment.

A fine Geminid
A fine 2004 Geminid as imaged by Frankie Lucena.

Things really heated up with the spectacular display known as the Leonid meteor storm in 1833. On that November morning, stars seemed to fall like snowflakes from the sky. You can imagine the sight, as the Earth plowed headlong into the meteor stream. The visual effect of such a storm looks like the starship Enterprise plunging ahead at warp speed with stars streaming by, as if imploring humanity to get hip to the fact that meteor showers and their radiants are indeed a reality.

Still, a key problem persisted that gave ammunition to the naysayers: no new “space rocks” were found littering the ground at sunrise after a meteor shower. We now know that this is because meteor showers hail from wispy cometary debris left along intersections of the Earth’s orbit.  Meteorite Man Geoff Notkin once mentioned to us that no meteorite fall has ever been linked to a meteor shower, though he does get lots of calls around Geminid season.

The name of the game in the 19th century soon became identifying new meteor showers. Streams evolve over time as they interact with planets (mostly Jupiter), and the 19th century played host to some epic meteor storms such as the Andromedids that have since been reduced to a trickle.

The Geminids are, however, the black sheep of the periodic meteor shower family. The shower was first noticed by US and UK observers in 1862, and by the 1870s astronomers realized that a new minor shower with a Zenithal Hourly Rate (ZHR) hovering around 15 was occurring near the middle of December from the constellation Gemini.

NASA
A possible early 2014 Geminid and the near Full Moon as seen by NASA’s All Sky Fireball Network.

The source of the Geminids, however, was to remain a mystery right up until the late 20th century.

In the late 1940s, astronomer Fred Whipple completed the Harvard Meteor Project, which utilized a photographic survey that piqued the interest of astronomers worldwide: debris in the Geminid stream appeared to have an orbital period of just 1.65 years, coupled with a high orbital inclination. Modeling suggested that the parent body was most likely a short period comet, and that the stream had undergone repeated perturbations courtesy of Earth and Jupiter.

In 1983, the culprit was found, only to result in a deeper mystery. The Infrared Astronomical Satellite (IRAS) discovered an asteroid fitting the bill crossing the constellation Draco. Backup observations from the Palomar observatory the next evening cinched the discovery, and today, we recognize the source of the Geminids as not a comet — as is the case with every other major meteor shower — but asteroid 3200 Phaethon, a 5 kilometre diameter rock in a 524 day orbit.

3200 Phaethon
Asteroid 3200 Phaethon (arrowed) imaged by Marco Langbroek from the Winer Observatory in Sonita, Arizona. Credit: Wikimedia Commons.

So why doesn’t this asteroid behave like one? Is 3200 Phaethon a rogue comet that has long since settled down for the quiet space rock life? Obviously, 3200 Phaethon has lots of material shedding off from its surface, as evidenced by the higher than normal ratio of fireballs seen during the Geminid meteors. 3200 Phaethon also passes 0.14 AUs from the Sun — 47% closer than Mercury — and has the closest perihelion of any known asteroid to the Sun, which bakes the asteroid periodically with every close pass.

One thing is for certain: activity linked to the Geminid meteor stream is increasing. The Geminids actually surpassed the Perseids in terms of dependability and output since the 1960s, and have produced an annual peak ZHR of well over 100 in recent years. In 2014, expect a ZHR approaching 130 per hour as seen from a good dark sky site just after midnight local on the morning of December 14th as the radiant rides high in the sky. Remember, this shower has a broad peak, and it’s worth starting your vigil on Saturday or even Friday morning. The Geminid radiant also has a steep enough declination that local activity can start before midnight… also exceptional among meteor showers. This year, the 52% illuminated Moon rises around midnight local on the morning of December 14th.

Credit: Stellarium
The Geminid radiant looking to the northeast at 11PM local. Note the radiant of the December 22nd Ursids is also nearby. Credit: Stellarium.

And there’s another reason to keep an eye on the 2014 Geminids. 3200 Phaethon passed 0.12 AU (18 million kilometers) from Earth on December 10th, 2007, which boosted displays in the years after. And just three years from now, the asteroid will pass even closer on December 10th, 2017, at just 0.07 AUs (10.3 million kilometers) from Earth…

Are we due for some enhanced activity from the Geminids in the coming years?

All good reasons to bundle up and watch for the “Tears of the Twins” this coming weekend, and wonder at the bizzaro nature of the shower’s progenitor.

 

Fear Not: Quarter-Mile Asteroid Is No Threat To Earth, NASA Says

Illustration of small asteroids passing near Earth. Credit: ESA / P. Carril

Before assuming an asteroid is going to kill us all, take a deep breath and open up the NASA’s Near Earth Object (NEO) program website to check your information, the agency suggests in a statement regarding a so-called threatening asteroid making the rounds in media reports.

Data from the Minor Planet Center shows that the quarter-mile-wide asteroid 2014 UR116 won’t pose a threat to Earth or any other planet in the next 150 years or more, the agency said.

“Some recent press reports have suggested that an asteroid designated 2014 UR116, found on October 27, 2014, at the MASTER-II observatory in Kislovodsk, Russia, represents an impact threat to the Earth,” NASA wrote, assumedly referring to publications such as this one in Russia.

“While this approximately 400-meter sized asteroid has a three-year orbital period around the sun and returns to the Earth’s neighborhood periodically, it does not represent a threat because its orbital path does not pass sufficiently close to the Earth’s orbit … Any statements about risk for impact of discovered asteroids and comets should be verified by scientists and the media by accessing NASA’s Near Earth Object (NEO) program web site.”

Three classes of asteroids that pass near Earth or cross its orbit are named for the first member discovered — Apollo, Aten and Amor. Apollo asteroids like 2014 SC324 routinely cross Earth’s orbit, Atens also cross but have different orbital characteristics and Amors cross Mars’ orbit but miss Earth’s. Credit: ESA
Three classes of asteroids that pass near Earth or cross its orbit are named for the first member discovered — Apollo, Aten and Amor. Apollo asteroids like 2014 SC324 routinely cross Earth’s orbit, Atens also cross but have different orbital characteristics and Amors cross Mars’ orbit but miss Earth’s. Credit: ESA

The threat from comets and asteroids hit a fever pitch last year after the Chelyabinsk meteoroid exploded over Russia, injuring thousands and causing property damage (such as blown-out windows). The incident caused NASA, the European Space Agency and others to express a renewed commitment in watching these interluders from Earth.

In the months after the incident, the European Space Agency established an asteroid monitoring center that is intended to be a co-ordination hub for asteroid threats detected in Europe and elsewhere. NASA administrator Charles Bolden also talked about the threat in a Congressional hearing, suggesting measures such as crowdsourcing, co-ordination with other agencies and more telescopic feeds to supplement the monitoring program NASA has right now.

Years ago, Congress directed NASA to find 90% of asteroids 140 meters or larger by 2020, which the agency says is well within reach. Chelyabinsk was only a fraction of that size.

Don’t Miss the Geminids this Weekend, Best Meteor Shower of the Year

Time lapse-photo showing geminids over Pendleton, OR. Credit: Thomas W. Earle

Wouldn’t it be nice if a meteor shower peaked on a weekend instead of 3 a.m. Monday morning? Maybe even showed good activity in the evening hours, so we could get our fill and still get to bed at a decent hour. Wait a minute – this year’s Geminids will do exactly that!

Before moonrise this Saturday night December 13th, the Geminids should put on a sweet display. The radiant of the shower lies near the bright pair of stars, Castor and Pollux. Source: Stellarium
Before moonrise this Saturday night December 13th, the Geminids should put on a sweet display. The radiant of the shower lies near the bright pair of stars, Castor and Pollux. Source: Stellarium

What’s more, since the return of this rich and reliable annual meteor shower occurs around 6 a.m. (CST) on Sunday December 14th, both Saturday and Sunday nights will be equally good for meteor watching. After the Perseids took a battering from the Moon last August, the Geminids will provide the best meteor display of 2014.  They do anyway! The shower’s been strengthening in recent years and now surpasses every major shower of the year.

The official literature touts a rate of 120 meteors per hour visible from a dark sky site, but I’ve found 60-80 per hour a more realistic expectation. Either way, what’s to complain?

The third quarter Moon rises around midnight Saturday and 1 a.m. on Monday morning. Normally, moonlight would be cause for concern, but unlike many meteor showers the Geminids put on a decent show before midnight. The radiant, the location in the sky from which the meteors will appear to stream, will be well up in the east by 9:30 p.m. local time. That’s a good 2-3 hours of meteor awesomeness before moonrise.

The author tries his best to enjoys this year's moon-drenched Perseids from the "astro recliner". Credit: Bob King
The author takes in this year’s moon-drenched Perseids in comfort.

Shower watching is a total blast because it’s so simple. Your only task is to dress warmly and get comfortable in a reclining chair aware from the unholy glare of unshielded lighting. The rest is looking up. Geminid meteors will flash anywhere in the sky, so picking a direction to watch the shower isn’t critical. I usually face east or southeast for the bonus view of Orion lumbering up from the horizon.

Bring your camera, too. I use a moderately wide angle lens (24-35mm) at f/2.8 (widest setting), set my ISO to  800 or 1600 and make 30-second exposures. The more photos you take, the better chance of capturing a meteor. You can also automate the process by hooking up a relatively inexpensive intervalometer  to your camera and have it take the pictures for you.

As you ease back and let the night pass, you’ll see other meteors unrelated to the shower, too. Called sporadics, they trickle in at the rate of  2-5 an hour. You can always tell a Geminid from an interloper because its path traces back to the radiant. Sporadics drop down from any direction.

A Geminid fireball brighter than Venus streaks across the sky above New Mexico on Dec. 14, 2011. It was captured by an all-sky camera. Before disintegrating in the atmosphere the meteoroid was about 1/2 inch across. Credit: Marshall Space Flight Center, Meteoroid Environments Office, Bill Cooke
Captured by an all-sky camera, a Geminid fireball brighter than Venus streaks across the sky above New Mexico on Dec. 14, 2011. Before disintegrating in the atmosphere the meteoroid was about 1/2 inch across. Credit: Marshall Space Flight Center, Meteoroid Environments Office, Bill Cooke

Geminid meteors immolate in Earth’s atmosphere at a moderate speed compared to some showers – 22 miles per second (35 km/sec) – and often flare brightly. Green, red, blue, white and yellow colors have been recorded, making the shower one of the more colorful. Most interesting, the meteoroid stream appears to be sorted according to size with faint, telescopic meteors maxing out a day before the naked eye peak. Larger particles continue to produce unusually bright meteors up to a few days after maximum.

Most meteor showers are the offspring of comets. Dust liberated from vaporizing ice gets pushed back by the pressure of sunlight to form a tail and fans out over the comet’s orbital path. When Earth’s orbit intersects a ribbon of this debris, sand and gravel-sized bits of rock crash into our atmosphere at high speed and burn up in multiple flashes of meteoric light.

Phaethon sprouts a tail when close to the Sun seen in this image taken by NASA's STEREO Sun-observing spacecraft in 2012. Credit: Credit: Jewitt, Li, Agarwal /NASA/STEREO
Phaethon sprouts a tail (points southeast or to lower left) when close to the Sun in this image taken by NASA’s STEREO Sun-observing spacecraft in 2012. Credit: Credit: Jewitt, Li, Agarwal /NASA/STEREO

But the Geminids are a peculiar lot. Every year in mid-December, Earth crosses not a comet’s path but that of 3200 Phaethon (FAY-eh-thon), a 3.2 mile diameter (5.1 km)  asteroid. Phaethon’s elongated orbit brings it scorchingly close (13 million miles) to the Sun every 1.4 years. Normally a quiet, well-behaved asteroid, Phaethon brightened by a factor of two and was caught spewing jets of dust when nearest the Sun in 2009, 2010 and 2012. Apparently the intense heat solar heating either fractured the surface or heated rocks to the point of desiccation, creating enough dust to form temporary tails like a comet.

While it looks like an asteroid most of the time, Phaethon may really be a comet that’s still occasionally active. Periodic eruptions provide the fuel for the annual December show.

Most of us will head out Saturday or Sunday night and take in the shower for pure enjoyment, but if you’d like to share your observations and contribute a bit of knowledge to our understanding of the Geminids, consider reporting your meteor sightings to the International Meteor Organization. Here’s the link to get started.

And this just in … Italian astronomer Gianluca Masi will webcast the shower starting at 8 p.m. CST December 13th (2 a.m. UT Dec. 14) on his Virtual Telescope Project site.

Japan Successfully Launches Hayabusa 2 Asteroid Sample Return Mission

The Hayabusa 2 spacecraft. Credit: JAXA.

Japan successfully launched their Hayabusa-2 sample return mission to asteroid 1999 JU3, and JAXA reports the spacecraft is on course and in excellent shape, with its solar panels deployed. The H-IIA F26 rocket carrying the craft blasted off from the Tanegashima Space Center in southwest Japan at 1:22:04 p.m. local time on Dec 3, 2014 (04:22 UTC) , and about two hours later, the spacecraft separated from the rocket and entered its initial planned trajectory.

Hayabusa 2 has been communicating with JAXA mission control as it starts off on its journey to land on an asteroid in 2018 and retrieve rock and dust samples to be returned to Earth in late 2020.

The first Hayabusa spacecraft completed a successful — albeit nail-biting — mission to the asteroid Itokawa, returning samples to Earth in 2010 after first reaching the asteroid in 2005. The mission almost failed as the spacecraft was plagued by technical problems and it wasn’t certain if the mechanism used to capture the samples actually worked. Ultimately, after a circuitous and troubled-filled return trip home, the canister containing microscopic rock samples made a soft landing in Australia, the first time that samples from an asteroid had been brought back to Earth for study.

Hayabusa 2’s target, Asteroid 1999 JU3 is approximately 914 meters (3,000 feet) in diameter, a little larger than Itokawa, and is roughly spherical in shape, while Itokawa had an oblong shape. 1999 JU3 has a rotation period of approximately 7.6 hours.

To avoid a repetition of the glitches experienced by the first Hayabusa spacecraft, JAXA made several changes. Hayabusa 2 has an updated ion propulsion engine as well as improved guidance and navigation systems, new antennas and a new altitude control system.

Hayabusa 2 has a mini rover called Minerva 2, and for Hayabusa 2’s sample-collecting activities, a slowly descending impactor will be used, detonating upon contact with the surface instead of the high-speed projectile used by the first Hayabusa.

This video explains the Hayabusa 2 mission and how it differs from the first Hayabusa spacecraft:

JAXA’s Hayabusa website will provide current updates to the mission.

Observing Challenge: How to See Asteroid Hebe, Mother of Mucho Meteorites

A 3-D model of 6 Hebe based on its light curve. The asteroid is about 120 miles in diameter and orbits in the main asteroid belt between Mars and Jupiter. Credit: Charles University_Josef Durech_Vojtech Sidorin

In the reeds that line the banks of the celestial river Eridanus, you’ll find Hebe on the prowl this month. Discovered in 1847 by German amateur astronomer Karl Ludwig Hencke , the asteroid may hold the key to the origin of  the H-chondrites, a large class of metal-rich stony meteorites found in numerous amateur and professional collections around the world. You can now see this interesting minor planet with nothing more than a pair of binoculars or small telescope. 

By his looks, I would not deign to tell Karl Henke to give up on anything.
Judging by his demeanor, it might have been unwise to tell Karl Hencke he was wasting his time looking for asteroids.

The first four asteroids – Ceres, Pallas, Juno and Vesta –  were discovered in quick succession from 1801 to 1807. Then nothing turned up for years. Most astronomers wrongly assumed all the asteroids had been found and moved on to other projects like measuring the orbits of double stars and determining stellar parallaxes. Nothing could have been further from the truth. Hencke, who worked as a postmaster during the day, doggedly persisted in sieving the stars for new asteroids in his free time at night. His systematic search began in 1830. Fifteen years and hundreds of cold nights at the eyepiece later he turned up 5 Astrae (asteroid no. 5) on Dec. 8, 1845, and 6 Hebe on July 1, 1847.

Hebe orbits in the main asteroid belt between Mars and Jupiter with an average distance from the Sun of 225 million miles. It rotates on its axis once every 7.2 hours. Credit: Wikipedia
Hebe orbits in the main asteroid belt between Mars and Jupiter with an average distance from the Sun of 225 million miles. It spins on its axis once every 7.3 hours. Credit: Wikipedia

Energized by the finds, astronomers returned to their telescopes with renewed gusto to join in the hunt once again. The rest is history.  As of November 2014 there are 415,688 numbered asteroids and a nearly equal number of unnumbered discoveries. Fittingly, asteroid 2005 Hencke honors the man who kept the fire burning.

You'll find Hebe trucking along in Eridanus in December just north of the pair of +3.5 magnitude stars Delta (lleft) and Epsilon Eridani. This map shows stars to magnitude +9.5 and Hebe's position is marked every 5 nights. Source: Chris Marriott's SkyMap software
You’ll find Hebe trucking along in Eridanus this month just north of Delta (left) and Epsilon Eridani, a pair of +3.5 magnitude stars. This map shows stars to magnitude +9.5 with Hebe’s position marked every 5 nights. Click to enlarge. Source: Chris Marriott’s SkyMap software

At 120 miles (190 km) across, Hebe is one of the bigger asteroids (officially 33rd in size in the main belt) and orbits the Sun once every 3.8 years. It will be our guest this final month of the year shining at magnitude +8.2 in early December, +8.5 by mid-month and +8.9 when you don your party hat on New Year’s Eve. All the while, Hebe will loop across the barrens of Eridanus west of Orion. Use the maps here to help track it down. I’ve included a detailed color map above, but also created a “black stars on white” version for those that find reverse charts easier to use.

Use this wide view of the sky to get oriented before honing in with the more detailed map above. Source: Stellarium
Use this wide view of the sky to get oriented before zeroing in with the more detailed map above. Hebe lies just a few degrees north of Delta and Epsilon Eridani for much of December. Best viewing time is from 10 p.m. to 2 a.m. local time early in the month. Source: Stellarium

In more recent times, Hebe’s story takes an interesting turn. Through a study of its gravitational nudges on other asteroids, astronomers discovered that Hebe is a very compact, rocky object, not a loosey-goosey pile of rubble like some asteroids. Its high density provides strong evidence for a composition of both rock and iron. Scientists can determine the approximate composition of  an asteroid’s surface by studying its reflectance spectrum, or what colors or wavelengths are reflected back from the object after a portion is absorbed by its surface. They use infrared light because different minerals absorb different wavelengths of infrared light. That data is compared to infrared absorptions from rocks and meteorites found on Earth. Turns out, our friend Hebe’s spectrum is a good match to two classes of meteorites – the H-chondrites, which comprise 40% of known meteorites – and the rarer IIE silicated iron meteorites.

Did this slice of meteorite come from Hebe? I'm holding a small slice of NWA 2710, an H5 chondrite. Credit: Bob King
Did this slice of meteorite come from Hebe? A 12.9-gram specimen of NWA 2710, an H5 stony chondrite, sparkles in the light. The shiny flecks are iron-nickel metal set in a stony matrix. Credit: Bob King

Because Hebe orbits close to an unstable zone in the asteroid belt,  any impacts it suffers are soon perturbed by Jupiter’s gravity and launched into trajectories than can include the Earth.  When you spot Hebe in your binoculars the next clear night, you might just be seeing where many of the more common space rocks in our collections originated.

Watch Asteroids Whiz by the Earth-Moon System This Week as First Steps Toward Asteroid Exploration Leave the Launch Pad

(Credit: The Virtual Telescope Project)

It’s a dangerous universe out there, for a budding young space-faring species.

Killer comets, planet sterilizing gamma ray bursts, and death rocks from above are all potential hazards that an adolescent civilization has to watch out for.

This week offers two close shaves, as newly discovered Near Earth Asteroids (NEAs) 2014 WC201 and 2014 WX202 pass by the Earth-Moon system.

The passage of 2014 WC201 is coming right up tonight, as the 27-metre space rock passes about 570,000 kilometres from the Earth. That’s 1.4 times farther than the distance from the Earth to the Moon.

Credit: JPL
The orbit of 2014 WC201. Credit: NASA/JPL.

And the good news is, the Virtual Telescope Project will be bringing the passage of 2014 WC201 live tonight starting at 23:00 Universal Time/6:00 PM EST.

Shining at an absolute magnitude of +26, 2014 WC201 will be visible as a +13 apparent magnitude “star” at closest approach at 4:51 UT (December 2nd)/11:51 PM EST (December 1st) moving through the constellation Ursa Major. This puts it within range of a large backyard telescope, though the 80% illuminated waxing gibbous Moon will definitely be a mitigating factor for observation.

The JPL Horizons ephemerides generator is an excellent place to start for crafting accurate coordinates for the asteroid for your location.

Credit: The Virtual Telescope Project.
A capture of NEO 2003 DZ15 from 2015. Credit: The Virtual Telescope Project.

At an estimated 27 metres/81 feet in size, 2014 WC201 will no doubt draw “house-sized” or “building-sized” comparisons in the press.  Larger than an F-15 jet fighter, asteroids such as WC201 cry out for some fresh new descriptive comparisons. Perhaps, as we near a “Star Wars year” in 2015, we could refer to 2014 WC201 as X-wing sized?

Another Apollo NEO also makes a close pass by the Earth this week, as 6-metre 2014 WX202 passes 400,000 kilometres (about the same average distance as the Earth to the Moon) from us at 19:56 UT/2:56 PM EST on December 7th.  Though closer than WC201, WX202 is much smaller and won’t be a good target for backyard scopes. Gianluca Masi over at the Virtual Telescope Project also notes that WX202 will also be a difficult target due to the nearly Full Moon later this week.

Credit JPL
The orbital path of NEO asteroid 2014 WX202. Credit: NASA/JPL

The last Full Moon of 2014 occurs on December 6th at 6:26 AM EST/11:26 Universal Time.

2014 WX202 has also generated some interest in the minor planet community due to its low velocity approach relative to the Earth. This, coupled with its Earth-like orbit, is suggestive of something that may have escaped the Earth-Moon system. Could WX202 be returning space junk or lunar ejecta? It’s happened before, as old Apollo hardware and boosters from China’s Chang’e missions have been initially identified as Near Earth Asteroids.

The Earth also occasionally hosts a temporary “quasi-moon,” as last occurred in 2006 with the capture of RH120. 2014 WX202 makes a series of more distant passes in the 2030s, and perhaps it will make the short list of near Earth asteroids for humans to explore in the coming decades.

And speaking of which, humanity is making two steps in this direction this week, with two high profile space launches.

First up is the launch of JAXA’s Hayabusa 2 from the Tanegashima Space Center on December 3rd at 4:22 UT/11:22 PM EST. The follow up to the Hayabusa asteroid sample return mission, Hayabusa 2 will rendezvous with asteroid 1999 JU3 in 2018 and return samples to Earth in late 2020. The vidcast for the launch of Hayabusa 2 goes live at 3:00 UT/10:00 PM EST on Tuesday, December 2nd.

And the next mission paving the way towards first boot prints on an asteroid is the launch of a Delta 4 Heavy rocket with EFT-1 from Cape Canaveral this Thursday morning on December 4th near sunrise at 7:05 AM EST/12:05 UT. EFT-1 is uncrewed, and will test key technologies including reentry on its two orbit flight. Expect to see crewed missions of Orion to begin around 2020, with a mission to an Earth crossing asteroid sometime in the decade after that.

Credit: NASA
NASA gotchu: An artist’s rendition of a future asteroid capture. Credit: NASA.

And there are some decent prospects to catch sight of EFT-1 on its first pass prior to its orbit raising burn over the Atlantic. Assuming EFT-1 lifts off at the beginning of its launch window, western Australia may see a good dusk pass 55 minutes after liftoff, and the southwestern U.S. may see a visible pass at dawn about 95 minutes after EFT-1 leaves the pad.

Credit: Orbitron
The footprint of EFT-1 on its first North American pass. Credit: Orbitron.

We’ll be tracking these prospects as the mission evolves on launch day via Twitter, and NASA TV will carry the launch live starting at 4:30 AM EST/9:30 UT.

The Orion capsule will come in hot on reentry at a blistering 32,000 kilometres per hour over four hours after liftoff in a reentry reminiscent of the early Apollo era.

Of course, if an asteroid the size of WC201 was on a collision course with the Earth it could spell a very bad day, at least in local terms.  For comparison, the 2013 Chelyabinsk meteor was estimated to be 18 metres in size, and the 1908 Tunguska impactor was estimated to be 60 metres across. And about 50,000 years ago, a 50 metre in diameter space rock came blazing in over the ponderosa pine trees near what would one day be the city of Flagstaff, Arizona to create the 1,200 metre diameter Barringer Meteor Crater you can visit today.

Photo by author
A fragment of the Barringer meteorite on display at the Lowell Observatory. Photo by author.

All the more reason to study hazardous space rocks and the technology needed to reach one in the event that we one day need to move one out of the way!