Could Comets have Delivered the Building Blocks of Life to “Ocean Worlds” like Europa, Enceladus, and Titan too?

The "ocean worlds" of the Solar System. Credit: NASA/JPL

Throughout Earth’s history, the planet’s surface has been regularly impacted by comets, meteors, and the occasional large asteroid. While these events were often destructive, sometimes to the point of triggering a mass extinction, they may have also played an important role in the emergence of life on Earth. This is especially true of the Hadean Era (ca. 4.1 to 3.8 billion years ago) and the Late Heavy Bombardment, when Earth and other planets in the inner Solar System were impacted by a disproportionately high number of asteroids and comets.

These impactors are thought to have been how water was delivered to the inner Solar System and possibly the building blocks of life. But what of the many icy bodies in the outer Solar System, the natural satellites that orbit gas giants and have liquid water oceans in their interiors (i.e., Europa, Enceladus, Titan, and others)? According to a recent study led by researchers from Johns Hopkins University, impact events on these “Ocean Worlds” could have significantly contributed to surface and subsurface chemistry that could have led to the emergence of life.

Continue reading “Could Comets have Delivered the Building Blocks of Life to “Ocean Worlds” like Europa, Enceladus, and Titan too?”

Did Earth’s Multicellular Life Depend on Plate Tectonics?

Graphic depicting the last 1.6 billion years of Earth’s tectonic history. (Credit: Figure 2 from Stern & Gerya (2024))

How did complex life emerge and evolve on the Earth and what does this mean for finding life beyond Earth? This is what a recent study published in Nature hopes to address as a pair of researchers investigated how plate tectonics, oceans, and continents are responsible for the emergence and evolution of complex life across our planet and how this could address the Fermi Paradox while attempting to improve the Drake Equation regarding why we haven’t found life in the universe and the parameters for finding life, respectively. This study holds the potential to help researchers better understand the criterion for finding life beyond Earth, specifically pertaining to the geological processes exhibited on Earth.

Continue reading “Did Earth’s Multicellular Life Depend on Plate Tectonics?”

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Artist's impression of Earth in the early Archean with a purplish hydrosphere and coastal regions. Even in this early period, life flourished and was gaining complexity. Credit: Oleg Kuznetsov
Artist's impression of Earth in the early Archean with a purplish hydrosphere and coastal regions. Even in this early period, life flourished and was gaining complexity, and distant exoplanets might begin similarly. Credit: Oleg Kuznetsov

Astrobiologists continue to work towards determining which biosignatures might be best to look for when searching for life on other worlds. The most common idea has been to search for evidence of plants that use the green pigment chlorophyll, like we have on Earth. However, a new paper suggests that bacteria with purple pigments could flourish under a broader range of environments than their green cousins. That means current and next-generation telescopes should be looking for the emissions of purple lifeforms.

“Purple bacteria can thrive under a wide range of conditions, making it one of the primary contenders for life that could dominate a variety of worlds,” said Lígia Fonseca Coelho, a postdoctoral associate at the Carl Sagan Institute (CSI) and first author of “Purple is the New Green: Biopigments and Spectra of Earth-like Purple Worlds,” published in the Monthly Notices of the Royal Astronomical Society: Letters.

Continue reading “Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life”

How Did Life Get Started on Earth? Atmospheric Haze Might Have Been the Key

Color-composite of Titan made from raw images acquired by Cassini on April 7, 2014. (NASA/JPL-Caltech/SSI/J. Major)

A recent study accepted to The Planetary Science Journal investigates how the organic hazes that existed on Earth between the planet’s initial formation and 500 million years afterwards, also known as Hadean geologic eon, could have contained the necessary building blocks for life, including nucleobases and amino acids. This study holds the potential to not only help scientists better understand the conditions on an early Earth, but also if these same conditions on Saturn’s largest moon, Titan, could produce the building blocks of life, as well.

Continue reading “How Did Life Get Started on Earth? Atmospheric Haze Might Have Been the Key”

Astrobiology: Why study it? How to study it? What are the challenges?

Credit: NASA

Universe Today has proudly examined the importance of studying impact craters, planetary surfaces, and exoplanets, and what they can teach scientists and the public about finding life beyond Earth. Impact craters both shape these planetary surfaces and hold the power to create or destroy life, and we learned how exoplanets are changing our views of planetary formation and evolution, including how and where we might find life in the cosmos. Here, we will discuss how these disciplines contribute to the field responsible for finding life beyond Earth, known as astrobiology. We will discuss why scientists study astrobiology, also known as astrobiologists, challenges of studying astrobiology, and how students can pursue studying astrobiology, as well. So, why is it so important to study astrobiology?

Continue reading “Astrobiology: Why study it? How to study it? What are the challenges?”

NASA Selects New Technology to Help Search for Life on Mars

Artist's impression of a Mars habitat in conjunction with other surface elements on Mars. Credit: NASA

The day when human beings finally set foot on Mars is rapidly approaching. Right now, NASA, the China National Space Agency (CNSA), and SpaceX have all announced plans to send astronauts to the Red Planet “by 2040”, “in 2033”, and “before 2030”, respectively. These missions will lead to the creation of long-term habitats that will enable return missions and scientific research that will investigate everything from the geological evolution of Mars to the possible existence of past (or even present) life. The opportunities this will create are mirrored only by the challenges they will entail.

One of the greatest challenges is ensuring that crews have access to water, which means that any habitats must be established near an underground source. Similarly, scientists anticipate that if there is still life on Mars today, it will likely exist in “briny patches” beneath the surface. A possible solution is to incorporate a system for large-scale water mining operations on Mars that could screen for lifeforms. The proposal, known as an Agnostic Life Finding (ALF) system, was one of thirteen concepts selected by NASA’s Innovative Advanced Concept (NIAC) program this year for Phase I development.

Continue reading “NASA Selects New Technology to Help Search for Life on Mars”

Europa Clipper Could Help Discover if Jupiter's Moon is Habitable

Artist's concept of a Europa Clipper mission. Credit: NASA/JPL

Since 1979, when the Voyager probes flew past Jupiter and its system of moons, scientists have speculated about the possibility of life within Europa. Based on planetary modeling, Europa is believed to be differentiated between a rocky and metallic core, an icy crust and mantle, and a liquid-water ocean that could be 100 to 200 km (62 to 124 mi) deep. Scientists theorize that this ocean is maintained by tidal flexing, where interaction with Jupiter’s powerful gravitational field leads to geological activity in Europa’s core and hydrothermal vents at the core-mantle boundary.

Investigating the potential habitability of Europa is the main purpose of NASA’s Europa Clipper mission, which will launch on October 10th, 2024, and arrive around Jupiter in April 2030. However, this presents a challenge for astrobiologists since the habitability of Europa is dependent on many interrelated parameters that require collaborative investigation. In a recent paper, a team of NASA-led researchers reviewed the objectives of the Europa Clipper mission and anticipated what it could reveal regarding the moon’s interior, composition, and geology.

Continue reading “Europa Clipper Could Help Discover if Jupiter's Moon is Habitable”

If Earth is Average, We Should Find Extraterrestrial Life Within 60 Light-Years

Astronomers have detected thousands of planets, including dozens that are potentially habitable. To winnow them down, they need to understand their atmospheres and other factors. (NASA Illustration)
Astronomers have detected thousands of planets, including dozens that are potentially habitable. To winnow them down, they need to understand their atmospheres and other factors. (NASA Illustration)

In 1960, while preparing for the first meeting on the Search for Extraterrestrial Intelligence (SETI), legendary astronomer and SETI pioneer Dr. Frank Drake unveiled his probabilistic equation for estimating the number of possible civilizations in our galaxy – aka. The Drake Equation. A key parameter in this equation was ne, the number of planets in our galaxy capable of supporting life – aka. “habitable.” At the time, astronomers were not yet certain other stars had systems of planets. But thanks to missions like Kepler, 5523 exoplanets have been confirmed, and another 9,867 await confirmation!

Based on this data, astronomers have produced various estimates for the number of habitable planets in our galaxy – at least 100 billion, according to one estimate! In a recent study, Professor Piero Madau introduced a mathematical framework for calculating the population of habitable planets within 100 parsecs (326 light-years) of our Sun. Assuming Earth and the Solar System are representative of the norm, Madau calculated that this volume of space could contain as much as 11,000 Earth-sized terrestrial (aka. rocky) exoplanets that orbit within their stars’ habitable zones (HZs).

Continue reading “If Earth is Average, We Should Find Extraterrestrial Life Within 60 Light-Years”

The Most Compelling Places to Search for Life Will Look Like “Anomalies”

Will it be possible someday for astrobiologists to search for life "as we don't know it"? Credit: NASA/Jenny Mottar

In the past two and a half years, two next-generation telescopes have been sent to space: NASA’s James Webb Space Telescope (JWST) and the ESA’s Euclid Observatory. Before the decade is over, they will be joined by NASA’s Nancy Grace Roman Space Telescope (RST), Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx), and the ESA’s PLAnetary Transits and Oscillations of stars (PLATO) and ARIEL telescopes. These observatories will rely on advanced optics and instruments to aid in the search and characterization of exoplanets with the ultimate goal of finding habitable planets.

Along with still operational missions, these observatories will gather massive volumes of high-resolution spectroscopic data. Sorting through this data will require cutting-edge machine-learning techniques to look for indications of life and biological processes (aka. biosignatures). In a recent paper, a team of scientists from the Institute for Fundamental Theory at the University of Florida (UF-IFL) recommended that future surveys use machine learning to look for anomalies in the spectra, which could reveal unusual chemical signatures and unknown biosignatures.

Continue reading “The Most Compelling Places to Search for Life Will Look Like “Anomalies””

The 2nd Annual Penn State SETI Symposium and the Search for Technosignatures!

Artist's impression of a Dyson Sphere, an proposed alien megastructure that is the target of SETI surveys. Finding one of these qualifies in a "first contact" scenario. Credit: Breakthrough Listen / Danielle Futselaar
Artist's impression of a Dyson Sphere, an proposed alien megastructure that is the target of SETI surveys. Finding one of these qualifies in a "first contact" scenario. Credit: Breakthrough Listen / Danielle Futselaar

From June 18th to 22nd, the Penn State Extraterrestrial Intelligence Center (PSETI) held the second annual Penn State SETI Symposium. The event saw experts from many fields and backgrounds gathering to discuss the enduring questions about SETI, the technical challenges of looking for technosignatures, its ethical and moral dimensions, and what some of the latest experiments have revealed. Some very interesting presentations examined what will be possible in the near future and the likelihood that we will find evidence of extraterrestrial intelligence.

Among them, there were some very interesting presentations by Adam Frank, Professor of Astrophysics at the University of Rochester; Ph.D. student Matias Suazo, an astrophysicist and member of Project Haephestos at the University of Uppsala; and Nicholas Siegler, the Chief Technologist of NASA’s Exoplanet Exploration Program (ExEP). These presentations addressed ongoing issues in the search for extraterrestrial intelligence (ETI), technosignatures, the role of oxygen in the evolution of complex life, and what motivations extraterrestrial civilizations (ETC) might have for creating noticeable signatures.

Continue reading “The 2nd Annual Penn State SETI Symposium and the Search for Technosignatures!”