“Foresight” Wins First Prize in Apophis Asteroid Tagging Competition

The Near Earth Asteroid (NEO) Apophis is expected to flyby the Earth in 2029. However, this flyby will be more of a “fly-very-close” as the lump of rock will miss the Earth by only a few thousand kilometers. This near-miss isn’t worrying scientists too much, but should the asteroid tumble through a 400 meter gravitational “keyhole”, there is concern that the asteroid could swing by and risk another collision in 2036. Although the odds are fairly slim, astronomers need better precision in calculating Apopis’s orbital trajectory.

How can this be done? Why not send a spaceship to shadow the asteroid on its journey? The Planetary Society has announced just that. The winning design of the Apophis Mission Design Competition will send a probe and tag Apophis to gain more details about this interplanetary vagabond, and has been awarded a healthy $25,000 to help the development of the US “Foresight” mission…

99942 Apophis (otherwise known as asteroid 2004 MN4) caused quite a stir back in 2004 when it was discovered. Lacking detailed observation at the time, the probability of the 270 meter long piece of rock hitting the Earth was around 2.7% – a large risk in astronomical terms. Now we are sure the asteroid will fly straight by, albeit rather close. It is estimated that Apophis will pass within the orbit of geostationary satellites located at 35,786 km above Earth, allowing amateur astronomers a great opportunity to observe the NEO (it will be possible to see the asteroid with the naked eye at night), whilst being secure in the knowledge that it’s not going to come any closer.

So, panic over? Not quite. Although Apophis will miss us on its first approach in 2029, we might not be so lucky on one of its return trips in 2036. During its flyby in 2029, should the asteroid pass through a critical gravitational “keyhole” measuring only 400 meters across, the gravitational deflection applied to the Apophis asteroid may adjust its orbit, setting it up for a collision course with Earth seven years later.

This is the reason for events such as the Planetary Society’s Apophis Mission Design Competition, to raise awareness of the risk posed by NEOs. Although the winning entry, designed by SpaceWorks Engineering Inc. (Atlanta, Georgia) in conjunction with SpaceDev Inc. (Poway, California), is in the design phase, it is hoped that the completed project could launch by 2012. “Foresight” is intended to fly to Apophis and tag the rock with tracking equipment. The orbiter will continue to study the asteroid and follow it on its orbit around the Sun, gathering valuable information about its composition, center of mass, surface features and, most importantly, its trajectory.

Missions plans such as Foresight are required by the international community to be used should the threat of an asteroid collision become reality (and not remain in cheesy sci-fi movies like Deep Impact or Armageddon).

Apophis isn’t science fiction, it isn’t a blockbuster Hollywood movie; it is very real.” – Dan Geraci, the Planetary Society’s board chairman.

For more information on the winning entry and the other award winning designs, see the Planetary Society’s Apophis Mission Design Competition website.

Could Primordial Black Holes Deflect Asteriods on a Collision Course with Earth?

An artists impression of an asteroid belt. Credit: NASA

Primordial black holes (PBHs) are getting mischievous again. These artefacts from the Big Bang could be responsible for hiding inside planets or stars, they may even punch a neat, radioactive hole through the Earth. Now, they might start playing interplanetary billiards with asteroids in our solar system.

Knocking around lumps of rock may not sound very threatening when compared with the small black holes’ other accolades, but what if a large asteroid was knocked off course and sent in our direction? This could be one of the most catastrophic events yet to come from a PBH passing through our cosmic neighborhood…

As a race, we are constantly worried about the threat of asteroids hitting Earth. What if another large asteroid – like the one that possibly killed the dinosaurs around 65 million BC or the one that blew up over Tunguska in 1908 – were to come hurtling through space and smash into the Earth? The damage caused by such an impact could devastate whole nations, or plunge the world as we know it to the brink of extinction.

But help is at hand. From the combined efforts by groups such as NASAs Near Earth Object Program and international initiatives, governments and institutions are beginning to take this threat seriously. Tracking threatening Near Earth Asteroids is a science in itself, and for now at least, we can relax. There are no massive lumps of rock coming our way (that we know of). The last scare was a comparatively small asteroid called “2008 CT1” which came within 135,000 km of the Earth (about a third of the distance to the Moon) on February 5th, but there are no others forecast for some time.

So, we now have NEO monitoring down to a fine art – we are able to track and calculate the trajectory of observed asteroids throughout the solar system to a very high degree of accuracy. But what would happen if an asteroid should suddenly change direction? This shouldn’t happen right? Think again.

A researcher from the Astro Space Center of the P. N. Lebedev Physics Institute in Moscow has published works focusing on the possibility of asteroids veering off course. And the cause? Primordial black holes. There seems to be many publications out there at the moment musing what would happen should these black holes exist. If they do exist (and there is a high theoretical possibility that they do), there’s likely to be lots of them. So Alexander Shatskiy has gotten to the task of working out the probability of a PBH passing through the solar systems asteroid belts, possibly kicking an asteroid or two across Earths orbit.

Shatskiy finds that PBHs of certain masses are able to significantly change an asteroids orbit. There are estimates of just how big these PBHs can be, the lower limit is set by black hole radiation parameters (as theorized by Stephen Hawking), having little gravitational effect, and the upper limit is estimated to be as massive as the Earth (with an event horizon radius of an inch or so – golf ball size!). Naturally, the gravitational influence by the latter will be massive, greatly affecting any piece of rock as it passes by.
Real-time map of the distribution of thousands of known asteroids around the inner solar system. Red and yellow dots represent high risk NEOs (credit: Armagh Observatory)
Should PBHs exist, the probability of finding one passing though the solar system will actually be quite high. But what is the probability of the PBH gravitationally scattering asteroids as it passes? If one assumes a PBH with a mass corresponding to the upper mass estimate (i.e. the mass of the Earth), the effect of local space would be huge. As can be seen from an asteroid map (pictured), there is a lot of rocky debris out there! So something with the mass of the Earth barrelling through and scattering an asteroid belt could have severe consequences for planets nearby.

Although this research seems pretty far-fetched, one of the calculations estimate the average periodicity of a large gravitationally disturbed asteroids falling to Earth should occur every 190 million years. According to geological studies, this estimate is approximately the same.

Shatskiy concludes that should small black holes cause deflection of asteroid orbits, perhaps our method of tracking asteroids may be outdated:

If the hypothesis analyzed in this paper is correct, modern methods aimed at averting the asteroid danger appear to be inefficient. This is related to the fact that their main idea is revealing big meteors and asteroids with dangerous orbits and, then, monitoring these bodies. However, if the main danger consists in abrupt changes of asteroidal orbits (because of scattering on a PBH), revealing potentially dangerous bodies is hardly possible.”

Oh dear, we might be doomed after all…

Source: arXiv

An Elegant Proposal for Near Earth Asteroid Deflection

Image Credit: NASA

Although the chances of an asteroid hitting Earth appear to be small for any given year, the consequences of such an event would be monumental. The science community has come up with some ideas and proposals for ways to mitigate the threat of an incoming asteroid hitting the Earth. Some proposals suggest almost Hollywood type theatrics of launching nuclear weapons to destroy the asteroid, or slamming a spacecraft into a Near Earth Object to blow it apart. But other ideas employ more simple and elegant propositions to merely alter the trajectory of the space rock. One such plan uses a two-piece solar sail called a solar photon thruster that draws on solar energy and resources from the asteroid itself.

Physicist Gregory Matloff has been working with NASA’s Marshall Spaceflight Center to study the two-sail solar photon thruster which uses concentrated solar energy. One of the sails, a large parabolic collector sail would constantly face the sun and direct reflected sunlight onto a smaller, moveable second thruster sail that would beam concentrated sunlight against the surface of an asteroid. In theory, the beam would vaporize an area on the surface to create a ‘jet’ of materials that would serve as a propulsion system to alter the trajectory of the Near Earth Object (NEO.)

Changing the trajectory of a NEO exploits the fact that both the Earth and the impactor are in orbit. An impact occurs when both reach the same point in space at the same time. Since the Earth is approximately 12,750 km in diameter and moves at about 30 km per second in its orbit, it travels a distance of one planetary diameter in about seven minutes. The course of the object would be altered, or either delayed or advanced and cause it to miss the Earth.

But of course, the arrival time of the impactor must be known very accurately in order to forecast the impact at all, and to determine how to affect its velocity.

Additionally, the solar photon thruster’s performance would vary depending on the unique makeup of each NEO. For example, asteroids with a greater density, radius or rate of rotation would cause decreased performance of the solar photon thruster in acceleration and deflection.

Even though the solar photon thruster appears to be efficient in its performance, Matloff said that more than half of the solar energy delivered to the “hotspot” on the NEO would not be available to vaporize and accelerate the jet due to other thermodynamic processes such as conduction, convection, and radiation. As expected, a larger collector sail radius would increase the amount of energy available, and would increase acceleration of the NEO. Matloff said this system allows the sail craft to “tack” against the solar-photon breeze at a larger angle than conventional single solar sails can achieve.

This system of sails would not be attached to the NEO, but would be kept nearby the NEO “on station” either with its own thrusting capability or by auxiliary electric propulsion. More studies would be needed to ascertain if a supplementary propulsion system would be necessary.

The sails used in the study were both inflatable. However, Matloff believes it might be worth considering a small rigid thruster sail, which might simplify deployment and reduce occultation.

Said Matloff, “Hopefully, future design studies will resolve these uncertainties before application of NEO-diversion technology becomes necessary.”

Arecibo Spots a Triple Asteroid

2001sn263_arecibo.thumbnail.png

Since asteroids have mass, they have gravity. And if you’ve got gravity, you can have moons. Several asteroids have been discovered in the outer Solar System with smaller asteroidlets circling them. But now the Arecibo radio telescope in Puerto Rico has turned up the closest example – a triple system just a mere 11 million km (7 million miles) from Earth.

Asteroid 2001 SN263 was revealed to be a triple system by Cornell astronomer Michael C. Nolan. The asteroid itself had been discovered back in 2001 as part of an automated survey. He and his colleagues captured radio images of the space rocks on February 11. By studying the images, they realized that they actually had a system of three objects.

The main central asteroid is roughly 2 km (1.5 miles) across. The larger “moon” is about half that size, and the smallest is about 300 metres (1,000 feet) across.

Asteroid systems like this have been seen in the Asteroid Belt, between Mars and Jupiter, but never so close. This allows scientists to image it with unprecedented detail.

As researchers find more and more near-Earth asteroids, they’re starting to realize that binary systems are actually quite common. According to Nolan, one in six near-Earth asteroids is a binary. Although, this is the first near-Earth triple system seen.

Multiple asteroid systems are very useful for astronomers; they provide the mass calculation. In a multiple object system like this, you can calculate the mass of each object by knowing the various periods (the time they take to complete an orbit). Researchers can then compare the mass of the binary objects to the brightness of single asteroids to estimate their masses as well.

One of the big unanswered questions: did the three objects form together, or were they captured later on? By watching the system over time, Nolan and his team will get a better sense if they’re orbiting on the exact same plane (like our Solar System). This will be evidence they formed together billions of years ago.

Arecibo is one of the best asteroid hunting tools available to astronomers; unfortunately, budget cuts in the United States has put the future of the facility in jeopardy.

Original Source: Cornell News Release

Another Asteroid Passes Close to Earth

Asteroid showing impact event

On Tuesday, February 5, 2008 an SUV sized asteroid passed between the Earth and the moon. Asteroid 2008 CT1 came within 135,000 kilometers ( 84,000 miles) of Earth, only a third of the distance to the moon. The asteroid was discovered only two days before its close approach to Earth, spotted by the Lincoln Near Earth Asteroid Research (LINEAR) project, using robotic telescopes located at New Mexico’s White Sands Missile Range. The asteroid’s size is estimated between 8 – 15 meters.

While this asteroid seems small, we know that even small rocks can be devastating. Last September, a meteorite estimated at .2 – 2 meters wide created a crater 13 meters wide in Peru. The cause of the Tunguska Event of the early 20th Century is now believed to be a 35m rock that never even touched the ground. It’s believed that it exploded a few miles above the ground, creating a shockwave that devastated the landscape below.

2008 CT1 could possibly return to Earth’s vicinity in 2041, although its orbit has not yet been well defined, so that prediction could change. It is also a possible Mercury impactor, since that that planet is very near the asteroid’s currently calculated perihelion.

LINEAR uses a Ground-based Electro-Optical Deep Space Surveillance (GEODSS) telescope, and has detected over 3,000,000 asteroids since 1998, which is about 70% of the known near-Earth asteroids.

The GEODSS Telescope.  Image Credit:  LINEAR

Original News Source: SLOOH Skylog

Alarmist Asteroid 2007 TU24 Video

At the time I’m writing this, asteroid 2007 TU24 has nearly passed the Earth. As we’ve been hammering on here on Universe Today, the Earth is completely safe. Only if you have a telescope and know exactly where to look, will you stand a chance of spotting the flyby.

Even though he posted a video last week, debunking the collision claims, Bad Astronomer and (former) friend Phil Plait seems to have recanted.

Lowest form of life? Ouch.

Thanks to IronmanAustralia for the laugh. I’m still wiping the tears out of my eyes.

On another note, this is the first time I’ve tried embedding a YouTube video in Universe Today. I’m sure I’ve messed it up somehow. Let me know if you like this, and want more.

First Images of Near Earth Asteroid 2007 TU24

In case you had any doubts, it’s now official: Asteroid 2007 TU 24 will not impact or have any affect on Earth. Astronomers have obtained the first images of the near earth asteroid using high-resolution radar data. “With these first radar observations finished, we can guarantee that next week’s 1.4-lunar-distance approach is the closest until at least the end of the next century,” said Steve Ostro, Jet Propulsion Laboratory astronomer and principal investigator for the project. “It is also the asteroid’s closest Earth approach for more than 2,000 years.”

The radar images indicate the asteroid is somewhat asymmetrical in shape, with a diameter roughly 250 meters (800 feet) in size. Asteroid 2007 TU24 will pass within 1.4 lunar distances, or 538,000 kilometers (334,000 miles), of Earth on Jan. 29 at 12:33 a.m. Pacific time (3:33 a.m. Eastern time). So, while this image is pretty faint, (about 20 meters per pixel) as the asteroid gets closer, NASA will be able to obtain better images and more details about the object.

And just to repeat for anyone who still has any doubts, the scientists at NASA’s Near-Earth Object Program Office at JPL have determined that there is no possibility of an impact with Earth in the foreseeable future.

Asteroid 2007 TU24 was discovered by NASA Oct. 11, 2007. The asteroid should be visible to amateur astronomers using 3 inch (7.6 centimeter) telescopes. It will be brightest on January 29-30, reaching an approximate apparent magnitude of 10.3, and then become fainter as it moves farther from Earth. Anyone looking for the asteroid with amateur telescopes will need dark and clear skies. An object with a magnitude of 10.3 is about 50 times fainter than an object just visible to the naked eye in a clear, dark sky.

NASA detects and tracks asteroids and comets passing close to Earth. The Near Earth Object Observation Program, commonly called “Spaceguard,” discovers, characterizes and computes trajectories for these objects to determine if any could be potentially hazardous to our planet. They use several different tracking devices including the Goldstone’s 70-meter diameter (230-foot) antenna that is capable of tracking a spacecraft traveling more than 16 billion kilometers (10 billion miles) from Earth.

Ostro and his team plan further radar observations of asteroid 2007 TU24 using the National Science Foundation’s Arecibo Observatory in Puerto Rico on Jan. 27-28 and Feb. 1-4.

Original News Source: JPL Press Release

Comet Dust is Very Similar to Asteroids

stardust_comet252x215s.thumbnail.jpg

Just so it’s clear in your mind: comets are dirty snowballs, asteroids are rocks. Got the difference? Wait… not so fast. Scientists studying the cometary dust picked up by NASA’s Stardust spacecraft, and they’re finding it’s surprisingly asteroid like.

When Stardust flew past comet Wild 2 in 2006, scientists knew they would be scooping up materials created with the very formation of the solar system. But they didn’t think the dust from Wild 2 would resemble meteorites more than ancient, unaltered comet.

Comets are thought to contain large amounts of primitive material in the Solar System. Both the ancient ices that formed out of the stellar disk, but also the rain of interstellar material falling into the Solar System.

According to researchers at Lawrence Livermore National Laboratory, the particles that fell off Wild 2 formed very close to the Sun when it was young. They had been baked and blasted by the intense ultraviolet radiation of a newly forming star. Furthermore, they didn’t find the kind of primordial materials and ices that should have been present on an ancient comet like Wild 2.
Tracks of material captured by Stardust. Image credit: LLNL

“The material is a lot less primitive and more altered than materials we have gathered through high altitude capture in our own stratosphere from a variety of comets,” said LLNL’s Hope Ishii, lead author of the research that appears in the Jan. 25 edition of the journal, Science. “As a whole, the samples look more asteroidal than cometary.”

But Wild 2 is clearly a comet and not an asteroid. It’s got a tail; what could be more cometlike? It’s a reminder that there isn’t a clearly defined line between the two objects – there’s a continuum between them.

The researchers were expecting to see very specific minerals in the Stardust samples that should be coming from comets: glass with embedded metal and sulfides, and sliver-like whiskers of the crystallin silicate enstatite. They found only a single sample of enstatite in their samples and it was oriented the wrong way.

There were similar minerals found, but the researchers realized that they were being created when particles from the comet slammed into the Stardust collector. They were able to recreate this process in the lab.

For future studies, the researchers are hoping to get their hands on larger-grained materials, called micro-rocks. These would suffer less alteration from the impact with the Stardust collectors.

Original Source: LLNL News Release

Near Earth Asteroid 2007 TU24 Will Make a Close Approach on January 29, 2008

ida1_s.thumbnail.jpg

An asteroid between 150-160 meters in diameter will pass within 540,000 kilometers (334,000 miles) of Earth on January 29 at 08:33 UT (3:33 EST). Hopefully this news won’t cause any alarmist cries of doom, as the asteroid has no chance of hitting Earth. But there is one reason to get excited about this close approach by an asteroid: it will be close enough to likely be visible to amateur astronomers.

Asteroid 2007 TU24 was discovered by the Catalina Sky Survey on October 11, 2007 and will approach the Earth to within 1.4 lunar distances. During its closest approach, it will reach an approximate apparent magnitude 10.3 on Jan. 29-30 before quickly becoming fainter as it moves further from Earth. So, for a brief time the asteroid will be observable in dark and clear skies with amateur telescopes of 3 inch apertures or larger.

According to NASA’s Near Earth Object Program, since the estimated number of near-Earth asteroids of this size is about 7,000 discovered and estimated undiscovered objects, an object the size of 2007 TU 24 would be expected to pass this close to Earth, on average, about every 5 years or so. They also say the average interval between actual impacts of Earth for an object of this size would be about 37,000 years. But rest assured, for the January 29th encounter, near Earth asteroid 2007 TU24 has no chance of hitting, or affecting, Earth.

2007 TU24 will be the closest currently known approach by an asteroid of this size or larger until 2027. Plans have been made for the Goldstone planetary radar to observe this object Jan 23-24 and for the Arecibo radar to observe it Jan 27-28, as well as Feb 1-4. The NEO office says they should be able to image the object with high resolution radar, and if so, 3-D shape reconstruction images should be possible. Way cool.

The illustration below is courtesy of amateur astronomer Dr. Dale Ireland from Silverdale, WA. The illustration shows the asteroid’s track on the sky for 3 days near the time of the close Earth approach as seen from the city of Philadelphia. Since the object’s parallax will be a significant fraction of a degree, observers are encouraged to use the NEO office’s on-line Horizons ephemeris generation service for their specific locations.

Now, we’re aware that there are some alarmists out there trying to freak people out about this asteroid visit. They’re posing the usual conspiracy theories about the astronomy community’s cover up. Don’t worry, there’s absolutely nothing to fear except a little cold weather as you stand outside, hoping to see the asteroid pass by with your telescope. If you want a more detailed debunking of this myth, check out Bad Astronomy’s excellent coverage.

Original News Source: NEO Program Press Release

When Do Asteroids Turn Dangerous?

meteorcrater.thumbnail.jpg

One of the most spectacular sights in the night sky is a fireball; a rock from space impacts the atmosphere and blazes a trail that can last seconds or even minutes. These burn up harmlessly, but when do they turn dangerous? When do asteroids get large enough that they can actually get through the atmosphere and cause some destruction here on the ground?

During an invited talk at the Meteoroids 2007 conference held in Barcelona, Spain, Clark R. Chapman from the Southwest Research Institute delivered a presentation about how to define this line between harmless explosion in the sky and an impact that causes destruction here on the ground. The paper, entitled Meteoroids, Meteors, and the Near-Earth Object Impact Hazard was later published in the journal Earth, Moon and Planets.

Originally, researchers focused their efforts on the largest asteroids: the objects 2 km (1.2 miles) and above. These are the space rocks that could cause wide scale devastation across the planet, affecting the climate and leading the the deaths of hundreds of millions of people. It was calculated that an individual might have a 1-in-25,000 chance of dying in an asteroid impact.

Now that the Spaceguard Survey has discovered 75% of the asteroids 1 km and larger, your chances of dying have dropped to about 1-in-720,000. About the same chance as dying from a fireworks accident or amusement park ride.

According to Chapman, astronomers are now shifting their focus from the largest impacts – like the one that wiped out the dinosaurs 65 million years ago – to the smaller, but still dangerous space rocks. For example, the rock that detonated in the air above Tunguska, Siberia in 1908. That object was probably only between 20-100 metres (65-325 feet) across.

And yet, it leveled the forest for thousands of square kilometres and would have caused immense destruction if it had hit a populated area.

A new survey, informally called the Spaceguard Two Survey, will begin soon with the goal of finding 90% of the near-Earth asteroids larger than 140 metres (460 feet) within the next 15 years.

There are many variables that go into calculating the resulting destruction from an impact. You have to consider the velocity, if it’s a metallic or rocky asteroid, and whether it’s fragmented or not.

What should the response be of national and international emergency management officials to a prediction that a 35 m NEA will strike a populated country a decade in the future? Following current interpretations, we would simply tell people near ground-zero to stay inside and not look directly at the high-altitude explosion. But if objects of that size could cause Tunguska-like damage, we might not only evacuate people for 100 km surrounding ground-zero but we would certainly consider a space mission to move or blow-up the threatening NEA.

Originally, researchers thought that Tunguska level events happened once in 4,000 years, but it might be more common, maybe as often as 1-in-700. And perhaps even smaller, more common, asteroids could still cause destruction on the ground – 1-in-200 years.

If Spaceguard Two Survey gets going, it should locate most of the larger asteroids, but even 50% of the Tunguska-sized impactors. It will even be tracking 1-2 million 30 metre objects.

And if one of those rocks is on a collision course with Earth, governments and space agencies will be able to work out an evacuation or prevention strategy.

Or at least encourage people to avert their eyes.

Original Source: SWRI