Near Earth Asteroids Vary Widely in Composition, Origin

Eros Asteroid
The asteroid Eros, as seen by the NEAR mission. Credit: NASA

[/caption]

From the Spitzer website:

New research from NASA’s Spitzer Space Telescope reveals that asteroids somewhat near Earth, termed near-Earth objects, are a mixed bunch, with a surprisingly wide array of compositions. Like a piñata filled with everything from chocolates to fruity candies, these asteroids come in assorted colors and compositions. Some are dark and dull; others are shiny and bright. The Spitzer observations of 100 known near-Earth asteroids demonstrate that the objects’ diversity is greater than previously thought.

The findings are helping astronomers better understand near-Earth objects as a whole — a population whose physical properties are not well known.

“These rocks are teaching us about the places they come from,” said David Trilling of Northern Arizona University, Flagstaff, lead author of a new paper on the research appearing in the September issue of Astronomical Journal. “It’s like studying pebbles in a streambed to learn about the mountains they tumbled down.”

After nearly six years of operation, in May 2009, Spitzer used up the liquid coolant needed to chill its infrared detectors. It is now operating in a so-called “warm” mode (the actual temperature is still quite cold at 30 Kelvin, or minus 406 degrees Fahrenheit). Two of Spitzer’s infrared channels, the shortest-wavelength detectors on the observatory, are working perfectly.

One of the mission’s new “warm” programs is to survey about 700 near-Earth objects, cataloging their individual traits. By observing in infrared, Spitzer is helping to gather more accurate estimates of asteroids’ compositions and sizes than what is possible with visible light alone. Visible-light observations of an asteroid won’t differentiate between an asteroid that is big and dark, or small and light. Both rocks would reflect the same amount of visible sunlight. Infrared data provide a read on the object’s temperature, which then tells an astronomer more about the actual size and composition. A big, dark rock has a higher temperature than a small, light one because it absorbs more sunlight.

Trilling and his team have analyzed preliminary data on 100 near-Earth asteroids so far. They plan to observe 600 more over the next year. There are roughly 7,000 known near-Earth objects out of a population expected to number in the tens to hundreds of thousands.

“Very little is known about the physical characteristics of the near-Earth population,” said Trilling. “Our data will tell us more about the population, and how it changes from one object to the next. This information could be used to help plan possible future space missions to study a near-Earth object.”

The data show that some of the smaller objects have surprisingly high albedos (an albedo is a measurement of how much sunlight an object reflects). Since asteroid surfaces become darker with time due to exposure to solar radiation, the presence of lighter, brighter surfaces for some asteroids may indicate that they are relatively young. This is evidence for the continuing evolution of the near-Earth object population.

In addition, the fact that the asteroids observed so far have a greater degree of diversity than expected indicates that they might have different origins. Some might come from the main belt between Mars and Jupiter, and others could come from farther out in the solar system. This diversity also suggests that the materials that went into making the asteroids — the same materials that make up our planets — were probably mixed together like a big solar-system soup very early in its history.

The research complements that of NASA’s Wide-field Infrared Survey Explorer, or WISE, an all-sky infrared survey mission also up in space now. WISE has already observed more than 430 near-Earth objects — of these, more than 110 are newly discovered.

In the future, both Spitzer and WISE will tell us even more about the “flavors” of near-Earth objects. This could reveal new clues about how the cosmic objects might have dotted our young planet with water and organics — ingredients needed to kick-start life.

Astounding Video Shows 30 Years of Asteroid Discoveries

This incredible video by Scott Manley/Armagh Observatory (and recommended by Neil deGrasse Tyson on Twitter) shows the locations of all the known asteroids starting in 1980, adding more as they are discovered (highlighted in white so you can pick out the new ones.) But the final color of the asteroids tells you more about them: Earth crossing asteroids are red, Earth Approachers (with a perihelion less than 1.3AU) are yellow, while all others are Green.

In the video you can see the pattern of discovery follows the Earth around its orbit and most discoveries are made in the region directly opposite the Sun.
Continue reading “Astounding Video Shows 30 Years of Asteroid Discoveries”

JAXA Delays Releasing Details of Hayabusa Sample Return

Hayabusa's shadow beside a circled reflective target it dropped as a guide for its sample recovery approach. Credit: JAXA

[/caption]

No news yet if there are specks of asteroid dust in the Haybusa sample return container. JAXA has decided to postpone releasing any information, including publishing a detailed analysis of the particles that may have been collected. According to The Japan Times, JAXA said it is taking more time than originally expected to collect the particles because they are smaller than it was assumed they’d be. This provides some hope, however, that there is actually something of interest in the container.

Originally, JAXA had hoped to publish a report by September, but now it’s looking like December or later.

JAXA said it is going to take several hours to collect just one particle, which likely measures just a few thousandths of a millimeter in diameter. Munetaka Ueno, a senior JAXA official, said the agency wants to analyze the particles with extreme care because repeating the process will be difficult.

The original plan was for JAXA to remove the particles and then let researchers across the country for a more detailed analysis.

We waited seven years for Haybusa to fly to and then return home from asteroid Itokawa, so we should be able to wait a couple more months. Here’s hoping the particle extraction doesn’t encounter as many problems as the spacecraft had.

Source: The Japan Times

Asteroids Can Create Their Own Mini Planetary Systems

Illustration of a binary asteroid. Credit: Courtesy ESO/L. Calcada

[/caption]

From a University of Colorado-Boulder press release:

While the common perception of asteroids is that they are giant rocks lumbering about in orbit, a new study shows they actually are constantly changing “little worlds” that can give birth to smaller asteroids that split off to start their own lives as they circle around the sun.

Astronomers have known that small asteroids get “spun up” to fast rotation rates by sunlight falling on them, much like propellers in the wind. The new results show when asteroids spin fast enough, they can undergo “rotational fission,” splitting into two pieces which then begin orbiting each other. Such “binary asteroids” are fairly common in the solar system.

An international team of astronomers led by Petr Pravec of the Astronomical Institute in the Czech Republic found that many of these binary asteroids do not remain bound to each other but escape, forming two asteroids in orbit around the sun when there previously was just one. The study appears in the Aug. 26 issue of Nature.

The researchers studied 35 so-called “asteroid pairs,” separate asteroids in orbit around the sun that have come close to each other at some point in the past million years — usually within a few miles, or kilometers — at very low relative speeds. They measured the relative brightness of each asteroid pair, which correlates to its size, and determined the spin rates of the asteroid pairs using a technique known as photometry.

“It was clear to us then that just computing orbits of the paired asteroids was not sufficient to understand their origin,” said Pravec. “We had to study the properties of the bodies. We used photometric techniques that allowed us to determine their rotation rates and study their relative sizes.”

The research team showed that all of the asteroid pairs in the study had a specific relationship between the larger and smaller members, with the smallest one always less than 60 percent of the size of its companion asteroid.

The conclusion fits a theory of binary asteroid formation originated by co-author Daniel Scheeres, from the University of Colorado, Boulder. His theory predicts that if a binary asteroid forms by rotational fission, the two can only escape from each other if the smaller one is less than 60 percent the size of the larger asteroid. Of all the asteroid pairs in the study, the smallest of each pair was always less than 60 percent of the mass of its companion asteroid.

Scheeres’ theory predicts that if a binary asteroid forms by rotational fission, the two can only escape from each other if the smaller one is less than 60 percent of the size of the larger asteroid. When one of the asteroids in the pair is small enough, it can “make a break for it” and escape the orbital dance, essentially moving away to start its own “asteroid family,” he said. During rotational fission, the asteroids separate gently from each other at relatively low velocities.

“This is perhaps the clearest observational evidence that asteroids aren’t just large rocks in orbit about the sun that keep the same shape over time,” said Scheeres. “Instead, they are little worlds that may be constantly changing as they grow older, sometimes giving birth to smaller asteroids that then start their own life in orbit around the sun.”

Read more at the University of Colorado-Boulder.

New Trojan Asteroid Discovered Around Neptune

The green arrow shows the asteroid. The other bright objects are stars in the Milky Way. Credit: Scott Sheppard

[/caption]

Astronomers have found a new object in a region of Neptune’s orbit, tucked away in a very hard-to-find location, and where no previous object was known to exist. The object, 2008 LC18, is a Trojan asteroid, which refers an asteroid that shares an orbit with a larger planet or moon, but does not collide with it because it orbits around one of the two Lagrangian points of stability. Six other Trojan asteroids have been located around Neptune’s L4 region, but this is the first one found in Neptune’s L5 region.

Scott Sheppard from the Carnegie Institution’s Department of Terrestrial Magnetism and colleagues used a new observational technique that used large dark clouds to block background light from the galactic plane in order to discover the new Neptune Trojan. They used the discovery to estimate the asteroid population there and find that it is probably similar to the asteroid population at Neptune’s L4 point.

“We estimate that the new Neptune Trojan has a diameter of about 100 kilometers and that there are about 150 Neptune Trojans of similar size at L5,” said Sheppard “It matches the population estimates for the L4 Neptune stability region. This makes the Neptune Trojans more numerous than those bodies in the main asteroid belt between Mars and Jupiter. There are fewer Neptune Trojans known simply because they are very faint since they are so far from the Earth and Sun.”

Jupiter has the most Trojans, 4,076 (as of February 2010) but there are four known Mars Trojans and now seven known Neptune Trojans. So far, searches have failed to uncover any similar objects in the orbits of any other planets.

The five Lagrangian points of stability are shown at Neptune. Credit: Scott Sheppard

“The L4 and L5 Neptune Trojan stability regions lie about 60 degrees ahead of and behind the planet, respectively,” said Sheppard “Unlike the other three Lagrangian points, these two areas are particularly stable, so dust and other objects tend to collect there. We found 3 of the 6 known Neptune Trojans in the L4 region in the last several years, but L5 is very difficult to observe because the line-of-sight of the region is near the bright center of our galaxy.”

Sheppard and his team, which included Chad Trujillo from the Gemini Observatory, used images from a digitized all-sky survey to identify places in the stability regions where dust clouds in our galaxy blocked out the background starlight from the galaxy’s plane, providing an observational window to the foreground asteroids. They discovered the L5 Neptune Trojan using the 8.2-meter Japanese Subaru telescope in Hawaii and determined its orbit with Carnegie’s 6.5-meter Magellan telescopes at Las Campanas, Chile.

Because Trojans share their planet’s orbit they are sensitive to the planet’s formation and migration, and astronomers say finding these objects provide clues that may help unlock the answers to fundamental questions about planetary formation and migration.

The region of space is also of interest to the teams from the New Horizon spacecraft, as it will pass through this same area after its encounter with Pluto in 2015.

Read the team’s abstract.

Sources: Carnegie Institute, Science Express.

WISE Cryostat is Depleting

An image released in August 2010 from WISE image of the Small Magellanic Cloud. Image credit: NASA/JPL-Caltech/WISE Team

[/caption]

NASA’s Wide-field Infrared Survey Explorer, or WISE, is losing its cool. The spacecraft is running out of the frozen coolant needed to keep its heat-sensitive instrument chilled, and will only be in operation for 2-3 more months. While the spacecraft was designed to be rather short-lived – 7 to 10 months — it still is sad to see the mission winding down. But WISE has completed its primary mission, a full scan of the entire sky in infrared light, which was accomplished by July 17, 2010. The mission has taken more than 1.5 million snapshots so far, uncovering hundreds of millions of objects, including asteroids, stars and galaxies. It has discovered more than 29,000 new asteroids to date, more than 100 near-Earth objects and 15 comets.

The telescope has two coolant tanks that keep the spacecraft’s normal operating temperature at 12 Kelvin (minus 438 degrees Fahrenheit). The outer, secondary tank is now depleted, causing the temperature to increase. One of WISE’s infrared detectors, the longest-wavelength band most sensitive to heat, stopped producing useful data once the telescope warmed to 31 Kelvin (minus 404 degrees Fahrenheit). The primary tank still has a healthy supply of coolant, and data quality from the remaining infrared detectors remains high.

WISE is continuing a second survey of about one-half the sky as originally planned. It’s possible the remaining coolant will run out before that scan is finished. Scientists say the second scan will help identify new and nearby objects, as well as those that have changed in brightness. It could also help to confirm oddball objects picked up in the first scan.

NASA is hoping to find more Near Earth Objects with WISE’s remaining days of operations.
“WISE’s prime mission was to do an infrared background map,” said Lindley Johnson, program executive for the Near-Earth Objects Observation program at NASA, speaking at a workshop this week to define objectives for exploring asteroids. “But we realized in talking with scientists that it would also make a good asteroid detector by comparing images. It has done a good job of finding a lot of objects for us.”

Source: NASA

Researchers Say Asteroid Has 1 in 1,000 Chance of Hitting Earth in 2182

Doppler data on asteroid 1999 RQ36 from Goldstone. Credit: NASA

[/caption]

Asteroid trackers from Spain have upgraded the chance that asteroid 1999 RQ36 could hit our planet, saying it now has a one-in-a-thousand chance of impacting the Earth in the year 2182. Previous estimates gave a 1 in 1,400 chance that this asteroid could strike Earth sometime between 2169 and 2199. Currently, however, NASA’s Near Earth Object website gives between a 1 in 3,850 and a 1 in 3,570 chance that 1999 RQ35 could potentially impact Earth on Sept. 24, 2182. To make everyone breathe a little easier, that’s a 99.97200000% chance the asteroid will completely miss the Earth.

1999 RQ36 is an asteroid that has been suggested for a robotic sample return mission, to help us learn more about the makeup of NEOs, especially those that have a potential threat to Earth.

The team from Spain, co-led by María Eugenia Sansaturio from Universidad de Valladolid, said knowing this asteroid poses a potential threat in the twenty-second century “may help design in advance mechanisms aimed at deviating the asteroid’s path.”

“The total impact probability of asteroid ‘(101955) 1999 RQ36’ can be estimated in 0.00092 -approximately one-in-a-thousand chance-, but what is most surprising is that over half of this chance (0.00054) corresponds to 2182,” said Sansaturio.

Sansaturio and team have estimated and monitored the potential impacts for this asteroid through 2200. Asteroid 1999 RQ36 was discovered in 1999, but originally was not considered dangerous. In 2009, researches from Italy said their new calculations and observations revealed a chance of impact sometime during a 30 year span in the mid-to late 2100’s. Read that 2009 paper here.

1999 RQ36 is estimated to be about 560 meters wide, more than twice the size of the more well-known asteroid Apophis, which is projected to have a 1 in 250,000 chance of impact in 2036, reduced from the 1 in 45,000 odds calculated earlier. That asteroid is expected to make a record-setting — but harmless — close approach to Earth on Friday, April 13, 2029, when it comes no closer than 18,300 miles above Earth’s surface.

Artist's concept of the OSIRIS-REx spacecraft collecting a sample from asteroid 1999 RQ36. Credit: NASA

Of course, there is a fair amount of orbital uncertainty, due to the gravitational influences on the asteroid when it passes by the Earth and other objects, plus a minimal amount of influence from the Yarkovsky effect, which is an unbalanced thermal radiation from sunlight hitting one side of the asteroid and not the other that produces a tiny acceleration.

This effect had not been measured for 1999 RQ36 until now. The new research, published in the journal Icarus, predicts what could happen in the upcoming years considering this effect. Up until 2060, the team says the divergence of the impacting orbits is moderate; between 2060 and 2080 it increases 4 orders of magnitude because the asteroid will approach the Earth in those years; then, it increases again on a slight basis until another approach in 2162, it then decreases, and 2182 is the most likely year for the collision.

“The consequence of this complex dynamic is not just the likelihood of a comparatively large impact, but also that a realistic deflection procedure, or path deviation could only be made before the impact in 2080, and more easily, before 2060,” said Sansaturio.

“If this object had been discovered after 2080, the deflection would require a technology that is not currently available,” added Sansaturio. “Therefore, this example suggests that impact monitoring, which up to date does not cover more than 80 or 100 years, may need to encompass more than one century. Thus, the efforts to deviate this type of objects could be conducted with moderate resources, from a technological and financial point of view.”

The research also involved scientists from the University of Pisa (Italy), the Jet Propulsion Laboratory (USA) and INAF-IASF-Rome (Italy).

The proposed robotic mission to this asteroid is called OSIRIS-Rex, the Origins, Spectral Interpretation Resource Identification, and Security, Regolith Explorer, one of three proposals selected by NASA in December 2009 for more study under its New Frontiers program. If chosen the mission would launch in about 2018, and it could provide information about how the solar system was born, and perhaps, shed light on how life began. It also might be one of the first looks at how an asteroid might be deflected. Read more about this proposed mission on the NASA Goddard website.

Sources: Spanish Foundation for Science and Technology via PhysOrg
, NASA’s NEO Program office, New Scientist

Rosetta Meets Asteroid Lutetia

Lutetia at closest approach. Image credit: ESA 2010 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

[/caption]

Over the weekend, the Rosetta spacecraft flew by asteroid Lutetia, returning the first close up images of this battered, cratered body. By all accounts, the flyby was a spectacular success with Rosetta performing faultlessly. Closest approach took place at 16:10 GMT on July 10, at a distance of 3,162 km (1964 miles). The images show that Lutetia has been on the receiving end of many impacts during its 4.5 billion years of existence. As Rosetta drew close, a giant bowl-shaped depression stretching across much of the asteroid rotated into view. The images confirm that Lutetia is an elongated body, with its longest side around 130 km (80 miles).

“I think this is a very old object. Tonight we have seen a remnant of the Solar System’s creation,” said Holger Sierks, principal investigator for the spacecraft’s OSIRIS instrument, which combines a wide angle and a narrow angle camera. At closest approach, details down to a scale of 60 meters (see below) can be seen over the entire surface of Lutetia.

At a distance of 36,000 kilometers (22,369 miles) the OSIRIS Narrow Angle Camera (NAC) took this image catching the planet Saturn in the background. Image credit: ESA 2010 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

Rosetta raced past the asteroid at 15 km/s completing the flyby in just a minute. But the cameras and other instruments had been working for hours and in some cases days beforehand, and will continue afterwards. Shortly after closest approach, Rosetta began transmitting data to Earth for processing, and the Rosetta team will surely release more details in the coming days and weeks.

In the meantime, enjoy this wonderful poem composed by space poet laureate Stu Atkinson.

Lutetia in the Light

For all these years you were merely
A smear of light through our telescopes
On the clearest, coldest night; a hint
Of a glint, just a few pixels wide
On even your most perfectly-framed portraits.
But now, now we see you!
Swimming out of the dark – a great
Stone shark, your star-tanned skin pitted
And pocked, scarred after aeons of drifting
Silently through the endless ocean of space.
Here on Earth our faces lit up as we saw
You clearly for the first time; eyes wide
With wonder we traced the strangely familiar
Grooves raked across your sides,
Wondering if Rosetta had doubled back to Mars
And raced past Phobos by mistake –

Then you were gone, falling back into the black,
Not to be seen by human eyes again for a thousand
Blue Moons or more. But we know you now,
We know you; you’ll never be just a speck of light again.

—Stuart Atkinson

Zoom in on a possible landslide and boulders at the highest resolution. Image credit: ESA 2010 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

Sources: ESA, JPL, Rosetta Blog

Watch Live Webcast of Rosetta Flyby of Asteroid Lutetia July 10

Rosetta captured this image of asteroid (21) Lutetia on July 9, 2010, at 01:00 UTC, when the spacecraft was still about two million kilometers (and 36 hours) from the asteroid. Credit: ESA 2010 MPS for OSIRIS Team

[/caption]
On July 10, ESA’s Rosetta spacecraft will fly past 21 Lutetia, the largest asteroid ever visited by a satellite. After weeks of maneuvers and optical observations, Rosetta is perfectly lined up to skim by the asteroid only 3,162 km (2,000 miles) away. ESA is hosting a live webcast at 16:00 GMT on July 10. Below is an embedded feed that will go live once the webcast begins.

For more information and a complete timeline of events, check out this ESA web page.

Watch live streaming video from eurospaceagency at livestream.com

Rosetta is expected to pass Lutetia at a relative speed of 54,000 km/hr. All this takes place 454 million km from Earth. Lutetia is a major scientific target of Rosetta’s mission, so most of the orbiter and lander instruments will be on for flyby, studying the asteroid’s surface, dust environment, exosphere, magnetic field, mass and density.

Rosetta is on its way to a 2014 rendezvous with comet 67P/Churyumov-Gerasimenko.

Hayabusa Sample Return Canister Opened, Contains Material

Hayabusa's sample return canister was opened to reveal a small particle inside. Credit: JAXA

[/caption]

The sample return canister from the Hayabusa spacecraft has been opened, and does contain a small amount of dust particles, according to the JAXA website. This is very encouraging news! However, it is not yet known if the dust is from the asteroid Itokawa, where Hayabusa briefly touched down, or if it could be from Earth — left in the container from before launch, or it possibly could have made its way in there during the landing/post landing handling. “Material on the planet or asteroid or particulate matter is at this stage is unknown, we will consider in detail,” is the Google translate version of the JAXA press release. According to Emily Lakdawalla at the Planetary Society, the dust grains are extremely small, about 0.01-millimeter in size, and there are about a dozen of them inside the container. This image was taken on June 28, 2010, and below is a magnified view of one of the particles.

Magnified view of a dust particle in the Hayabusa canister. Credit: JAXA

This magnified view was taken on June 29, and shows a magnified view of one very small particle being picked up by a quartz manipulator, which appears as a stripe on the image.
It likely will take several weeks to confirm whether the particles are from the asteroid, but if so, would be the first-ever asteroid sample return.

Below is an image of Earth that Hayabusa took as it approached the home planet.

Earth seen by the returning Hayabusa. Credit: JAXA

Sources: JAXA, The Planetary Society, BBC