Finally, Let’s Look at the Asteroid Treasure Returned to Earth by OSIRIS-REx

A top-down view of the OSIRIS-REx Touch-and-Go-Sample-Acquisition-Mechanism (TAGSAM) head with the lid removed, revealing the remainder of the asteroid sample inside. Photo: NASA/Erika Blumenfeld & Joseph Aebersold

NASA’s OSIRIS-REx delivered its precious cargo to Earth on September 24th, 2023. The sample from asteroid Bennu is contained inside the spacecraft’s sampling head, and it’s in safe hands at NASA’s Johnson Space Center in Houston. Two stubborn fasteners delayed the opening of the sampling head, but they’ve been removed, and now we can see inside.

What looks like unremarkable dirt is primordial asteroidal material that’s billions of years old, a natural treasure trove that eager scientists can’t wait to begin studying.

Continue reading “Finally, Let’s Look at the Asteroid Treasure Returned to Earth by OSIRIS-REx”

Engineers Finally Open OSIRIS-REx’s Sample Container

OSIRIS REx curation team attempting to remove the two stuck fasteners that are currently prohibiting the complete opening of the TAGSAM head. Photo Date: January 10, 2024. Location: Bldg. 31 - 2nd Floor - OSIRIS-REx lab. Photographer: Robert Markowitz

We have all been there, had that one stubborn jar of jam that we just can’t open. Maybe you grab a rubber band or run it under warm water and its an easy fix but just imagine when the jar is a module from a $1.16 billion interplanetary probe! That’s what happened to NASA engineers when they were trying to recover samples from the OSIRIS-REx module  when they discovered the clamps had cold welded shut! 

Continue reading “Engineers Finally Open OSIRIS-REx’s Sample Container”

Miniaturized Jumping Robots Could Study An Asteroid’s Gravity

Missions focusing on small bodies in the solar system have been coming thick and fast lately. OSIRIS-Rex, Psyche, and Rosetta are all examples of projects that planned or did rendezvous with a small body in the solar system. But one of their biggest challenges is understanding the gravity of these bodies – which was especially evident when Philae, Rosetta’s lander, had a hard time staying on the surface of its intended comet. A new idea from researchers at the University of Colorado Boulder and NASA’s Jet Propulsion Laboratory could help solve that problem – by bouncing small probes around.

Continue reading “Miniaturized Jumping Robots Could Study An Asteroid’s Gravity”

Finally. A Productive Use for Nuclear Weapons: Asteroid Defense

Four different asteroids and how nuclear ablation affects asteroids of different makeups.
A modeling tool developed by scientists at Lawrence Livermore National Laboratory shows the progression an asteroid being broken up by a theoretical nuclear device detonated near the the surface of the near-Earth object. Graphic illustration courtesy of Mary Burkey.

While it has been a favorite disaster movie theme, nuking an incoming asteroid in the real world has been touted as a very bad idea. While a nuclear bomb could possibly obliterate a smaller asteroid, nuking a larger asteroid would only break it into pieces. Those pieces would still threaten our planet, and perhaps even makes things worse by producing multiple impacts across the planet.  

But is using nuclear weapons on an incoming asteroid really a bad idea? If the right technique is used, a nuclear blast could possibly be used as an asteroid deflection device.  

Continue reading “Finally. A Productive Use for Nuclear Weapons: Asteroid Defense”

Psyche Gives Us Its First Images of Space

NASA's Psyche spacecraft has released its first images. The spacecraft is firing on all cylinders as it makes its way toward its target, the metal-rich asteroid with the same name. Image Credit: NASA

NASA’s Psyche mission began eight weeks ago when it launched from the Kennedy Space Center. While it won’t reach its objective, the metal-rich asteroid Psyche, until 2029, the spacecraft has already travelled 26 million km (16 million miles.) During that time, it’s already had its share of success as it ticks off items on its checklist of tests.

Now, we have our first images from Psyche. And while they don’t show us anything about its eventual target, they give us a behind-the-scenes look at how complex spacecraft prepare themselves as they cruise toward their destinations.

Continue reading “Psyche Gives Us Its First Images of Space”

The New Asteroid Moon Discovered by Lucy Just Got its Own Name

Asteroid Dinkinesh and its satellite companions, the "kissing moons". These appear to be a contact binary. Courtesy NASA/JPL/SWRI
Asteroid Dinkinesh and its satellite companions, the "kissing moons" now named Selam. The moon is a contact binary. Courtesy NASA/JPL/SWRI

When NASA’s Lucy mission flew past asteroid Dinkinesh on November 1, 2023, it made the surprising discovery the asteroid had a tiny moon. Then came another surprise. This wasn’t just any moon, but a contact binary moon, where two space rocks are gently resting against each other. Of course, this new and unique moon needed a name, so the International Astronomical Union (IAU) has just approved approved “Selam,” which means peace in Ethiopia’s language.

But, everything’s connected here. Dinkinesh is the Ethiopian name for the Lucy fossil, and Selam is named after another fossil from the same species of human ancestor.

Continue reading “The New Asteroid Moon Discovered by Lucy Just Got its Own Name”

Contact Binary Asteroids are Common, but We’ve Never Seen One Form. So Let’s Make One

Ever want to play a game of cosmic billiards? That’s commonly how the DART mission was described when it successfully changed the orbit of a near-Earth asteroid last year. If you want an idea of how it works, just Google it and an Easter egg from the search giant will give you a general idea. But DART was more like trying to brute force a billiards break – there are many other things you can do with a set of asteroids and impactors on the galactic stage. One of the more interesting is to try to force two asteroids together to form a “contact binary” – the goal of a mission design put forward by a group of scientists from Cornell in a recent paper in Acta Astronautica.

Continue reading “Contact Binary Asteroids are Common, but We’ve Never Seen One Form. So Let’s Make One”

If You’re Trying to Prevent an Asteroid Impact, the Technical and Political Challenges are Staggering

Asteroids are out there, and some pose a threat to Earth. How will we react when we determine that one's coming for us? Credit: N. Bartmann (ESA/Webb), ESO/M. Kornmesser and S. Brunier, N. Risinger (skysurvey.org)

While preparing for the threat of an asteroid strike might seem like a hypothetical exercise, it’s really not. The Solar System has calmed down a lot from earlier times when impacts were more frequent. But it is only a matter of time before an asteroid heads straight for Earth. The probability of an impact is not zero.

Equally as difficult as determining when one will come for us is the task of getting humanity to cooperate and prepare for it.

Continue reading “If You’re Trying to Prevent an Asteroid Impact, the Technical and Political Challenges are Staggering”

An Asteroid Will Occult Betelgeuse on December 12th

Image of Betelgeuse and graphic showing its location
Image of Betelgeuse (Credit NASA/ESA)

I cannot for the life of me remember when it was or what it was but a fair few years ago I remember positioning a telescope to observe an asteroid as it silently and perhaps slightly eerily drifted between us and the Moon. I say eerily as this asteroid had the ability to cause widespread damage had it hit but of course we knew it posed no threat.  I remember at the time thinking it was mind blowing that even today, we still use mathematics with roots (pardon the pun) centuries old to calculate the position of objects in our Solar System. We get to see evidence of this again on 12th December when something rare happens!

Continue reading “An Asteroid Will Occult Betelgeuse on December 12th”

Some of the Moon's Craters are From Interstellar Impacts. Can We Tell Which?

Far Side of Moon Imaged by MoonKAM. This image of the lunar surface was taken by the MoonKAM system onboard NASA’s Ebb spacecraft on March 15, 2012. Credit: NASA/Caltech-JPL/MIT/SRS

By discovering two interstellar objects (ISOs), we know that asteroids and comets from other star systems pass through the Solar System from time to time. By inference, some of these must have crashed into the Moon, creating impact craters. If we could study the impact sites, we might be able to learn about the star systems that they came from.

A new paper suggests there could be a way to determine which lunar craters came from interstellar object impacts. The authors say that young, small craters with high-melt volume near the Moon’s equator are likely the best candidates for ISO-generated craters on the lunar surface.

Continue reading “Some of the Moon's Craters are From Interstellar Impacts. Can We Tell Which?”