Geminid Meteor Shower and Meteorwatch

Credit: VirtualAstro

The Geminid Meteor Shower is the grand finale of astronomical events in 2012 and is usually the most reliable and prolific of the annual meteor showers.

This year we are in for a special treat as the Moon will be absent when the Geminids are at their peak on the evening of the 12th/ 13th of December. This means that the sky should be at its darkest when the shower is expected, and many more of the fainter meteors may be seen.

The Geminid meteor shower is expected to yield in excess of 50 meteors (shooting stars) per hour at peak for those with clear skies, the meteors it produces are usually bright with long persistent trains. If observing opportunities aren’t favorable or possible on the 12th/ 13th, meteor watchers can usually see high meteor activity a day or so either side of the peak.

As well as being the grand finale of 2012, the Geminids are special in another way. Unlike the majority of all the other annual meteor showers the Geminids are thought to be from an object known as 3200 Phaethon – an asteroid not a comet.

To celebrate this long anticipated event, there will be the Geminid Meteorwatch and anyone with an interest in the night sky can join in on Twitter, Facebook and Google+. The event will be an excellent opportunity to learn, share information, experiences, images and more. Whatever your level of interest, wherever you are on the planet Meteorwatch will run for approximately four days. All you need to do is follow along using the #meteorwatch hashtag.

As well as the wealth of information exchanged and shared on Twitter and the other social media outlets, there are helpful guides and information available on Meteorwatch.org so you can get the most out of your #meteorwatch.
To get the ball rolling there is a Hollywood style trailer for the event, purely as a bit of fun and for people of all walks of life to feel inspired and to go outside and look up. You don’t need a telescope or anything, just your eyes and a little bit of patience to see a Geminid meteor.

Good luck

Say Hello to Asteroid 2007 PA8

Radar images of asteroid 2007 PA8 acquired on October 28, 29 and 30. (NASA/JPL-Caltech/Gemini)

Take a good look at asteroid 2007 PA8 — over the past week it was making its closest pass of Earth for the next 200 years… and NASA’s 230-foot (70-meter) -wide Deep Space Network antenna at Goldstone, California snapped its picture as it went by.

All right, maybe no “pictures” were “snapped”… 2007 PA8 is a small, dark body that only came within four million miles (6.5 million kilometers) today, Nov. 5 (0.043 AU, or 17 times the distance from Earth to the Moon). But the radar capabilities of the Deep Space Network antenna in California’s Mojave Desert can bounce radar off even the darkest asteroids, obtaining data that can be used to create a detailed portrait.

In the image above, a composite of radar data acquired on October 28, 29 and 30, we can see the irregular shape of 2007 PA8 as it rotates slowly — only once every 3-4 days. The perspective is looking “down” at the 1-mile (1.6-km) -wide asteroid’s north pole, showing ridges and perhaps even some craters.

Although classified as a Potentially Hazardous Asteroid (PHA) by the IAU’s Minor Planet Center the trajectory of 2007 PA8 is well understood. It is not expected to pose any impact threat to Earth in the near or foreseeable future.

2007 PA8 was discovered by LINEAR on August 9, 2007.

Read more about asteroid radar imaging here, and find out more about asteroids at JPL’s Asteroid Watch site here.

Get more information on the known properties of 2007 PA8 here.

Source: NASA Solar System Exploration. Image credits: NASA/JPL-Caltech/Gemini

You Need Just the Right Amount of Killer Asteroids to Promote Complex Life

Different kinds of asteroid belts
Different kinds of asteroid belts


An artist’s impression of the different configurations of asteroid belts that could occur. Image credit: NASA/ESA/A. Feild, STScI

Sure, asteroids can be planetary annihilators, scouring the surface of a world with fire and molten rock. But asteroids might also help seed a planet with the right ingredients to set up the conditions for life, and give that life encouragement to evolve more complex survival strategies.

As with all things, it’s just about balance. Too many asteroids, and you’ve got an unrelenting cosmic shooting gallery, raining fiery death from above. Too few asteroids, and complex life might not get the raw material it needs to get rolling. Life never gets that opportunity to really shake things up and evolve into more complex forms.

This conclusion comes from Rebecca Martin, a NASA Sagan Fellow from the University of Colorado in Boulder and Mario Livio of the Space Telescope Science Institute in Baltimore, Md. The researchers created a series of theoretical models based on observations of debris disks around other stars, as well as the Jupiter-sized planets discovered so far.

They found that only a fraction of the planetary systems out there have giant planets at the right locations to help create an asteroid belt of the right size. In fact, it looks like the Solar System might be rare and special when it comes to perfectly-sized asteroid belts.

“Our study shows that only a tiny fraction of planetary systems observed to date seem to have giant planets in the right location to produce an asteroid belt of the appropriate size, offering the potential for life on a nearby rocky planet,” said Martin, the study’s lead author. “Our study suggests that our solar system may be rather special.”

There are three potential models for asteroid belt formation in other star systems.

  1. A Jupiter-sized world migrates slowly inward, disrupting the asteroid belt before it can really form. All the potential asteroids are consumed or flung out into deep space. A potential Earthlike world is deprived of the chemicals (and catastrophic incentive) to evolve complex lifeforms. That’s bad
  2. No large Jupiter-sized world forms at all, allowing the solar system to create a massive asteroid belt. Material from this enormous asteroid belt would be too punishing to Earthlike worlds for complex life to stand a chance. Also bad.
  3. A Jupiter-sized world forms in the outer solar system, and only moves in a little, preventing an overly large asteroid belt from forming. There are still enough asteroids out there to seed an Earthlike world with chemicals and evolutionary encouragement, but not enough to set its progress back. That’s us!

To come to this conclusion, Martin and Livio created models of protoplanetary disks around various stars, and then watched what would happen with various Jupiter-sized planets. They compared their models to 90 protoplanetary disks that have been discovered so far by NASA’s Spitzer Space Telescope, and 520 giant planets found orbiting other stars.

So far, only 4% of the systems they’ve observed have the right combination of a compact asteroid belt with a Jupiter-sized planet nearby. This gives researchers a very specific configuration of asteroid belt and planetary arrangement to look for when searching for worlds that could contain complex life.

Original Source: NASA News Release

Deflecting Incoming Asteroids with Paintballs

An artist’s rendering of the asteroid Apophis. Credit: ESA

What would be a way to deflect asteroid Apophis if it gets a little too close for comfort in 2029 or 2036? Pew-pew it with 5 tons of white paintballs. Not only would the multiple mini impacts bump the asteroid off course, but the white paint would cover the surface and reflect more sunlight, and over time, the bouncing of photons off its surface could create enough of a force to push the asteroid off its course.

That’s the idea of the winning entry in this year’s Move an Asteroid Technical Paper Competition, sponsored by the United Nations’ Space Generation Advisory Council. Sung Wook Paek, a graduate student in MIT’s Department of Aeronautics and Astronautics, says if timed just right, pellets full of paint powder, launched in two rounds from a spacecraft at relatively close distance, would cover the front and back of an asteroid, more than doubling its reflectivity, or albedo. The initial force from the pellets would bump an asteroid off course; over time, the sun’s photons would deflect the asteroid even more.

This video portrays how the paintball technique would work:

There have been lots of ideas put forth for possible asteroid deflection, such as using a gravity tractor to pull it off course, hitting it with a projectile or spacecraft to move it, or attaching a solar sail to change its course, to name a few.

Paek said his paintball strategy builds on a solution submitted by last year’s competition winner, who proposed deflecting an asteroid with a cloud of solid pellets. Paek came up with a similar proposal, adding paint to the pellets to take advantage of solar radiation pressure — the force exerted on objects by the sun’s photons.

In his proposal, Paek used the asteroid Apophis as a theoretical test case. This 27-gigaton rock may come close to Earth in 2029, and then again in 2036. Paek determined that five tons of paint would be required to cover the massive asteroid, which has a diameter of 450 meters (1,480 feet). He used the asteroid’s period of rotation to determine the timing of pellets, launching a first round to cover the front of the asteroid, and firing a second round once the asteroid’s backside is exposed. As the pellets hit the asteroid’s surface, they would burst apart, splattering the space rock with a fine, five-micrometer-layer of paint.

But this is not a quick-solution method, as Paek estimates that it would take up to 20 years for the cumulative effect of solar radiation pressure to successfully push the asteroid off its Earthbound trajectory. So if astronomers determine Apophis is a threat in 2029, we’re already too late. Additionally, the paintball method is not an option if estimates change for Asteroid 2012 DA14, which is predicted to pass very close to Earth on February 15, 2013, about 35,000 kilometers (21,000 miles) away.

Plus, using traditional paintballs, or traditional rockets for launching them, may not be ideal. Paek says the violent takeoff may rupture the payload. Instead, he envisions paintballs may be made in space, in ports such as the International Space Station, where a spacecraft could then pick up a couple of rounds of pellets to deliver to the asteroid.

But other substances could also be used instead of paint, such as aerosols that, when fired at an asteroid, “impart air drag on the incoming asteroid to slow it down,” Paek says. “Or you could just paint the asteroid so you can track it more easily with telescopes on Earth. So there are other uses for this method.”

Scientists have said the key to deflecting a dangerous asteroid is to find them early so that a plan can be developed. William Ailor, an asteroid specialist at Aerospace Corporation in California said that the potential for an asteroid collision is a long-term challenge for scientists and engineers.

“These types of analyses are really timely because this is a problem we’ll have basically forever,” Ailor says. “It’s nice that we’re getting young people thinking about it in detail, and I really applaud that.”

Source: MIT

Weekly SkyWatcher’s Forecast: October 22-28, 2012

Mare Nectaris - Credit: Damian Peach

Greetings, fellow SkyWatchers! It’s going to be a great week to enjoy lunar studies, but why don’t we take a look at couple of other interesting objects, too? I think this would be the perfect opportunity to chase an asteroid! Not enough? Then get out your zombie hunting equipment and we’ll have a look at the “Demon Star”, too! Whenever you’re ready to learn a little more about the history and mystery of what’s out there, just meet me in the back yard…

Monday, October 22 – Something very special happened today in 2136 B.C. There was a solar eclipse, and for the very first time it was seen and recorded by Chinese astronomers. And probably a very good thing because in those days the royal astronomers were executed for failure to predict! Today is also the birthday of Karl Jansky. Born in 1905, Jansky was an American physicist as well as an electrical engineer. One of his pioneer discoveries was non-Earth-based radio waves at 20.5 MHz, a detection he made while investigating noise sources during 1931 and 1932. And, in 1975, Soviet Venera 9 was busy sending Earth the very first look at Venus’ surface.

Also today in 1966 Luna 12 was launched towards the Moon – as so shall we be. We’ll continue our lunar explorations as we look for the “three ring circus” of easily identified craters – Theophilus, Cyrillus, and Catherina – a challenging crater which spans 114 kilometers and goes below the lunar surface by 4730 meters. Are you ready to discover a very conspicuous lunar feature that was never officially named? Cutting its way across Mare Nectaris from Theophilus to shallow crater Beaumont in the south, you’ll see a long, thin, bright line. What you are looking at is an example of a lunar dorsum – nothing more than a wrinkle or low ridge. Chances are good that this ridge is just a “wave” in the lava flow that congealed when Mare Nectaris formed. This particular dorsa is quite striking tonight because of low illumination angle. Has it been named? Yes. It is unofficially known as “Dorsum Beaumont,” but by whatever name it is called, it remains a distinct feature you’ll continue to enjoy! Also to the far south along the terminator you will see Mutus, a small crater with black interior and bright, thin west wall crest. Angling further southwest from Mutus, look for a “bite” taken out of the terminator. This is crater Manzinus.

Tuesday, October 23 – Now it’s time to look for Mare Vaporum – “The Sea of Vapors” – on the southwest shore of Mare Serenitatis. Formed from newer lava flow inside an old crater, this lunar sea is edged to its north by the mighty Apennine Mountains. On its northeastern edge, look for the now washed-out Haemus Mountains. Can you see where lava flow has reached them? This lava has come from different time periods and the slightly different colorations are easy to spot even with binoculars.

Further south and edged by the terminator is Sinus Medii – the “Bay in the Middle” of the visible lunar surface. Central on the terminator, and the adopted “center” of the lunar disc, this the point from which latitude and longitude are measured. This smooth plain may look small, but it covers about as much area as the states of Massachusetts and Connecticut combined. During full daylight temperatures in Sinus Medii can reach up to 212 degrees! On a curious note, in 1930 Sinus Medii was chosen by Edison Petitt and Seth Nicholson for a surface temperature measurement at full Moon. Experiments of this type were started by Lord Rosse as early as 1868, but on this occasion Petit and Nicholson found the surface to be slightly warmer than boiling water. Around a hundred years after Rosse’s attempt, Surveyor 6 successfully landed in Sinus Medii on November 9, 1967, and became the very first probe to “lift off” from the lunar surface.

Wednesday, October 24 – Today in 1851, a busy astronomer was at the eyepiece as William Lassell discovered Uranus’ moons Ariel and Umbriel. Although this is far beyond backyard equipment, we can have a look at that distant world. While Uranus’ small, blue/green disc isn’t exactly the most exciting thing to see in a small telescope or binoculars, the very thought that we are looking at a planet that’s over 18 times further from the Sun than we are is pretty impressive! Usually holding close to a magnitude 6, we watch as the tilted planet orbits our nearest star once every 84 years. Its atmosphere is composed of hydrogen, helium and methane, yet pressure causes about a third of this distant planet to behave as a liquid. Larger telescopes may be able to discern a few of Uranus’ moons, for Titania (the brightest) is around magnitude 14.

Let’s begin our lunar studies tonight with a deeper look at the “Sea of Rains.” Our mission is to explore the disclosure of Mare Imbrium, home to Apollo 15. Stretching out 1123 kilometers over the Moon’s northwest quadrant, Imbrium was formed around 38 million years ago when a huge object impacted the lunar surface creating a gigantic basin.

The basin itself is surrounded by three concentric rings of mountains. The most distant ring reaches a diameter of 1300 kilometers and involves the Montes Carpatus to the south, the Montes Ap-enninus southwest, and the Caucasus to the east. The central ring is formed by the Montes Alpes, and the innermost has long been lost except for a few low hills which still show their 600 kilometer diameter pattern through the eons of lava flow. Originally the impact basin was believed to be as much as 100 kilometers deep. So devastating was the event that a Moon-wide series of fault lines appeared as the massive strike shattered the lunar lithosphere. Imbrium is also home to a huge mascon, and images of the far side show areas opposite the basin where seismic waves traveled through the interior and shaped its landscape. The floor of the basin rebounded from the cataclysm and filled in to a depth of around 12 kilometers. Over time, lava flow and regolith added another five kilometers of material, yet evidence remains of the ejecta which was flung more than 800 kilometers away, carving long runnels through the landscape.

Thursday, October 25 – And who was watching the planets in 1671? None other than Giovanni Cassini – because he’d just discovered Saturn’s moon Iapetus.

Tonight let’s discover our own Moon as we take a look at Mare Insularum, the “Sea Of Islands”. Ir will be partially revealed tonight as one of the most prominent of lunar craters – Copernicus – guides the way. While only a small section of this reasonably young mare is now visible southwest of Copernicus, the lighting will be just right to spot its many different colored lava flows. To the northeast is a lunar club challenge: Sinus Aestuum. Latin for the Bay of Billows, this mare-like region has an approximate diameter of 290 kilometers, and its total area is about the size of the state of New Hampshire. Containing almost no features, this area is low albedo and provides very little surface reflectivity. Can you see any of Copernicus’ splash rays beginning to appear yet?

Today is the birthday of Henry Norris Russell. Born in 1877, Russell was the American leader in establishing the modern field of astrophysics. As the namesake for the American Astronomical Society’s highest award (for lifetime contributions to the field), Mr. Russell is the “R” in HR diagrams, along with Mr. Hertzsprung. This work was first used in a 1914 paper, published by Russell.

Tonight let’s have a look at a star that resides right in the middle of the HR diagram as we have a look Beta Aquarii.

Named Sadal Suud (“Luck of Lucks”), this star of spectral type G is around 1030 light-years distant from our solar system and shines 5800 times brighter than our own Sun. The main sequence beauty also has two 11th magnitude optical companions. The one closest to Sadal Suud was discovered by John Herschel in 1828, while the further star was reported by S.W. Burnham in 1879.

Friday, October 26 – It’s big. It’s bright. It’s the Moon! Look for a small, but very bright, small crater that you just can’t miss… Kepler! This great landmark crater named for Johannes Kepler only spans 32 kilometers, but drops to a deep 2750 meters below the surface. It’s a class I crater that’s a geological hotspot! As the very first lunar crater to be mapped by the U.S. Geological Survey, the area around Kepler contains many smooth lava domes reaching no more than 30 meters above the plains. The crater rim is very bright, consisting mostly of a pale rock called anorthosite. The “lines” extending from Kepler are fragments that were splashed out and flung across the lunar surface when the impact occurred. According to records, in 1963 a glowing red area was spotted near Kepler and extensively photographed. Normally one of the brightest regions of the Moon, the brightness value at the time nearly doubled! Although it was rather exciting, scientists later determined the phenomenon was caused by high energy particles from a solar flare reflecting from Kepler’s high albedo surface – a sharp contrast from the dark mare composed primarily of dark minerals of low reflectivity (albedo) such as iron and magnesium. The region is also home to features known as “domes” – similar to Earth’s shield volcanoes – seen between the crater and the Carpathian Mountains. In the days ahead all details around Kepler will be lost, so take this opportunity to have a good look at one awesome small crater.

This evening we are once again going to study a single star, which will help you become acquainted with the constellation of Perseus. Its formal name is Beta Persei and it is the most famous of all eclipsing variable stars. Tonight, let’s identify Algol and learn all about the “Demon Star.”

Ancient history has given this star many names. Associated with the mythological figure Perseus, Beta was considered to be the head of Medusa the Gorgon, and was known to the Hebrews as Rosh ha Satan or “Satan’s Head.” 17th century maps labeled Beta as Caput Larvae, or the “Specter’s Head,” but it is from the Arabic culture that the star was formally named. They knew it as Al Ra’s al Ghul, or the “Demon’s Head,” and we know it as Algol. Because these medieval astronomers and astrologers associated Algol with danger and misfortune, we are led to believe that Beta’s strange visual variable properties were noted throughout history.

Italian astronomer Geminiano Montanari was the first to record that Algol occasionally “faded,” and its methodical timing was cataloged by John Goodricke in 1782, who surmised that it was being partially eclipsed by a dark companion orbiting it. Thus was born the theory of the “eclipsing binary” and this was proved spectroscopically in 1889 by H. C. Vogel. At 93 light-years away, Algol is the nearest eclipsing binary of its kind, and is treasured by the amateur astronomer because it requires no special equipment to easily follow its stages. Normally Beta Persei holds a magnitude of 2.1, but approximately every three days it dims to magnitude 3.4 and gradually brightens again. The entire eclipse only lasts about 10 hours!

Although Algol is known to have two additional spectroscopic companions, the true beauty of watching this variable star is not telescopic – but visual. The constellation of Perseus is well placed this month for most observers and appears like a glittering chain of stars that lie between Cassiopeia and Andromeda. To help further assist you, re-locate last week’s study star, Gamma Andromedae (Almach) east of Algol. Almach’s visual brightness is about the same as Algol’s at maximum.

Saturday, October 27 – Tonight let’s skip the Moon and hunt down an asteroid! We’ll be locating Vesta which will be cruising along the southern border of Taurus, just about a handspan north/northwest of Betelgeuse. However, since asteroids are always on the move, the position will need to be calculated for your area, so use your local planetarium programs to get an accurate map. When you’re ready, let’s talk…

Asteroid Vesta is considered to be a minor planet since its approximate diameter is 525 km (326 miles), making it slightly smaller in size than the state of Arizona. Vesta was discovered on March 29, 1807 by Heinrich Olbers and it was the fourth such “minor planet” to be identified. Olbers’ discovery was fairly easy because Vesta is the only asteroid bright enough at times to be seen unaided from Earth. Why? Orbiting the Sun every 3.6 years and rotating on its axis in 5.24 hours, Vesta has an albedo (or surface reflectivity) of 42%. Although it is about 220 million miles away, pumpkin-shaped Vesta is the brightest asteroid in our solar system because it has a unique geological surface. Spectroscopic studies show it to be basaltic, which means lava once flowed on the surface. (Very interesting, since most asteroids were once thought to be rocky fragments left-over from our forming solar system!)

Studies by the Hubble telescope have confirmed this, as well as shown a large meteoric impact crater which exposed Vesta’s olivine mantle. Debris from Vesta’s collision then set sail away from the parent asteroid. Some of the debris remained within the asteroid belt near Vesta to become asteroids themselves with the same spectral pyroxene signature, but some escaped through the “Kirkwood Gap” created by Jupiter’s gravitational pull. This allowed these small fragments to be kicked into an orbit that would eventually bring them “down to Earth.” Did one make it? Of course! In 1960 a piece of Vesta fell to Earth and was recovered in Australia. Thanks to Vesta’s unique properties, the meteorite was definitely classified as once being a part of our third largest asteroid. Now, that we’ve learned about Vesta, let’s talk about what we can see from our own backyards.

As you can discern from images, even the Hubble Space Telescope doesn’t give incredible views of this bright asteroid. What we will be able to see in our telescopes and binoculars will closely resemble a roughly magnitude 7 “star,” and it is for that reason that I strongly encourage you to visit Heavens Above, follow the instructions and print yourself a detailed map of the area. When you locate the proper stars and the asteroid’s probable location, mark physically on the map Vesta’s position. Keeping the same map, return to the area a night or two later and see how Vesta has moved since your original mark. Since Vesta will stay located in the same area for awhile, your observations need not be on a particular night, but once you learn how to observe an asteroid and watch it move – you’ll be back for more!

Sunday, October 28 – Today in 1971, Great Britain launched its first satellite – Prospero.

Tonight we’ll launch our journey along the southern shore of Mare Humorum and identify ancient crater Vitello. Notice how this delicate ring resembles earlier study Gassendi on the opposite shore. Its slopes have been crushed by the impact that formed crater Lee to its west. As you begin to circle around Mare Humorum and start northward again, you’ll be traveling along the Rupes Kelvin – ending in the spearhead formation of Promentorium Kelvin. Here again is another extremely old feature, a triangular mountainous cape born in the pre-Imbrian period and as much as 4 billion years old. It could be as long as 41 miles and about as wide as 21 miles, but its height is impossible to judge.

Take a breath now, and we’ll look for two more dark patches to guide us on. South of Mare Humorum is darker Paulus Epidemiarum eastward and paler Lacus Excellentiae westward. To their south you will see a complex cojoined series of craters we’ll take a closer look at – Hainzel and Mee. Hainzel was named for Tycho Brahe’s assistant and measures about 70 kilometers in length and sports several various interior wall structures. Power up and look. Hainzel’s once high walls were obliterated on the north-east by the strike that caused Hainzel C and to the north by impact which caused the formation of Hainzel A. To its basic south is eroded Mee – named for a Scottish astronomer. While Crater Mee doesn’t appear to be much more than simple scenery, it spans 172 kilometers and is far older than Hainzel. While you can spot it easily in binoculars, close telescope inspection shows how the crater is completely deformed by Hainzel. Its once high walls have collapsed to the northwest and its floor is destroyed. Can you spot small impact crater Mee E on the northern edge?

Until next week, wishing you clear and steady skies!

Asteroid 2012 TC4 to Buzz Earth on October 12

Asteroid 2012 TC4 as seen by the Remanzacco Observatory team of Ernesto Guido, Giovanni Sostero, Nick Howes on Oct. 9, 2012.

Asteroid 2012 TC4 will give Earth a relatively close shave on October 12, 2012, passing at just a quarter of the distance to the orbit of the Moon. Discovered by Pan-STARRS observatory in Hawaii just last week on October 4, 2012, and it will pass by at about 88,000 kilometers (59,000 miles) away. Estimates on the size of this space rock vary from 17 to 30 meters, but NASA has indicated they will have telescopes trained on the asteroid as it makes its near Earth flyby — closest approach is just before 06:00 UTC (2:00 a.m. EDT) on Friday. Radar measurements can provide more details on the asteroid’s size and orbital characteristics.

NASA’s Asteroid Watch has assured there is no chance this asteroid will hit Earth.

The Slooh Space Camera is providing live coverage RIGHT NOW (at the time of this posting) on Thursday, October 11th, live on Slooh.com, free to the public, starting at 2:30 p.m. PDT / 5:30 p.m. EDT / 21:30 UTC — accompanied by real-time discussions with Slooh President, Patrick Paolucci; Slooh Outreach Coordinator, Paul Cox; and Astronomy Magazine columnist, Bob Berman.

Viewers are in for a special treat as asteroid TC4 will be in the same field of view as the planet Neptune during Slooh’s live coverage.

According Astro Bob, at around the time of closest approach, 2012 TC4 will be sailing through the stars of Sagittarius at approximately one degree (two full moon diameters) every 5 minutes.

This asteroid will reach the magnitude 13.7 on October 12 around 02:00 UTC, according to the Remanzacco Observatory team of Ernesto Guido, Giovanni Sostero, Nick Howes.

You can see an animation of Remanzacco’s observations here.

A view of the orbital parameters of asteroid 2012 TC4 from JPL.

Recent UK Fireball Could Not Have “Skipped” Around the World, New Analysis Says

The meteoroid seen over the UK on September 21, 2012 has created quite a sensation – make that a several sensations. First, the bright object(s) in the night sky were seen across a wide area by many people, and the brightness and duration – 40 to 60 seconds reported and videoed by some observers – had some experts wondering if the slow moving light-show might have been caused by space junk. But analysis by satellite tracker Marco Langbroek revealed this was likely an Aten asteroid, asteroid which have orbits that often cross the Earth’s orbit, but their average distance from the Sun is less than 1 AU, the distance from the Earth to the Sun.

Atens are fairly unusual, making this a rather unique event. But then came another analysis that seemed to be so crazy, it might have been true: this meteoroid may have skipped like a stone in and out of Earth’s atmosphere, where it slowed enough to orbit the Earth until appearing as another meteor over Canada, just a few hours after it was seen over the UK and northern Europe.

How amazing that would have been! And there was much speculation about this possibility. But, it turns out, after more details emerged and further investigation ensued, it is not possible that the space rock could have boomeranged around the world and been seen in again 2½ hours later over Canada. However, the current thinking is that at least one or two of the largest pieces retained enough velocity that they went into an elliptical Earth orbit, and went perhaps a half an orbit around Earth.

“At first it seemed natural to consider a possible dynamical linkage (between the UK and Canadian meteors), partly because the precise location and time over Quebec/Ontario was not well-known early on,” said aerospace engineer and meteor expert Robert Matson, in an email to Universe Today. Matson worked extensively with Esko Lyytinen, a member of the Finnish Fireball Working Group of the Ursa Astronomical Association, to analyze the possible connection between the September 21 UK fireball, and the Quebec fireball that followed about 2½ hours later.

At first, the time of the fireball sighting over southeastern Canada and northeastern USA was in doubt, but two Canadian all-sky cameras from the Western Meteor Physics Group captured the meteor, providing an accurate time.

“And once I triangulated the location to a spot between Ottawa and Montreal, a linkage to the UK fireball was no longer possible due to the longitude mismatch,” Matson said.

Additionally, the 153-minute time difference between meteors places a strict limit on the maximum longitude difference for a “skipping” meteoroid of roughly 38 degrees. This would put the final perigee well off the coast of Newfoundland, south of Greenland, Matson added.

More facts emerged, putting a death knoll on the connection between the two.

“Independent of the longitude mismatch, triangulation of the Canadian videos revealed that the entry angle was quite steep over Quebec – quite at odds with what an orbiting remnant from a prior encounter would have had,” Matson said. “So the meteors are not only unrelated, their respective asteroid sources would have been in different solar orbits.”

Image of fireball taken on Feb. 25, 2004 by the Elginfield CCD camera from the University of Western Ontario.

Another duo of astronomers from the British Astronomical Association, John Mason and Nick James concurred, also noting the shallow angle of the UK fireball, in addition to its slow speed. “We get velocities of 7.8 and 8.5 km/s and a height of 62 km ascending,” they wrote in the BAA blog. “These velocities and the track orientation and position are not at all consistent with ongoing speculation that there is a connection between this fireball and a fireball seen in south-eastern Canada/north-eastern USA 155 minutes later.”

But did parts of the meteoroid survive and skip out of the atmosphere? “Nearly all of the fragments of the meteoroid did just come in for good during and shortly after the UK passage, but at least one or two of the largest pieces retained enough velocity that they went into elliptical earth orbit,” Matson said. “The perigee of that orbit was a little over 50 km above the UK. The apogee would have been half an orbit later, possibly thousands of kilometers above the South Pacific, south of New Zealand.”

Just how high the apogee altitude was depends on how much the meteoroid decelerated over the UK, Matson added.

“This is why Esko, myself and others are very interested in determining the velocity of those fragments after they passed through perigee,” he said. “Below 7.9 km/sec, and they never get back out of the atmosphere; between 7.9 and 11.2 km/sec, they go into orbit — and we believe a couple of the biggest pieces were in the lower half of this range.”

But Matson said that if any remnant or remnants of the UK fireball did “skip” out of the atmosphere, they certainly had to come back in for good somewhere on the planet. “It is even remotely possible that it happened over Quebec,” Matson said. “But the laws of orbital mechanics do not allow an aerobraked fragment of the UK meteoroid to reenter over Quebec only 2½ hours later. It would have to be more than 4 hours later to line up with Quebec.”

The most likely scenario, Matson said, is that the surviving portion(s) of the UK meteoroid came in for good less than 2½ hours later, with the only possible locations during that window being the North Atlantic, Florida, Cuba, Central America, the Pacific, New Zealand, Australia, the Indian Ocean, the Arabian Peninsula, Turkey or southern Europe. Of these, the northern hemisphere locations would be favored.

So perhaps we haven’t heard the last of this meteoroid!

As crazy as the bouncing bolide sounds, it has happened in the past, according to Kelly Beatty at Sky and Telescope, who mentioned at least one instance where a large meteoroid streaked across the sky and then returned to interplanetary space. This sighting took place over the Rocky Mountains in broad daylight on August 10, 1972, and the meteoroid came as close as 35 miles (57 km) above Earth’s surface before skipping out into space. Beatty added that its velocity was too fast to become captured and return again.

You can read more analysis of the UK fireball being an Aten asteroid by Phil Plait at Bad Astronomy

Hat tip: Luke Dones

This article was updated on 10/9/12

Vesta’s Deep Grooves Could Be “Stretch Marks” From Impact

Dawn image of Vesta showing its nearly circumferential equatorial grooves (NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)

Even though NASA’s Dawn spacecraft has departed Vesta the trove of data it’s gathered about this fascinating little world continues to fuel new discoveries. Most recently, some researchers are suggesting that Vesta’s curious grooves — long, deep troughs that wrap around its equator, noticed immediately after Dawn came within close proximity — are actually features called graben, the results of surface expansion along fault lines.

In Vesta’s case, the faults likely may have come from whatever major collision created the enormous central peak that rises almost three times the height of Mt. Everest from its south pole… and the expansion could be the result of differentiation of its interior — a separation of core, mantle and crust that’s much more planet-like than anything asteroidish.


On smaller asteroids and moons, stress fractures tend to have a “V” shape, cutting inwards to a sharp point. But the troughs on Vesta are more rounded, with a “U” shape that results from surface material slumping downwards as the surface pulls apart. Found on larger worlds like Earth, the Moon, Mars, Mercury — and now possibly Vesta as well — graben are shaped by motions below the crust and not just the splitting of the surface.

The biggest of Vesta’s troughs, Divalia Fossa, is 465 kilometers (289 miles) long, 22 km (13.6 mi) wide and 5 km (3 mi) deep… longer and three times deeper than the Grand Canyon.

Animation of Vesta rotating made from Dawn images and assembled by The Planetary Society’s Emily Lakdawalla

If the researchers are correct and these are indeed graben, rather than just fractures or grooves carved into the surface by another process, Vesta probably had a lot more going on inside it than does your typical asteroid.

“By saying it’s differentiated, we’re basically saying Vesta was a little planet trying to happen,” said Debra Buczkowski of the Johns Hopkins University Applied Physics Laboratory (JHUAPL), lead author of a new paper titled “Large-scale troughs on Vesta: A signature of planetary tectonics” scheduled to be published by the AGU on Sept. 29.

Read more: Is Vesta a Planet Among Asteroids?

Unlike its big sister Ceres, the largest world among the asteroids and Dawn’s next destination, Vesta isn’t officially classified as a dwarf planet because its shape isn’t spherical enough — a flagrant violation of IAU Planetary Code Regulation No. 2. Rather it’s more flattened, like a walnut. This of course is also likely the result of the impact Vesta sustained at its south pole (which also may be responsible for its rapid 5.35-hour rotation rate, helping to bulge out the equatorial region and possibly even provide an alternate source for the trough “stretch marks”) and so begs the question, was Vesta once a dwarf planet? And if so, does severe reconstruction by an impact event “reclassify” it as something else? What, then? Ex-dwarf planet? A planet-formerly-known-as-dwarf?An undwarf?

I’m sure the IAU is already anticipating the contretemps.

“We have been calling Vesta the smallest terrestrial planet. The latest imagery provides much justification for our expectations. They show that a variety of processes were once at work on the surface of Vesta and provide extensive evidence for Vesta’s planetary aspirations.”

– Chris Russell, Dawn mission principal investigator at UCLA

Read more on the American Geophysical Union’s press release here, and follow the latest from NASA’s Dawn mission here.

Study Looks at Making Asteroid Mining Viable

Artist concept of the Robotic Asteroid Prospector. Credit: Marc Cohen et al.

There’s been a lot of buzz in the media lately about mining asteroids, largely brought on by the introduction of Planetary Resources, Peter Diamandis’ new venture into the industry. But is this business proposition actually viable? NASA’s Innovative Advanced Concepts is funding a study that hopes to answer that question.

Called the Robotic Asteroid Prospector proposal, the project is part of the NIAC’s Phase I program awardees. It is headed by Dr. Marc Cohen, an architect based in Palo Alto California, with help from Warren James, a trajectory expert, Kris Zacny, a roboticist at Honeybee Robotics and Brad Blair, a mineral economist. Their proposal studies the fundamentals of some major questions facing the asteroid mining industry. What kinds of mission and spacecraft design are necessary? Is the right kind of mining technology available? And most importantly, is there even a viable business model for doing it in the first place?

Dr. Cohen himself is skeptical that there is, but points out that’s part of the reason he’s so interested in performing the research. Contributing to his skepticism are the numerous assumptions the proposal is based on. These include a telescope in Venus orbit to help the search for near-Earth objects (one of NASA’s primary mission statements, and similar to the B612 Foundation’s space telescope that will hunt for Near Earth Asteroids) and regular commercial access to a service base located in a Lagrange point from which to launch the missions.

“We’re trying to make the assumptions really clear, specific and explicit, so we understand what the trade-offs are,” Dr. Cohen told Universe Today. “One thing we’re being very careful about is not going in with any preconceptions.”

The assumptions lead to a spacecraft design, possibly using a solar-thermal propulsion system, that launches to a NEO from the Lagrange point station, mines and processes the material at the asteroid and then returns it to the Lagrange point for shipment back to Earth.

Dr. Cohen explained that the team is trying to find the requirements that would make a robotic asteroid program commercially successful.

There are still plenty of challenges to solve, including developing trajectories that allow the spacecraft to make repeated, short trips to the asteroid it is mining and handling any sort of technical problems without a human presence nearby. If it manages to resolve some of those difficulties, the project could result in the outlines of one of the backbones of the future space economy. It might also attract funding for the Phase II round of funding from NIAC next year.

For more information about the RAP, see the NIAC website

How Many Asteroids Are Out There?

Answer: a LOT. And there’s new ones being discovered all the time, as this fascinating animation by Scott Manley shows.


Created using data from the IAU’s Minor Planet Center and Lowell Observatory, Scott’s animation shows the progression of new asteroid discoveries since 1980. The years are noted in the lower left corner.

As the inner planets circle the Sun, asteroids light up as they’re identified like clusters of fireflies on a late summer evening. The clusters are mainly positioned along the outer edge of Earth’s orbit, as this is the field of view of most of our telescopes.

Once NASA’s WISE spacecraft begins its search around 2010 the field of view expands dramatically, as well as does the rate of new discoveries. This is because WISE’s infrared capabilities allowed it to spot asteroids that are composed of very dark material and thus reflect little sunlight, yet still emit a telltale heat signature.

While Scott’s animation gives an impressive — and somewhat disquieting — illustration of how many asteroids there are knocking about the inner Solar System, he does remind us that the scale here has been very much compacted; a single pixel at the highest resolution corresponds to over 500,000 square kilometers! So yes, over half a million asteroids is a lot, but there’s also a lot of space out there (and this is just a 2D top-down view too… it doesn’t portray any vertical depth.)

While most asteroids are aligned with the horizontal plane of the Solar System, there are a good amount whose orbits take them at higher inclinations. And on a few occasions they even cross Earth’s orbit.

(Actually, on more than just a few.)

Read: 4700 Asteroids Want to Kill You

An edge-on view of the Solar System shows the positions of asteroids identified by the NEOWISE survey. About 4700 potentially-hazardous asteroids (PHAs) have been estimated larger than 100 meters in size. (NASA/JPL-Caltech)

As far as how many asteroids there are… well, if you only consider those larger than 100 meters orbiting within the inner Solar System, there’s over 150 million. Count smaller ones and you get even more.

I don’t know about you but even with the distances involved it’s starting to feel a little… crowded.

You can see more of Scott Manley’s videos on YouTube here (including some interesting concepts on FTL travel) and learn more about asteroids and various missions to study them here.

Inset image: the 56-km (35-mile) wide asteroid Ida and its satellite, seen by the Galileo spacecraft in 1993. (NASA)