3552 Don Quixote… Leaving Our Solar System?

In this artist's concept, a narrow asteroid belt filled with rocks and dusty debris orbits a star similar to our own sun. Image credit: NASA/JPL-Caltec

[/caption]

“Tell me thy company, and I’ll tell thee what thou art…” In this case it is Asteroid 3552 Don Quixote – one of the most well-known of Near Earth Asteroids. You may know its name, but did you know it has possible cometary origin? It may very well be one of the Jupiter-Family Comets just waiting for its turn to be ejected from our own solar system.

Asteroid 3552 Don Quixote was discovered by Paul Wild, on September 26, 1983 and has recently been part of a study where it has been virtually cloned one hundred times into hypothetical asteroids to further understand orbital evolution of bodies of its type. It is commonly assumed that NEAs like Quixote may have originated from a parent body between Mars and Jupiter, where they smashed into existence due to the larger planet’s gravity. From there the rocky debris took up positions at libration points – some pieces becoming Trojan asteroids and others Main Belt. However, current theory points to evidence that bodies like 3552 may have been small conglomerates from the solar nebula, unable to form into a larger mass due to Jupiter’s influence. Like past models, these asteroids collided numerous times from planetary perturbation to become what and where they are today.

“The numbers and masses of protoplanets and the time required to grow a protoplanet depend strongly on the initial conditions of the disk. The elasticity of the collision, does not significantly affect planetesimal growth over longtime scale. Most of the asteroids move between Mars and Jupiter and collisions occur frequently.” says Suryadi Siregar. “These collisional destructions occurred so often during the lifetime of the Solar System, that practically all the asteroids we now see are fragments of their original parent bodies. Some may be found in unstable zone like those of the Kirkwood gaps, in which they became the sources of Apollo-Amor-Aten asteroids (AAAs). This group is the main reference in the classification of NEAs.”

What makes Don Quixote, well… a little bit different? In this case it’s albedo and spectral signature. Its physical characteristics don’t quite fit in with our current understanding of cometary nuclei, as well as its orbital evolution in comparison with our solar system motion. Physically it is an asteroid but dynamically it is a comet…. A body in search of a collision on a grand scale. Through the use of theoretical models, the study has found that a percentage of Quixote clones will eventually find their way into the Sun, but with a bit of luck, asteroid 3552 will escape a fiery ending.

According to planetary astrophysicist Suryadi Siregar: “Asteroid 3552 Don Quixote is a clear example of the complexity of motion that can be exhibited by purely gravitating bodies in the Solar System. All planets have key roles to play in the evolution of 3552 Don Quixote. This asteroid also serves as an example of behavior chaotic that can cause asteroid to migrate outward, and may be followed by escaping from the Solar System.”

What can we say besides, “One man scorned and covered with scars still strove with his last ounce of courage to reach the unreachable stars; and the world was better for this…”

Original Story Source: Cornell University Library.

Latest Image from Dawn: View of Vesta Getting Sharper

The Dawn spacecraft took this image of Vesta on July 1, 2011. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

The Dawn spacecraft is getting closer to asteroid/protoplanet Vesta, and the view is getting better! Here’s the latest image, which was obtained with Dawn’s framing camera on July 1, 2011 and just released today. It was taken from a distance of about 62,000 miles (100,000 kilometers). Each pixel in the image corresponds to roughly 5.8 miles (9.3 kilometers). Features like craters are starting to sharpen as the spacecraft moves closer, as well as the lumps, bumps and variations in color.

The most exciting part of this mission will be finally figuring out what Vesta really is. Here, it’s looking more like a squished version of our own Moon; a little smoother than I was expecting from some of the earlier images.

Some astronomers classify Vesta as an asteroid, some a protoplanet, and some are on the fence. It’s not really considered a dwarf planet, but the classification could be re-evaluated when Dawn gets in orbit of Vesta and studies it in detail.

Below is an “enhanced” view by Stu Atkinson:

The latest Vesta image from Dawn, with enhancements by Stu Atkinson.

Stu sent us this image with the caveat that he created it for his own amusement/entertainment, and that it’s not a scientifically enhanced image — i.e., it’s not to be 100% relied upon for feature identification, etc. But some of the craters show up a tad better.

Vesta is pretty much an enigma: too big for an asteroid and more evolved than other asteroid. But it is kind of too small for a planet (even a dwarf one). But that’s why it is so interesting so scientists and getting Dawn in orbit will be exciting.

Stay tuned for more!

Dawn Closing in on Asteroid Vesta as Views Exceed Hubble

Hubble and Dawn Views of Vesta. These views of the protoplanet Vesta were obtained by NASA's Dawn spacecraft and NASA's Hubble Space Telescope. The image from Dawn, on the left, is a little more than twice as sharp as the image from Hubble, on the right. The image from Hubble, which is in orbit around the Earth, was obtained on May 14, 2007, when Vesta was 109 million miles (176 million kilometers) away from Earth. Dawn's image was taken on June 20, 2011, when Dawn was about 117,000 miles (189,000 kilometers) away from Vesta. The framing cameras were developed and built under the leadership of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/PSI and NASA/ESA/STScI/UMd

[/caption]

A new world in our Solar System is about to be unveiled for the first time – the mysterious protoplanet Vesta, which is the second most massive object in the main Asteroid Belt between Mars and Jupiter.

NASA’s Dawn Asteroid orbiter has entered its final approach phase to Vesta and for the first time is snapping images that finally exceed those taken several years ago by the iconic Hubble Space Telescope.

“The Dawn science campaign at Vesta will unveil a mysterious world, an object that can tell us much about the earliest formation of the planets and the solar system,” said Jim Adams, Deputy Director, Planetary Science Directorate at NASA HQ at a briefing for reporters.

Vesta holds a record of the earliest history of the solar system. The protoplanet failed to form into a full planet due to its close proximity to Jupiter.

Check out this amazing NASA approach video showing Vesta growing in Dawn’s eyes. The compilation of navigation images from Dawn’s framing camera spans about seven weeks from May 3 to June 20 was released at the NASA press briefing by the Dawn science team.

Dawn’s Approach to Vesta – Video

Best View from Hubble – Video

Be sure to notice that Vesta’s south pole is missing due to a cataclysmic event eons ago that created a massive impact crater – soon to be unveiled in astounding clarity. Some of that colossal debris sped toward Earth and survived the terror of atmospheric entry. Planetary Scientists believe that about 5% of all known meteorites originated from Vesta, based on spectral evidence.

After a journey of four years and 1.7 billion miles, NASA’s revolutionary Dawn spacecraft thrusting via exotic ion propulsion is now less than 95,000 miles distant from Vesta, shaping its path through space to match the asteroid.

The internationally funded probe should be captured into orbit on July 16 at an initial altitude of 9,900 miles when Vesta is some 117 million miles from Earth.

After adjustments to lower Dawn to an initial reconnaissance orbit of approximately 1,700 miles, the science campaign is set to kick off in August with the collection of global color images and spectral data including compositional data in different wavelengths of reflected light.

Dawn Approaching Vesta
Dawn obtained this image on June 20, 2011. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/PSI and NASA/ESA/STScI/UMd

Dawn will spend a year investigating Vesta. It will probe the protoplanet using its three onboard science instruments – provided by Germany, Italy and the US – and provide researchers with the first bird’s eye images, global maps and detailed scientific measurements to elucidate the chemical composition and internal structure of a giant asteroid.

“Navigation images from Dawn’s framing camera have given us intriguing hints of Vesta, but we’re looking forward to the heart of Vesta operations, when we begin officially collecting science data,” said Christopher Russell, Dawn principal investigator, at the University of California, Los Angeles (UCLA). “We can’t wait for Dawn to peel back the layers of time and reveal the early history of our solar system.”

Because Dawn is now so close to Vesta, the frequency of imaging will be increased to twice a week to achieve the required navigational accuracy to successfully enter orbit., according to Marc Rayman, Dawn Chief Engineer at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“By the beginning of August, it will see Vesta with more than 100 times the clarity that Hubble could ever obtain,” says Rayman.

Vesta in Spectrometer View
On June 8, 2011, the visible and infrared mapping spectrometer aboard NASA's Dawn spacecraft captured the instrument's first images of Vesta that are larger than a few pixels, from a distance of about 218,000 miles (351,000 kilometers). The image was taken for calibration purposes. An image obtained in the visible part of the light spectrum appears on the left. An image obtained in the infrared spectrum, at around 3 microns in wavelength, appears on the right. The spatial resolution of this image is about 60 miles (90 kilometers) per pixel. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF

Dawn will gradually edge down closer to altitudes of 420 miles and 120 miles to obtain ever higher resolution orbital images and spectal data before spiraling back out and eventually setting sail for Ceres, the largest asteroid of them all.

Dawn will be the first spacecraft to orbit two celestial bodies, only made possible via the ion propulsion system. With a wingspan of 65 feet, it’s the largest planetary mission NASA has ever launched.

“We’ve packed our year at Vesta chock-full of science observations to help us unravel the mysteries of Vesta,” said Carol Raymond, Dawn’s deputy principal investigator at JPL.

“This is an unprecedented opportunity to spend a year at a body that we know almost nothing about,” added Raymond. “We are very interested in the south pole because the impact exposed the deep interior of Vesta. We’ll be able to look at features down to tens of meters so we can decipher the geologic history of Vesta.”

Possible Piece of Vesta
Scientists believe a large number of the meteorites that are found on Earth originate from the protoplanet Vesta. A cataclysmic impact at the south pole of Vesta, the second most massive object in the main asteroid belt, created an enormous crater and excavated a great deal of debris. Some of that debris ended up as other asteroids and some of it likely ended up on Earth. Image Credit: NASA/JPL-Caltech
Dawn Trajectory and Current Location on June 29, 2011. Credt: NASA/JPL
Dawn launch on September 27, 2007 by a Delta II rocket from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

Read my prior feature about Dawn here

Close Approach: Images and Animations of Asteroid 2011 MD

Animation of 2011 MD on Monday, June 27, 2011 at 09:30 UTC. Credit: Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South. Click for original larger version.

[/caption]

Today, Monday June 27 at about 17:00 UT, asteroid designated as 2011 MD will pass only 12,300 kilometers (7,600 miles) above the Earth’s surface. Here are some images and an animation of the asteroid’s close approach taken around 09:30 UT taken by Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South through a 2.0-m f/10.0 Ritchey-Chretien and a CCD. The trio of astronomers say that at the time these images were taken, the asteroid had a magnitude of about 14.5. At the moment of its close approach, 2011 MD will be bright as magnitude ~11.8.

The animation above shows the object’s movement in the sky. Each image was 20-second exposure.

See more below from Guido, Howes and Sostero.

Below is a single 20-second exposure also taken by the 2 meter telescope at Faulkes Telescope South, and just below that is another image using a RGB filter.

2011 MD on Monday, June 27, 2011 at 09:30 UTC. Credit: Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South
2011 MD on Monday, June 27, 2011 at 09:30 UTC with RBG filter. Credit: Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South.

Some early observers have suggested that 2011 MD — which is only 5-20 meters in diameter — could possibly be a piece of space junk, such as a rocket booster. However, additional observations and further calculations show that this asteroid could not have been close enough to Earth any time during the space age to have started off as a rocket booster.

Trajectory of 2011 MD from the general direction of the Sun. Credit: NASA

Thanks to Ernesto Guido, Nick Howes and Giovanni Sostero for sharing their image with Universe Today. See more of their work, as well as more information about asteroid 2011 MD at their Remanzacco Observatory website. See here for more information on the Faulkes Telescope.

Again, scientists at NASA’s Asteroid Watch program at JPL say there is no danger of the asteroid hitting Earth. “There is no chance that 2011 MD will hit Earth but scientists will use the close pass as opportunity to study it w/ radar observations,” they said on the the @AsteriodWatch Twitter feed. “Asteroid 2011 MD measures about 10 meters. Stony asteroids less than 25 m would break up in Earth’s atmosphere and not cause ground damage.”

Getting Closer: Images, Video of Asteroid 2011 MD

Asteroid 2011 MD. Credit: Peter Lake

[/caption]

Accomplished amateur astronomer and blogger Peter Lake, a.k.a “AstroSwanny” from Australia captured some of the first images of what will be a very close pass of Earth by asteroid 2011 MD. He actually took the image at 07:00 UTC on June 26th with a 20 inch telescope in New Mexico controlled via his iPhone, through the Global Rent-A-Scope program. Ahh, the wonders of technology! As Peter says, “Its not every day, that an asteroid misses by less than 3-5 earth Radii.”

The asteroid, which was only detected last week, is about 25 to 55 feet (8 to 18 m) across, is expected to pass less than 8,000 miles above Earth’s surface around 1 p.m. EDT (17:00 UT) on Monday, June 27th. The time of closest approach will be observable from South Africa and parts of Antarctica, but the approach will be visible across Australia, New Zealand, southern and eastern Asia, and the western Pacific.

Below is a video he compiled of the his observations of the pass, and used ten 120-second images for the video.

Peter also noted that “Its close approach is being followed with great interest, more for honing the skills and techniques of the Minor Planet Center and the network of asteroid hunting astronomers, rather than because it poses any real danger.”

Thanks to Peter and his Aartscope Blog for sharing these views with Universe Today.

Another Asteroid To Give Earth a Close Shave June 27, 2011

2011 MD's orbital parameters. Credit: JPL Small-Body Database Browser

[/caption]
A newly discovered house-sized asteroid will miss the Earth by less than 17,700 km (11,000 miles) on Monday June 27, 2011. That’s about 23 times closer than the Moon. The size and location of the asteroid, named 2011 MD, should allow observers in certain locations to take a look at the space rock, even with small telescopes. It’s closest approach will be at 13:26 UTC on June 27.

UPDATE 6/25: According to the latest info on JPL’s Solar System Dynamics website, the closest approach has been updated to be Monday, June 27, at about 17:00 UTC. At that time it will be about 0.0001247 AU, or 18,665 km from the planet’s center and about 12,280 km (about 7,500 miles) from its surface.

According to Skymania, 2011 MD was found just yesterday, June 22, by LINEAR, a pair of robotic telescopes in New Mexico that scan the skies for Near Earth Asteroids.

As of now, asteroid 2011 MD is estimated to be between 9 to 45 meters (10 to 50 yards) wide. Dr. Emily Baldwin, of Astronomy Now magazine, said there is no danger of the asteroid hitting Earth, and even if it did enter the atmosphere, an asteroid this size would “mostly burn up in a brilliant fireball, possibly scattering a few meteorites.”

JPL scientists agree. NASA’s Asteroid Watch program at JPL wrote in a Twitter post on June 23rd saying, “There is no chance that 2011 MD will hit Earth but scientists will use the close pass as opportunity to study it w/ radar observations,” adding later, “Asteroid 2011 MD measures about 10 meters. Stony asteroids less than 25 m would break up in Earth’s atmosphere & not cause ground damage.”

To find out updated information on 2011 MD’s ephemeris, physical parameters and more, including an orbit diagram and close-approach data, see this page on JPL’s Solar System Dynamics website.

Astronomy Cast EP. 220: Mass Extinction Events

The Earth seems like a safe place, most of the time. But we have evidence of terrible catastrophes in the ancient past, times when almost all life on Earth was wiped out in a geologic instant. What could have caused so much devastation? And will something like this happen again?

Click here to download the episode.
Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Mass Extinction Events shownotes and transcript.

Hit and Run Asteroid Caused Scheila’s Comet-like Behavior

Faint dust plumes bookend asteroid (596) Scheila, which is overexposed in this composite. Visible and ultraviolet images from Swift's UVOT (circled) are merged with a Digital Sky Survey image of the same region. The UVOT images were acquired on Dec. 15, 2010, when the asteroid was about 232 million miles from Earth. Credit: NASA/Swift/DSS/D. Bodewits (UMD)

Asteroid or comet? That was the question astronomers were asking after an asteroid named Scheila had unexpectedly brightened, and seemingly sprouted a tail and coma. But follow-up observations by the Swift satellite and the Hubble Space Telescope show that these changes likely occurred after Scheila was struck by a much smaller asteroid.

“Collisions between asteroids create rock fragments, from fine dust to huge boulders, that impact planets and their moons,” said Dennis Bodewits, an astronomer at the University of Maryland in College Park and lead author of the Swift study. “Yet this is the first time we’ve been able to catch one just weeks after the smash-up, long before the evidence fades away.”

[/caption]

On Dec. 11, 2010, images from the University of Arizona’s Catalina Sky Survey, a project of NASA’s Near Earth Object Observations Program, revealed the Scheila to be twice as bright as expected and immersed in a faint comet-like glow. Looking through the survey’s archived images, astronomers inferred the outburst began between Nov. 11 and Dec. 3.

Three days after the outburst was announced, Swift’s Ultraviolet/Optical Telescope (UVOT) captured multiple images and a spectrum of the asteroid. Ultraviolet sunlight breaks up the gas molecules surrounding comets; water, for example, is transformed into hydroxyl (OH) and hydrogen (H). But none of the emissions most commonly identified in comets — such as hydroxyl or cyanogen (CN) — showed up in the UVOT spectrum. The absence of gas around Scheila led the Swift team to reject the idea that Scheila was actually a comet and that exposed ice accounted for the brightening.

Hubble observed the asteroid’s fading dust cloud on Dec. 27, 2010, and Jan. 4, 2011. Images show the asteroid was flanked in the north by a bright dust plume and in the south by a fainter one. The dual plumes formed as small dust particles excavated by the impact were pushed away from the asteroid by sunlight.

The science teams from the two space observatories found the observations were best explained by a collision with a small asteroid impacting Scheila’s surface at an angle of less than 30 degrees, leaving a crater 1,000 feet across. Laboratory experiments show a more direct strike probably wouldn’t have produced two distinct dust plumes. The researchers estimated the crash ejected more than 660,000 tons of dust–equivalent to nearly twice the mass of the Empire State Building.

The Hubble Space Telescope imaged (596) Scheila on Dec. 27, 2010, when the asteroid was about 218 million miles away. Scheila is overexposed in this image to reveal the faint dust features. The asteroid is surrounded by a C-shaped cloud of particles and displays a linear dust tail in this visible-light picture acquired by Hubble's Wide Field Camera 3. Because Hubble tracked the asteroid during the exposure, the star images are trailed. Credit: NASA/ESA/D. Jewitt (UCLA)

“The Hubble data are most simply explained by the impact, at 11,000 mph, of a previously unknown asteroid about 100 feet in diameter,” said Hubble team leader David Jewitt at the University of California in Los Angeles. Hubble did not see any discrete collision fragments, unlike its 2009 observations of P/2010 A2, the first identified asteroid collision.

Scheila is approximately 113 km (70 miles) across and orbits the sun every five years.

“The dust cloud around Scheila could be 10,000 times as massive as the one ejected from comet 9P/Tempel 1 during NASA’s UMD-led Deep Impact mission,” said co-author Michael Kelley, also at the University of Maryland. “Collisions allow us to peek inside comets and asteroids. Ejecta kicked up by Deep Impact contained lots of ice, and the absence of ice in Scheila’s interior shows that it’s entirely unlike comets.”

The studies will appear in the May 20 edition of The Astrophysical Journal Letters.

Source: NASA Goddard

Take a Look: Huge Asteroid to Fly By Earth in November

This radar image of asteroid 2005 YU55 was generated from data taken in April of 2010 by the Arecibo Radar Telescope in Puerto Rico. Image credit: NASA/Cornell/Arecibo

[/caption]

A large space rock will pass close to Earth on November 8, 2011 and astronomers are anticipating the chance to see asteroid 2005 YU55 close up. Just like meteorites offer a free “sample return” mission from space, this close flyby is akin to sending a spacecraft to fly by an asteroid – just like how the Rosetta mission recently flew by asteroid Lutetia – but this time, no rocket is required. Astronomers are making sure Spaceship Earth will have all available resources trained on 2005 YU55 as it makes its closest approach, and this might be a chance for you to see the asteroid for yourself, as well.

“While near-Earth objects of this size have flown within a lunar distance in the past, we did not have the foreknowledge and technology to take advantage of the opportunity,” said Barbara Wilson, a scientist at JPL. “When it flies past, it should be a great opportunity for science instruments on the ground to get a good look.”

2005 YU55 is about 400 meters [1,300 feet] wide, and closest approach will be about 325,000 kilometers (201,700 miles) from Earth.

“This is the largest space rock we have identified that will come this close until 2028,” said Don Yeomans, manager of NASA’s Near-Earth Object Program Office at JPL, and Yeomans assured that we are in no danger from this asteroid.

“YU55 poses no threat of an Earth collision over, at the very least, the next 100 years,” he said. “During its closest approach, its gravitational effect on the Earth will be so miniscule as to be immeasurable. It will not affect the tides or anything else.”

Astronomers estimate that asteroids the size of YU55 come this close to Earth about every 25 years. We just haven’t had this much advance warning – a testament to the work that Yeomans and his team does at the NEO Program in detecting asteroids and detecting them early.

So, here’s a chance for a close-up look. The 70-meter (230-foot) newly upgraded Goldstone antenna in California, part of NASA’s Deep Space Network, will be imaging the asteroid with radar.

“Using the Goldstone radar operating with the software and hardware upgrades, the resulting images of YU55 could come in with resolution as fine as 4 meters per pixel,” said Benner. “We’re talking about getting down to the kind of surface detail you dream of when you have a spacecraft fly by one of these targets.”

Combining the radar images with ground-based optical and near-infrared observations, astronomers should get a good overview of one of the larger near-Earth objects.

Look for more information in the near future about observing campaigns for amateur astronomers of this object. At first, 2005 YU55 will be too close to the sun and too faint for optical observers. But late in the day (Universal Time) on Nov. 8, and early on Nov. 9, the asteroid could reach about 11th magnitude for several hours before it fades as its distance rapidly increases.

This radar image of asteroid 2005 YU55 was generated from data taken in April of 2010 by the Arecibo Radar Telescope in Puerto Rico. Image credit: NASA/Cornell/Arecibo

2005 YU55 was discovered in December 2005 by Robert McMillan, head of the NASA-funded Spacewatch Program at the University of Arizona, Tucson. In April 2010, Mike Nolan and colleagues at the Arecibo Observatory in Puerto Rico generated some ghostly images of 2005 YU55 when the asteroid was about 2.3 million kilometers (1.5 million miles) from Earth.

“The best resolution of the radar images was 7.5 meters [25 feet] per pixel,” said JPL radar astronomer Lance Benner. “When 2005 YU55 returns this fall … the asteroid will be seven times closer. We’re expecting some very detailed radar images.”

Radar antennas beam directed microwave signals at their celestial targets — which can be as close as our moon and as far away as the moons of Saturn. These signals bounce off the target, and the resulting “echo” is collected and precisely collated to create radar images, which can be used to reconstruct detailed three-dimensional models of the object. This defines its rotation precisely and gives scientists a good idea of the object’s surface roughness. They can even make out surface features, and astronomers hope to see boulders and craters on the surfaces of 2005 YU55, as well as detailing the mineral composition of the asteroid.

“This is a C-type asteroid, and those are thought to be representative of the primordial materials from which our solar system was formed,” said Wilson. “This flyby will be an excellent opportunity to test how we study, document and quantify which asteroids would be most appropriate for a future human mission.”
Yeomans said this is a great opportunity for scientific discovery. “So stay tuned. This is going to be fun.”

Source: JPL