Surprise! Asteroid Hosts A Two-Ring Circus Above Its Surface

Artist's impression of what the rings of the asteroid Chariklo would look like from the small body's surface. The rings' discovery was a first for an asteroid. Credit: ESO/L. Calçada/Nick Risinger (skysurvey.org)

Rings are a tough phenomenon to spot. As late as 1977, astronomers thought that the only thing in the solar system with rings was the planet Saturn. Now, we can add the first asteroid to the list of ringed bodies nearby us. The asteroid 10199 Chariklo hosts two rings, perhaps due to a collision that caused a chain of debris circling its tiny surface.

Besides the 250-kilometer (155-mile) Chariklo, the only other ringed bodies known to us so far are (in order of discovery) Saturn, Uranus, Jupiter and Neptune.

“We weren’t looking for a ring and didn’t think small bodies like Chariklo had them at all, so the discovery — and the amazing amount of detail we saw in the system — came as a complete surprise,” stated Felipe Braga-Ribas  of the National Observatory (Observatório Nacional) in Brazil, who led the paper about the discovery.

Illustration of how Asteroid Chariklo may have gotten its rings. Copyright: Estevan Guzman for Universe Today.
Illustration of how Asteroid Chariklo may have gotten its rings. Copyright: Estevan Guzman for Universe Today.

The rings came to light, so to speak, when astronomers watched Chariklo passing in front of the star UCAC4 248-108672 on June 3, 2013 from seven locations in South America. While watching, they saw two dips in the star’s apparent brightness just before and after the occultation. Better yet, with seven sites watching, researchers could compare the timing to figure out more about the orientation, shape, width and more about the rings.

The observations revealed what is likely a 12.4-mile (20-kilometer)-wide ring system that is about 1,000 times closer to the asteroid than Earth is to the moon. What’s more, astronomers suspect there could be a moon lying amidst the asteroid’s ring debris.

Artist's impression of two rings discovered around the asteroid Chariklo. It was the first such discovery made for an asteroid. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)
Artist’s impression of two rings discovered around the asteroid Chariklo. It was the first such discovery made for an asteroid. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)

If these rings are the leftovers of a collision as astronomers suspect, this would give fodder to the idea that moons (such as our own moon) come to be from collisions of smaller bits of material. This is also a theory for how planets came to be around stars.

The rings haven’t been named officially yet, but the astronomers are nicknaming them Oiapoque and Chuí after two rivers near the northern and southern ends of Brazil.

Because these occultation events are so rare and can show us more about asteroids, astronomers pay attention when they occur. Part of the Eastern Seabord enjoyed a more recent asteroid-star occultation on March 20.

The original paper, “A ring system detected around the Centaur (10199) Chariklo”, will soon be available on the Nature website.

Source: European Southern Observatory

Artist's impression of rings around the asteroid Chariklo. This was the first asteroid where rings were discovered. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)
Artist’s impression of rings around the asteroid Chariklo. This was the first asteroid where rings were discovered. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)

Happy Equinox! – A Perfect Time to See the Zodiacal Light

Zodiacal light tilts upward from the western horizon and points at the Pleiades star cluster in this photo taken March 19, 2009. Clouds at bottom reflect light pollution from nearby Duluth, Minn. U.S. Credit: Bob King

Welcome to the first day of spring! If you have a clear night between now and April 1, celebrate the new season with a pilgrimage to the countryside to ponder the eerie glow of the zodiacal light. Look for a large, diffuse, tapering cone of light poking up from the western horizon between 90 minutes and two hours after sunset. While the zodiacal light appears only as bright as the Milky Way,  you’re actually looking at the second brightest object in the night sky. No kidding.  If you could crunch it all into a little ball, it would shine at magnitude -8.5, far brighter than Venus and bested only by the full moon.  

The zodiacal (Zo-DIE-uh-cull) light is centered on the plane of the solar system called the ecliptic. On late March nights, you can trace it from near the western horizon more than 45 degrees (halfway up the sky). Stellarium
The zodiacal (Zo-DIE-uh-cull) light is centered on the plane of the solar system called the ecliptic. This is the same band of sky where you’ll find the planets and zodiac constellations, hence the name. On late March nights, you can trace it from near the western horizon more than 45 degrees (halfway up the sky). Created with Stellarium

Sunlight reflecting off countless dust particles shed by comets and spawned by asteroid collisions creates the luminous cone of light. First time observers might think they’re looking at skyglow from light pollution but the tapering shape and distinctive tilt mark this glow as interplanetary dust.

This image of coronal and zodiacal light (CZL) was taken by the Clementine spacecraft, when the sun was behind the moon. The white area on the edge of the moon is the CZL, and the bright is Venus. (Credit: NASA)
Photo of coronal and zodiacal light taken by the Clementine spacecraft when the sun was hidden by the moon. At right is Venus. Clementine measured the brightness of the light to arrive at an integrated magnitude of -8.5. It also estimated dust particle sizes and origin. Credit: NASA

Like the planets, the dust resides in the plane of the solar system. In spring, that plane (called the ecliptic) tilts steeply up from the western horizon after sunset, “lifting” the chubby thumb of light high enough to clear the horizon haze and stand out against a dark sky for northern hemisphere observers.  In October and November the ecliptic is once again tilted upright, but this time before dawn. While the zodiacal light is present year-round, it’s usually tipped at a shallow angle and camouflaged by horizon haze. No so for skywatchers in tropical and equatorial latitudes. There the ecliptic is tilted steeply all year long, and the light can be seen anytime there’s no moon in the sky.

The combined glow of dust particles in the plane of the solar system reaching from the sun's vicinity to beyond Mars is responsible for creating the zodiacal light. Planets are shown as colored disks. Illustration: Bob King
The combined glow of dust particles in the plane of the solar system reaching from the sun’s vicinity out to at least Jupiter is responsible for creating the zodiacal light. Dust closest to the sun glow more brightly, the reason the bottom of the zodiacal light cone is brighter than the tip. Planets are shown as colored disks. Illustration: Bob King

Now through April 1 and again from April 17-30 are the best nights for viewing because the moon will be absent from the sky. The cone is widest near the western horizon and narrows as you direct your gaze upward and to the left. At its apex, where it touches the V-shape Hyades star cluster, it continues into the even fainter zodiacal band and gegenschein, but more about that in a moment. Sweep your gaze in broad strokes back and forth across the western sky to help you discern the Z-light’s distinctive conical shape. And be sure to look for something HUGE. This thing is a monster – indeed, one of the largest entities in the solar system.

Scanning electron microscope photo of an interplanetary dust particle collected by a high-altitude plane. It measures about 8 microns across or a little less than twice the size of a human red blood cell. Scientists recently discovered that dust particles can act as tiny factories to built water molecules. Credit: Donald Brownlee and Elmar Jessberger
Scanning electron microscope photo of an interplanetary dust particle collected by a high-altitude plane. It measures about 8 microns across or a little less than twice the size of a human red blood cell. Scientists recently discovered that dust particles can act as tiny factories to built water molecules. Credit: Donald Brownlee and Elmar Jessberger

Observers fortunate enough to live under or with access truly dark skies can trace the zodiacal light all the way across the sky as the zodiacal band.

Midway along its length, 180 degrees opposite the sun, a slightly brighter circular patch called the gegenschein (German for ‘counter glow’) embedded in the band.

Dust particles there get an extra brightness boost because they face the sun square on, much like the moon does when full. While I usually see only a section of the zodiacal band from my dark observing site, the gegenschein is often visible as a diffuse, hazy patch of light about 6 degree across a little brighter than the sky background.

Incredible 360-degree-wide view of morning and evening zodiacal light cones (far left and right), the fainter zodiacal band and the brighter spot of gegenschein. Click to enlarge. Credit: Miloslav Druckmuller and Shadia Habbal
Incredible 360-degree-wide view of morning and evening zodiacal light cones (far left and right), the fainter zodiacal band and the brighter spot of gegenschein (center) and the Milky Way photographed from Mauna Kea. Click to enlarge. Credit: Miloslav Druckmuller and Shadia Habbal

Dutch astronomer H. C. van de Hulst determined that the dust particles responsible for the zodiacal light and its cousins the zodiacal band and gegenschein are about 0.04 inch (1 mm) in diameter and separated, on average, by about 5 miles (8 km).

The gegenschein, an oval shaped brighter spot within the faint zodiacal band, is easiest to when due south and highest in the sky at local midnight (1 a.m. Daylight Saving Time). Currently it's in northern Virgo. Since the 'counter glow' will always be opposite the sun, it will slide down closer to Spica in April. Created with Stellarium
The gegenschein, an oval shaped brighter spot within the faint zodiacal band, is easiest to when due south and highest in the sky at local midnight (1 a.m. Daylight Saving Time). Currently it’s in northern Virgo. Since the ‘counter glow’ will always be opposite the sun, it will slide down closer to Spica in April. Created with Stellarium

The particles form a low density, lens-shaped cloud of dust that’s thickest within the plane of the solar system but in reality covers the entire sky but ever so thinly. Sunlight absorbed by the particles is re-emitted as invisible infrared (heat) radiation. This re-radiation robs the dust of energy, causing the particles to spiral slowly into the sun. Fresh dust from the vaporization of cometary ices as well as collisions of asteroids replenishes the cloud.

Zodiacal light cones in the fall morning sky (left) and in late March. Both times of year, we see the plane of the solar system tipped at high angle in the sky. Credit: Bob King
Zodiacal light cones in the fall morning sky (left) and in late March. Both times of year we see the plane of the solar system tipped at a high angle in the sky. Credit: Bob King

According to a study by Joseph Hahn and colleagues of the Clementine Mission data, comet dust accounts for the majority of the zodiacal dust within 1 a.u. (93 million miles) of the sun; a mix of asteroidal and comet dust makes up the remainder.

Stepping out on a spring evening to look at the zodiacal light, we can appreciate how small things can come together to create something grand.

Clouds May Scotch Tomorrow’s Rare Erigone-Regulus Occultation

The bright star Regulus will disappear for observers living along the path between the red lines. The disappearance is longest - up to 14 seconds - along the center green line. Credit: Google Maps / IOTA

North America’s brightest predicted asteroid occultation may be one-upped by a much bigger occultation – a solid blanket of clouds. Asteroid 163 Erigone will cover or occult the bright star Regulus shortly after 2 a.m. Eastern Daylight Time tomorrow morning March 20. Observers along a 45-mile-wide (73-km) belt stretching from the wilderness of Nunavut to the salty seas of Bermuda could see the star vanish for up to 14 seconds. Provided they can find a hole in the clouds.

ggggggg
National forecast map for 8 p.m. EDT tonight March 19. A low pressure region is expected to bring rain and snow to the Northeast and Ontario today and overnight with clearing skies later tomorrow. Click for latest New York City weather forecast. Credit: NOAA

Overcast skies with a mix of rain or snow are predicted along virtually the entire track from the tiny berg of Cochrane in northern Ontario south through New York City, Connecticut and New Jersey. A sluggish cold front isn’t expected to clear skies until … no surprise here … after the event is over.

Bermuda, perhaps the best place to watch the occultation, crosses the eastern edge of the asteroid's shadow. The red line marks
Bermuda, perhaps the best place to watch the occultation, crosses the eastern edge (blue line) of the asteroid’s shadow. The red line marks one sigma of uncertainty in the shadow edge. Credit: Google Maps/IOTA

But there is one place where maybe, just maybe, the clouds may part to let Erigone do its job. Bermuda.  The Bermuda Weather Service forecast calls for highs in the low 70s mid-week, but that balmy air may come packaged with a partly to mostly cloudy sky at the time of the occultation. A few determined observers are on their way there right now, hoping for better weather. In case the islands are socked in, some plan to rent planes to rise above the low-lying clouds typical this time of year and revel in the shadow of an asteroid. Even if clear, Bermuda lies near the eastern edge of the path. Any occultation there will be brief.

Illustration showing asteroid 163 Erigone about to cover Leo’s brightest star Regulus around 2:07 Eastern Daylight Time Thursday morning March 20, 2014. As the asteroid’s shadow passes over the ground, observers will see Regulus disappear for up to 14 seconds. Illustration: Bob King with help from photos by the ESO/NASA -
Illustration showing asteroid 163 Erigone about to cover Leo’s brightest star Regulus around 2:07 Eastern Daylight Time Thursday morning March 20, 2014. As the asteroid’s shadow passes over the ground, observers will see Regulus briefly disappear. Illustration: Bob King with ESO/NASA images

Yes, there will be more occultations, but bright ones that the public can enjoy with the naked eye are rare.

Skywatchers are nothing if not hopeful. We believe in the sucker hole, the name given to rogue clearings in an otherwise overcast sky. We are patient and steadfast when it comes to glimpsing the rarest of the rare. I know this because my friends and I have stood outside on winter mornings staring at the western sky, waiting for clouds to peel back that we might glimpse a Martian dust storm or new comet.

To find Regulus, face southwest shortly before 2 a.m. The star will be about 40 degrees high (four ‘fists’ held at arm’s length against the sky). Brilliant Jupiter shines well to its lower right. You may also notice a ‘coathangar’ or ‘backwards question mark’ shape of stars above Regulus called the Sickle of Leo. Stellarium
If it does clear tomorrow, face southwest shortly before 2 a.m. to find Leo’s brightest star Regulus. The star will be about 40 degrees high (four ‘fists’ held at arm’s length against the sky). Above is the the Sickle of Leo, shaped like a backwards question mark. Brilliant Jupiter shines well to its lower right. Stellarium

If there’s an astronomer’s credo, it’s this: “The sky might clear yet!” The latest weather word (9 a.m. March 19) for U.S. and Canadian observers indicates thinner clouds along the southern end of the track in New Jersey. Many of us considered driving to the event but changed our minds because of work, worries about weather and other commitments. Assuming the credo holds true, you’ll be able to watch Regulus disappear live from the comfort of your home thanks to the efforts of several observers planning to stream the event on the Web.

Here’s a list of streamers so far:

Brad Timerson plans to go live with audio at 2 a.m. at a rest area along I-90 just west of Syracuse, NY.

Ted Blank on UStream

Steve Preston will broadcast an image of his camcorder screen

Vagelis Tsamis will try to broadcast from Canada

* SLOOH

As always, everything depends on the weather. Let’s hope Mother Nature loses focus and lets a little clear sky slip by.

Why the Asteroid Belt Doesn’t Threaten Spacecraft

Artist's impression of the asteroid belt. Image credit: NASA/JPL-Caltech

When you think of the asteroid belt, you probably imagine a region of rock and dust, with asteroids as far as the eye can see.  Such a visual has been popularized in movies, where spaceships must swerve left and right to avoid collisions.  But a similar view is often portrayed in more scientific imagery, such as the artistic rendering above.  Even the first episode of the new Cosmos series portrayed the belt as a dense collection of asteroids. But the reality is very different.  In reality the asteroid belt is less cluttered than often portrayed.  Just how much less might surprise you.

The Sloan digital sky survey (SDSS) has identified more than 100,000 asteroids in the solar system.  Not all of these lie within the asteroid belt, but there are about 80,000 asteroids in the belt larger than a kilometer.  Of course there are asteroids smaller than that, but they are more difficult to detect, so we aren’t exactly sure how many there are.

The pyramid-shaped zodiacal light cone is centered on the same path the sun and planets take across the sky called the ecliptic. This map shows the sky 90 minutes after sunset in early March facing west. Created with Stellarium
The pyramid-shaped zodiacal light cone is centered on the same path the sun and planets take across the sky called the ecliptic. This map shows the sky 90 minutes after sunset in early March facing west. Created with Stellarium

We have a pretty good idea, however, because the observations we have indicate that the size distribution of asteroids follows what is known as a power law distribution. For example, with a power law of 1, for every 100-meter wide asteroid there would be 10 with a diameter of 10 meters and 100 with a diameter of 1 meter. Based upon SDSS observations, asteroids seem to follow a power law of about 2, which means there are likely about 800 trillion asteroids larger than a meter within the belt. That’s a lot of rock. So much that sunlight scattering off the asteroid belt and other dust in the solar system is the source of zodiacal light.

But there is also a lot of volume within the asteroid belt. The belt can be said to occupy a region around the Sun from about 2.2 to 3.2 times the distance from the Earth to the Sun from the Sun (AU), with a thickness of about 1 AU. A bit of math puts that at about 50 trillion trillion cubic kilometers. So even though there are trillions of asteroids, each asteroid has billions of cubic kilometers of space on average. The asteroid belt is hardly something you would consider crowded. It should be emphasized that asteroids in the belt are not evenly distributed. They are clustered into families and groups. But even such clustering is not significant compared to the vast space it occupies.

An actual image from within the asteroid belt, taken from the NEAR probe as it was heading toward Eros (center). Credit: NASA
An actual image from within the asteroid belt, taken from the NEAR probe as it was heading toward Eros (center).
Credit: NASA

You can even do a very rough calculation to get an idea of just how empty the asteroid belt actually is. If we assumed that all the asteroids lay within a single plane, then on average there is 1 asteroid within an area roughly the size of Rhode Island. Within the entire United States there would be about 2000 asteroids, most of them only a meter across. The odds of seeing an asteroid along a cross-country road trip, much less hitting one, would be astoundingly small. So you can see why we don’t worry about space probes hitting an asteroid on their way to the outer solar system.  In fact, to get even close to an asteroid takes a great deal of effort.

How to Watch an Asteroid Occult a Bright Star on March 20th

Credit-IOTA

 Live in the New York City tri-state area, or anywhere near the path above? One of the most unusual big ticket astronomical events of 2014 occurs on in the morning hours of Thursday March 20th, when the asteriod 163 Erigone “blocks” or occults the bright star Regulus.

This is brightest star to be occulted by an asteroid for 2014, and has a potential to be observed by millions.

Occultations of stars by asteroids are often elusive events, involving faint stars and often occurring over remote locales. Not so with this one. In fact, the occultation of Regulus on March 20th will result in an “asteroid shadow” passing over viewers across the populous areas of New York and adjoining states in the U.S. northeast before racing into Canada.

And unlike most asteroid occultations, you won’t need any special equipment to detect this event. Shining at magnitude +1.3, Regulus is an easy and familiar naked eye object and is the 22nd brightest star in the sky. And heck, it might be interesting just to catch a view of the constellation Leo minus its brightest star!

Credit: Stellarium
Finding Regulus: Looking westward from the New York tri-state region at the time of the occultation. Credit: Stellarium.

Asteroid 163 Erigone shines at magnitude+12.4 during the event. At 72 kilometres in diameter and 1.183 A.U.s distant during the occultation, 163 Erigone was discovered by French astronomer Henri Joseph Perrotin on April 26th, 1876.

There’s a great potential to learn more not only about 163 Erigone during the event, but Regulus itself. Amateur observations will play a key role in this effort. The International Occultation Timing Association (IOTA) seeks observations from this and hundreds of events that occur each year. Not only can such a precise measurement help to pin down an asteroid’s orbit, but precise timing of the occultation can also paint a “picture” of the profile of the asteroid itself.

Example credit:
An example of an asteroid shape profile created by observers during the occultation of a star by asteroid 55 Pandora in 2007. Each cord represents an observer. Credit- The IOTA.

Regulus also has a faint white dwarf companion, and it’s just possible that it may be spied a fraction of a second before or after the event.   Does 163 Erigone have a moon? Several asteroids are now known to possess moons of their own, and it’s just possible that 163 Erigone could have a tiny unseen companion, the presence of which would be revealed by a small secondary event. Observers along and outside the track from Nova Scotia down to Kentucky are urged to be vigilant for just such a surprise occurrence:

Wide map (credit)
A widened map of the March 20th event, noting the span over which an unseen “moon” of 163 Erigone could be potentially observed. Credit: IOTA/Ted Blank/Google Earth.

The maximum duration for the event along the centerline is 14.3 seconds, and the rank for the event stands at 99%, meaning the path is pretty certain.

The shadow touches down on Earth in the mid-Atlantic at 5:53 Universal Time (UT), and grazes the island of Bermuda before making landfall over Long Island New York, New Jersey, Connecticut and northeastern Pennsylvania just after 6:06 UT/2:06 AM EDT. From there, the shadow of the asteroid heads to the northwest and crosses Lake Ontario into Canada before passing between the cities of Ottawa and Toronto just before 6:08 UT. Finally, it crosses out over Hudson Bay and Nunavut before departing the surface of our fair planet at 6:22 UT.

The path is about 117 kilometres wide, and the “shadow” races across the surface of the Earth at about 2.8 kilometres per second from the southeast to the northwest.

Credit: IOTA
A technical map including the specifics for the March 20th occultation of Regulus. Click to enlarge. Credit: The IOTA.

Timing an occultation can be accomplished via audio or video recording, though accurate time is crucial for a meaningful scientific observation. The IOTA has a complete explanation of tried and true methods to use for capturing and reporting the event.

We had a chance to catch up with veteran asteroid occultation observer Ted Blank concerning the event and the large unprecedented effort underway to capture it.

He notes that Regulus stands as the brightest star that has been observed to have been occulted by an asteroid thus far when 166 Rhodope passed briefly in front of it on October 19th, 2005.

“This is the best and brightest occultation ever predicted to occur over a populated area, and that covers the entire 40 years of predictive efforts,” Mr. Blank told Universe Today concerning the upcoming March 20th event.

The general public can participate in the scientific effort for observations as well.

“We’re trying to make a “picket fence” of thousands of observers to catch this asteroid, so the best thing to do is to go out and observe. If they live anywhere near or in the path, just step outside (or watch from a warm house through a window). Make sure they are looking at the right star,” Mr. Blank told Universe Today.  “If they can travel an hour or so to be somewhere in the predicted path, by all means do so – they’ll be home and back in bed well before rush hour starts! Then report what they saw at the public reporting page. If no occultation was seen, report a miss. This is more important that people think, since “miss” observations define the edges of the asteroid.”

There is also a handy “Occultation 1.0” timing app now available for IPhone users for use during the event.

Mr. Blank also plans to webcast the occultation live via UStream, and urges people to check the Regulus2014 Facebook page for updates on the broadcast status, as well as the final regional weather prospects leading up event next week. For dedicated occultation chasers, mobility and the ability to change observing locale at the last moment if necessary may prove key to nabbing this one. One of our preferred sites to check the cloud cover forecast prior to observing any event is the Clear Sky Chart.

This promises to be a historic astronomical event. Thanks to Ted Blank and Brad Timerson at the IOTA for putting the public outreach project together for this one, and be sure not to miss the occultation of Regulus on March 20th!

NASA Offers $35,000 In Prizes For Citizen Scientists To Help Find Asteroids

Hypothetical astronaut mission to an asteroid. Credit: NASA Human Exploration Framework Team

Fancy yourself an asteroid hunter? There’s $35,000 available in prizes for NASA’s new Asteroid Data Hunter contest series, which will be awarded to citizen scientists who develop algorithms that could be used to search for asteroids.

Here’s where you can apply for the contest, which opens March 17 and runs through August. And we have a few more details about this joint venture with Planetary Resources Inc. below.

“The Asteroid Data Hunter contest series challenges participants to develop significantly improved algorithms to identify asteroids in images captured by ground-based telescopes,” NASA stated. “The winning solution must increase the detection sensitivity, minimize the number of false positives, ignore imperfections in the data, and run effectively on all computer systems.”

We got a sharp reminder of the danger of asteroids to Earth in February 2013 when a meteor slammed into the atmosphere above Chelyabinsk, Russia, causing damage and hundreds of injuries. Meanwhile, NASA is working on a project to redirect an asteroid closer to Earth for astronauts to explore, a concept that has funding allocated in their 2015 budget request to Congress.

In November, NASA announced that Planetary Resources (the company best known for the “selfie” space telescope) is going to work on “crowdsourced software solutions” with NASA-funded data to make it easier to find asteroids and other near-Earth objects.

Hubble Telescope Watches Asteroid Disintegrate in Space

This series of images shows the asteroid P/2013 R3 breaking apart, as viewed by the NASA/ESA Hubble Space Telescope in 2013. This is the first time that such a body has been seen to undergo this kind of break-up. Credit: NASA, ESA, D. Jewitt (UCLA).

Back in 2010, astronomers discovered an asteroid that was breaking apart due to a head-on collision with another asteroid. But now they have seen an asteroid break apart – with no recent collision required.

Asteroid P/2013 R3 appears to be crumbling apart in space, and astronomers using the Hubble Space Telescope recently saw the asteroid breaking into as many as 10 smaller pieces. The best explanation for the break-up is the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, a subtle effect from sunlight that can change the asteroid’s rotation rate and basically cause a rubbly-type asteroid to spin apart.

“This is a really bizarre thing to observe — we’ve never seen anything like it before,” said co-author Jessica Agarwal of the Max Planck Institute for Solar System Research, Germany. “The break-up could have many different causes, but the Hubble observations are detailed enough that we can actually pinpoint the process responsible.”

Astronomers first noticed this asteroid on September 15, 2013 and it appeared as a weird, fuzzy-looking object, as seen by the Catalina and Pan-STARRS sky-survey telescopes. A follow-up observation on Oct. 1 with the W.M. Keck telescope on Hawaii’s Mauna Kea revealed three co-moving bodies embedded in a dusty envelope that is nearly the diameter of Earth.

Then on October 29, 2013, astronomers used the Hubble Space Telescope to observe the object and saw there were actually 10 embedded objects, each with comet-like dust tails. The four largest rocky fragments are up to 200 meters/yards in radius, about twice the length of a football field.

The Hubble data showed that the fragments are drifting away from each other at a leisurely pace of 1.6 km/hr (one mile per hour), which would be slower than a strolling human.

“Seeing this rock fall apart before our eyes is pretty amazing,” said David Jewitt, from UCLA’s Department of Physics and Astronomy, who led the investigation.

The slowness of the speed at which the pieces are coming apart makes it unlikely that the asteroid is disintegrating because of a collision. That would be instantaneous and violent, with the pieces traveling away from each other at much higher speeds.

Loading player…

Jewitt also said the asteroid is not coming unglued due to the pressure of interior ices warming and vaporizing, like comets do as they approach the Sun. The asteroid is too cold for ices to significantly sublimate, and it has presumably maintained its nearly 480 million-km (300 million–mile) distance from the Sun for much of its life.

Jewitt described the YORP torque effect as like grapes on a stem being gently pulled apart due to centrifugal force of an unusually shaped asteroid as it speeds up in its spin. This effect occurs when light from the Sun is absorbed by a body and then re-emitted as heat. When the shape of the emitting body is not perfectly regular, more heat is emitted from some regions than others. This creates a small imbalance that causes a small but constant torque on the body, which changes its spin rate. This effect has been discussed by scientists for several years but, so far, never reliably observed.

For the break-up to happen, P/2013 R3 must have a weak, fractured interior, probably as the result of previous but ancient collisions with other asteroids. Most small asteroids, in fact, are thought to have been severely damaged in this way, giving them a “rubble pile” internal structure. P/2013 R3 itself is probably the product of collisional shattering of a bigger body some time in the last billion years.

With Hubble’s recent discovery of an a different active asteroid spouting six tails (P/2013 P5), astronomers are seeing more circumstantial evidence that the pressure of sunlight may be the primary force that disintegrates small asteroids (less than a mile across) in the Solar System.

The asteroid’s remnant debris, estimated at weighing in at 200,000 tons, in the future will provide a rich source of meteoroids, Jewitt said. Most will eventually plunge into the sun, but a small fraction of the debris may one day enter the Earth’s atmosphere to blaze across the sky as meteors, he said.

The discovery is published online March 6 in Astrophysical Journal Letters. A preprint of the paper can be found here.

Sources: UCLA, Hubble ESA

Watch the Close Pass of NEO Asteroid 2014 DX110 Wednesday Night

The orbital path and position of Apollo NEO asteroid 2014 DX110 just a week prior to disocvery. Credit- Created using NASA/JPL's Solar System Dynamics Small-Body Database Browser.

BREAKING- No sooner than the cyber-ink was dry on this post than we got notice of another 10-metre NEO asteroid 2014 EC passing Earth at just under 0.2 times the Earth-Moon distance – less than 64,000 kilometres – on Thursday, March 6th at 21:18 UT/4:18 PM EST. And the Virtual Telescope will be carrying this passage live as well on March 6th starting at 19:00 UT/2:00 PM EST. Bring in on, universe!

The Earth-Moon system gets a close shave on the night of Wednesday, March 5th 2014 when Near Earth Object (NEO) asteroid 2014 DX110 passes our fair planet at 216,000 miles or about 345,600 distant at around 21:06 Universal Time (UT)/ 4:06 PM EST.

About 30 metres in diameter, 2014 DX110 was discovered by the Pan-STARRS 1 survey on February 28th, and its orbit was initially refined using follow up observations made by the Great Shefford Observatory in West Berkshire, England.

And although the asteroid is no threat to Earth or the Moon – it makes a pass 232,800 miles from our natural satellite one hour and 22 minutes after its closest passage from the Earth – the asteroid is currently listed on NASA’s risk page for a 1 in 10,000,000 chance of impact with Earth on March 4th, 2046.

Of course, additional observations usually lower this remote possibility even further in the case of most newly discovered near Earth asteroids.  Visually, 2014 DX110 isn’t expected to brighten above +15th magnitude as it glides northward through the constellation of Camelopardalis at closest approach Wednesday night.

But the good news is, you can catch the passage of 2014 through the Earth-Moon system Wednesday night courtesy of our friends at the Virtual Telescope Project:

The webcast of the event is expected to go live at 20:30 UT, and will include live commentary.

Its been a busy last few weeks in terms of asteroid flybys, including a passage of Amor NEO asteroid 2014 DU110 earlier today at 15:54 UT/10:54 AM EST at 0.14 A.U.s or just over 20 million kilometres distant. And the folks at the Virtual Telescope Project will be covering another asteroid flyby on Sunday, March 9th starting at 23:00 UT/6:00 PM EST to track the 180 meter asteroid 2014 CU13. This large Apollo NEO is projected to pass 8 lunar distances or over 3 million kilometres away from the Earth on March 11th at 9:05 UT/4:05 AM EST.

It should be easy to pick out the motion of 2014 DX110 moving against the starry background at closest approach in real time. 2014 DX110 is an Apollo-class asteroid, and has an orbital period of 1192 days or about 3.26 years. It also has a fairly shallow inclined orbit relative to the ecliptic traced out by Earth’s path around the Sun, with a tilt of just over 5.7 degrees. This means that 2014 DX110 is approaching the Earth from just southward and behind it in its orbit around the Sun before crossing just inside of our orbit and northward of the ecliptic plane.

The discovery of asteroid 2014 DX110 was announced by the Minor Planet Center on Sunday, March 2nd in electronic circular 2014-E22. The orbit of 2014 DX110 takes it just interior of Earth’s at a perihelion of 0.83 A.U.s from the Sun and out to an aphelion of 3.6 A.U.s into the realm of the asteroid belt between Mars and Jupiter.

Generally speaking, asteroids passing interior to the Moon’s orbit grab our attention for further scrutiny. Looking back through the European Space Agency’s Near-Earth Objects Dynamics Site, asteroid 2014 DX110 also made an undocumented close passage of Earth on March 17th, 1998 at a minimum possible miss distance of 102,300 miles/163,680 kilometres distant, and a similar passage March 22nd, 1982. 2014 DX110 passed sufficiently close enough to Earth on these passages to alter its orbit so that it now returns to our terrestrial neighborhood every 13 odd years during the span of the 21st century. 2014 DX110 will be moving at a velocity of 14.8 kilometres per second relative to Earth on closest approach Wednesday night and will be inside the Earth’s Hill sphere of gravitational influence from March 4th to March 7th, though of course, it’s moving much too fast for capture.

2014 DX110 will be interior of the Moon’s orbit from 18:06 UT/1:06 PM EST on March 5th until 00:07 UT March 6th (7:07 PM EST on the night of March 5th). The large size – about the size of an office block – and the nature of its orbit, coupled with its relatively large velocity relative to the Earth rule out any potential for 2014 DX110 being space junk in solar orbit returning to Earth’s vicinity, though such objects from the Apollo missions and the Chinese Chang’e-2 Moon mission have been recovered as Earth asteroids before.

Such an impact risk, however remote, merits further study to refine the orbit of this potentially hazardous space rock. Surveys such as PanSTARRS, the Catalina Sky Survey and the B612 Foundation’s asteroid hunting Sentinel  space telescope slated for launch as early as 2017 are working to identify dangerous space rocks. The next and more difficult step will be mitigation and working to nudge these asteroids out of harm’s way, hopefully years in advance.

But you can breathe a sigh of relief Wednesday night as asteroid 2014 DX110 passes us at a safe distance. Thanks to Gianluca Masi at the Virtual Telescope Project for bringing this one to our attention!

Did An Icy Collision Produce The Odd Shape Of Asteroid 624 Hektor?

Artist's impression of 624 Hektor, the largest known Trojan asteroid. The dual asteroid is 155 miles (250 kilometers) at its widest. It also has a 7.5-mile (12-mile) moon. Credit: H. Marchis/F. Marchis

Two icy asteroids could have crashed into each other early in the solar system’s history to form the strange-looking 624 Hektor, new research reveals. The 155-mile (250-kilometer) asteroid is the largest known Trojan asteroid, or space rock that follows along with Jupiter in the gas giant’s orbital path.

Hektor also has a moon, which was first discovered in 2006 by another team led by the same lead author, the SETI Institute’s Franck Marchis. It’s taken the astronomers about eight years to get a handle on the complex orbit of the system, a topic that the new research examines in detail. That was partly because the path was so “bizarre”, the team stated, and also because time on the W.M. Keck Observatory telescopes (used to perform the observations) is limited. There are few other observatories that could do the same work, the team added.

The moon, which is about 7.5 miles or 12 kilometers in diameter, orbits its parent asteroid every three days. The moon’s path is about 373 miles (600 km) distant and inclined almost at 45 degrees to the asteroid’s equator.

The Trojan asteroid 624 Hektor is visible in these two adaptive optics observations in July 2006 and October 2008, both performed with the W.M. Keck Observatory's II telescope. Hektor is in the middle of each picture, and its moon in the circles. Credit: WMKO/Marchis
The Trojan asteroid 624 Hektor is visible in these two adaptive optics observations in July 2006 and October 2008, both performed with the W.M. Keck Observatory’s II telescope. Hektor is in the middle of each picture, and its moon in the circles. Credit: WMKO/Marchis

“The orbit of the moon is elliptical and tilted relative to the spin of Hektor, which is very different from other asteroids with satellites seen in the main-belt,” stated Matija Cuk, a paper co-author who is a scientist at the Carl Sagan Center of the SETI Institute. “However, we did computer simulations, which include Hektor being a spinning football shape asteroid and orbiting the Sun, and we found that the moon’s orbit is stable over billions of years.”

While the artist’s conception above shows Hektor as a peanut, the exact shape is still not known for sure. The models and the adaptive optics suggest that it is likely a dual-lobe asteroid. What is better known, however, is that the asteroid is “extremely elongated” and spins in less than seven hours.

The origin of the moon is unclear, but the researchers suggested it could be because of ejecta associated with the collision that formed the asteroid. They said more simulations are needed on that point. What’s more, Hektor has another mystery associated with its composition.

An artist's rendering of a Kuiper Belt object. Image: NASA
An artist’s rendering of a Kuiper Belt object. Image: NASA

“We also show that Hektor could be made of a mixture of rock and ices, similar to the composition of Kuiper belt objects, Triton and Pluto. How Hektor became a Trojan asteroid, located at only 5 times the Earth–Sun distance, is probably related to the large scale reshuffling that occurred when the giant planets were still migrating,” stated Julie Castillo-Rogez, a researcher at NASA’s Jet Propulsion Laboratory who participated in the research.

You can read more about the research in Astrophysical Journal Letters. By the way, the moon does not have a name yet, and the researchers said they are looking for any ideas as long as it fulfills a couple of ideas: “the satellite should receive a name closely related to the name of the primary and reflecting the relative sizes between these objects.” Feel free to share your suggestions in the comments.

Source: W.M. Keck Observatory

Watch a Car-Sized Asteroid Slam Into the Moon

An image of the flash resulting from the impact of a large meteorite on the lunar surface on 11 September 2013, obtained with the MIDAS observatory. Credit: J. Madiedo / MIDAS

Hey, all you astro-photographers/videographers out there: were you shooting the Moon back on September 11, 2013? You may want to review your footage and see if you captured a bright flash which occurred at about 20:07 GMT. Astronomers say a meteorite with the mass of a small car slammed into the Moon at that time and the impact produced a bright flash, and it even would have been easy to spot from the Earth.

According to astronomers Jose M. Madiedo, from the University of Huelva and Jose L. Ortiz, from the Institute of Astrophysics of Andalusia both in Spain, this impact was the longest and brightest confirmed lunar impact flash ever observed, as the “afterglow” of the impact remained visible for 8 seconds.

The astronomers think the bright flash was produced by an impactor of around 400 kg with a width of between 0.6 and 1.4 meters. The rock hit may have hit Mare Nubium at about 61,000 kilometers per hour (38,000 miles per hour) — although the uncertainty of the impact is fairly high, the team says in their paper. But if it is as high as they think, it may have created a new crater with a diameter of around 40 meters. The impact energy was equivalent to an explosion of roughly 15 tons of TNT.

This beats the previous largest impact seen – which occurred just six months earlier in March 2013 – which was estimated to pack as much punch as 5 tons of TNT. Astronomers that explosion was caused by a 40 kg meteoroid measuring 0.3 to 0.4 meters wide, traveling about 90,000 km/hr (56,000 mph.)

How often does an asteroid hit the Moon? Astronomers actually aren’t very sure.

On average, 33 metric tons (73,000 lbs) of meteoroids hit Earth every day, the vast majority of which harmlessly ablates or burns up high in Earth’s atmosphere, never making it to the ground. The Moon, however, has little or no atmosphere, so meteoroids have nothing to stop them from striking the surface.

The lunar impact rate is so uncertain because observations for objects in the mass range of visible impacts from Earth are quite few. But now, astronomers have set up networks of telescopes that can detect them automatically. NASA has the Automated Lunar and Meteor Observatory (ALaMO) at Marshall Space Flight Center, and the Spanish telescopes are part of the Moon Impacts Detection and Analysis System (MIDAS) system.

Lunar meteors hit the ground with so much kinetic energy that they don’t require an oxygen atmosphere to create a visible explosion. The flash of light comes not from combustion but rather from the thermal glow of molten rock and hot vapors at the impact site.

This thermal glow can be detected from Earth as short-duration flashes through telescopes. Generally, these flashes last just a fraction of a second. But the flash detected on September 11, 2013 was much more intense and longer than anything observed before.

Mosaic of zoomed images showing the flash evolution from the Sept. 11, 2013 impact during the first 2 seconds. Time increases from left to right in each row, starting from the upper left. The time interval between two consecutive images in the same row is 0.1 s. Credit: Madiedo, Ortiz, et al. 2014.
Mosaic of zoomed images showing the flash evolution from the Sept. 11, 2013 impact during the first 2 seconds. Time increases from left to right in each row, starting from the upper left. The time interval between two consecutive images in the same row is 0.1 s. Credit: Madiedo, Ortiz, et al. 2014.

“Our telescopes will continue observing the Moon as our meteor cameras monitor the Earth’s atmosphere,” said Madiedo and Ortiz in a press release. “In this way we expect to identify clusters of rocks that could give rise to common impact events on both planetary bodies. We also want to find out where the impacting bodies come from.”

You can read the team’s paper here.