Alien Life May Not Be So Alien – If It Exists At All

Our galaxy has exoplanets, organic compounds, liquid water -- even a nebula shaped like a DNA helix -- but is there life? (Image credit: M. Morris/UCLA)

[/caption]

Are we too hopeful in our hunt for extraterrestrial life? Regardless of exoplanet counts, super-Earths and Goldilocks zones, the probability of life elsewhere in the Universe is still a moot point — to date, we still only know of one instance of it. But even if life does exist somehow, somewhere besides Earth, would it really be all that alien?

In a recent paper titled “Bit by Bit: the Darwinian Basis for Life” Gerald Joyce, Professor of Molecular Biology and Biochemistry at the Scripps Research Institute in La Jolla, CA discusses the nature of life as we know it in regards to its fundamental chemical building blocks — DNA, RNA — and how its ability to pass on the memory of its construction separates true biology from mere chemistry.

“Evolution is nothing more than chemistry plus history,” Joyce said during a Public Library of Science podcast.

The DNA structures that evolved here on Earth — the only place in the Universe we know for certain that life can thrive — have proven to be highly successful (obviously). So what’s to say that life elsewhere wouldn’t be based on the same basic building blocks? And if it is, is it really a “new” life form?

“Truly new ‘alternative life’ would be life of a different biology,” Joyce said. “It would not have the information in it that is part of the same heritage of our life form.”

To arise in the first place, according to Joyce, new life can take two possible routes. Either it begins as chemical connections that grow increasingly more complex until they begin to hold on to the memory of their specific “bit” structure, eventually “bit-flipping” — aka, mutating — into new structures that are either successful or unsuccessful, or it starts from a more “privileged” beginning as an offshoot of previous life, bringing bits into a totally new, immediately successful orientation.

With those two scenarios, anywhere besides Earth “there are no example of either of those conditions so far.”

That’s not saying that there’s no life elsewhere in the Universe… just that we have yet to identify any evidence of it. And without evidence, any discussion of its probability is still pure conjecture.

“In order to estimate probabilities, we need facts,” said Joyce. “The problem is, there is only one life form. And so it’s not possible to estimate probability of life elsewhere when you have only one example.”

Voyager included a golden record with images and sounds of Earthly life recorded on it... just in case. (NASA)

Even though exoplanets are being found on a nearly daily basis, and it’s only a matter of time before a rocky, Earthlike world with liquid water on its surface is confirmed orbiting another star, that’s no guarantee of the presence of alien life — despite what conclusions the headlines will surely jump to.

There could be a billion habitable planets in our galaxy. But what’s the relationship between habitable and inhabited?” Joyce asks. “We don’t know.”

Still, we will continue to search for life beyond our planet, be it truly alien in nature… or something slightly more familiar. Why?

“I think humans are lonely,” Joyce said. “I think humans are like Geppetto — we want to have a ‘real boy’ out there that we can point to, we want to find a Pinocchio living on some extrasolar planet… and then somehow we won’t be such a lonely life form.”

And who knows… if any aliens out there really are a lot like us, they may naturally be searching for evidence of our existence as well. If only to not be so lonely.

Listen to the full PLoS podcast here.

We Really Hope ET is Out There, But There’s Not Enough Scientific Evidence, Researchers Say

This artist's illustration gives an impression of how common planets are around the stars in the Milky Way. Credit: NASA, ESA, and M. Kornmesser (ESO)

[/caption]

For many of us who grew up listening to Carl Sagan, watching robotic spacecraft travel to other worlds, and indulging in science fiction books and movies, it’s a given: one day we’ll find life somewhere else in the solar system or Universe. But are we being too optimistic? Two researchers say that our hopes and expectations of finding ET might be based more on optimism than scientific evidence, and the recent discoveries of exoplanets that might be similar to Earth are probably getting everyone’s hopes up too high.

Astrophysicist Edwin Turner from Princeton and researcher David Spiegel from the Institute for Advanced Study say the idea that life has or could arise in an another Earth-like environment has only a small amount of supporting evidence, most of it extrapolated from what is known about abiogenesis, or the emergence of life, on early Earth. Their research says the expectations of life cropping up on exoplanets are largely based on the assumption that it would or will happen if the same conditions as Earth exist elsewhere.

Using a Bayesian analysis — which weighs how much of a scientific conclusion stems from actual data and how much comes from the prior assumptions of the scientist — the duo concluded that current knowledge about life on other planets suggests Earth might be a cosmic aberration, where life took shape unusually fast and furious. If so, then the chances of the average terrestrial planet hosting life would be low.

“Fossil evidence suggests that life began very early in Earth’s history and that has led people to determine that life might be quite common in the universe because it happened so quickly here, but the knowledge about life on Earth simply doesn’t reveal much about the actual probability of life on other planets,” Turner said.

So, if a scientist starts out assuming that the chances of life existing on another planet is as large as on Earth, then their scientific results will be presented in a way that supports that likelihood, Turner said.

“Information about that probability comes largely from the assumptions scientists have going in, and some of the most optimistic conclusions have been based almost entirely on those assumptions,” he said.

Therefore, with all the exoplanets being found, and as our discoveries have become more and more enticingly Earth-like, these planets have our knowledge of life on Earth projected onto them, the researchers said.

How does an exoplanet researcher feel about this? Turner and Spiegel found a sympathetic soul in Joshua Winn from the Massachusetts Institute of Technology, who said that the two cast convincing doubt on a prominent basis for expecting extraterrestrial life.

“There is a commonly heard argument that life must be common or else it would not have arisen so quickly after the surface of the Earth cooled,” Winn said. “This argument seems persuasive on its face, but Spiegel and Turner have shown it doesn’t stand up to a rigorous statistical examination — with a sample of only one life-bearing planet, one cannot even get a ballpark estimate of the abundance of life in the universe.

It is true that science is about facts — not about what your gut feelings are. But there’s a strong argument that we need inspiration to do the best, most engaging science. Writer Andrew Zimmerman Jones blogged today at PBS about how many scientists were spurred to follow their careers by reading science fiction when they were young.

“The finest science fiction is inspired by the same thing that has inspired the greatest science discoveries throughout the ages: optimism for the future,” wrote Jones.

And perhaps that is what is mostly behind our hopes for finding ET: optimism for the future of the human race, that we really could one day travel to other worlds, and find new friends — “to explore strange new worlds, to seek out new life and new civilizations, to boldly go where no one has gone before…”

Turner and Spiegel do say they are not making judgments, but just analyzing existing data that suggests the debate about the existence of life on other planets is framed largely by the prior assumptions of the participants.

“It could easily be that life came about on Earth one way, but came about on other planets in other ways, if it came about at all,” Turner said. “The best way to find out, of course, is to look. But I don’t think we’ll know by debating the process of how life came about on Earth.”

Read the team’s paper.

Sources: Princeton, PBS

Intelligent Alien Dinosaurs?

I for one welcome our alien dinosaur overlords…maybe.

Dinosaurs once roamed and ruled the Earth. Is it possible that similar humongous creatures may have evolved on another planet – a world that DIDN’T get smacked by an asteroid – and later they developed to have human-like, intelligent brains? A recent paper discussing why the biochemical signature of life on Earth is so consistent in orientation somehow segued into the possibility that advanced versions of T. Rex and other dinosaurs may be the life forms that live on other worlds. The conclusion? “We would be better off not meeting them,” said scientist Ronald Breslow, author of the paper.

The building blocks of terrestrial amino acids, sugars, and the genetic materials DNA and RNA have two possible orientations, left or right, which mirror each other in what is called chirality. On Earth, with the exception of a few bacteria, amino acids have the left-handed orientation. Most sugars have a right-handed orientation. How did that homochirality happen?

If meteorites carried specific types of amino acids to Earth about 4 billion years, that could have set the pattern the left-handed chirality in terrestial proteins.

“Of course,” Breslow said in a press release, “showing that it could have happened this way is not the same as showing that it did. An implication from this work is that elsewhere in the universe there could be life forms based on D-amino acids and L-sugars. Such life forms could well be advanced versions of dinosaurs, if mammals did not have the good fortune to have the dinosaurs wiped out by an asteroidal collision, as on Earth.”

But not everyone was impressed with the notion of dinosaurs from space. “None of this has anything to do with dinosaurs,” wrote science author Brian Switek in the Smithsonian blog Dinosaur Tracking. “As much as I’m charmed by the idea of alien dinosaurs, Breslow’s conjecture makes my brain ache. Our planet’s fossil record has intricately detailed the fact that evolution is not a linear march of progress from one predestined waypoint to another. Dinosaurs were never destined to be. The history of life on earth has been greatly influenced by chance and contingency, and dinosaurs are a perfect example of this fact.”

For further reading:
American Chemical Society paper
ACS press release
Dinosaur Tracking blog

Is This Proof of Life on Mars?

View of Mars from Viking 2 lander, September 1976. (NASA/JPL-Caltech)

[/caption]

The Curiosity rover is currently on its way to Mars, scheduled to make a dramatic landing within Gale Crater in mid-August and begin its hunt for the geologic signatures of a watery, life-friendly past. Solid evidence that large volumes of water existed on Mars at some point would be a major step forward in the search for life on the Red Planet.

But… has it already been found? Some scientists say yes.

Researchers from universities in Los Angeles, California, Tempe, Arizona and Siena, Italy have published a paper in the International Journal of Aeronautical and Space Sciences (IJASS) citing the results of their work with data obtained by NASA’s Viking mission.

The twin Viking 1 and 2 landers launched in August and September of 1975 and successfully landed on Mars in July and September of the following year. Their principal mission was to search for life, which they did by digging into the ruddy Martian soil looking for signs of respiration — a signal of biological activity.

A six-inch-deep trench in the Martian soil dug by Viking 1 in February 1977. The goal was to reach a foot below the surface for sampling.

The results, although promising, were inconclusive.

Now, 35 years later, one team of researchers claims that the Viking landers did indeed detect life, and the data’s been there all along.

“Active soils exhibited rapid, substantial gas release,” the  team’s report states. “The gas was probably CO2 and, possibly, other radiocarbon-containing gases.”

By applying mathematical complexities to the Viking data for deeper analysis, the researchers found that the Martian samples behaved differently than a non-biological control group.

“Control responses that exhibit relatively low initial order rapidly devolve into near-random noise, while the active experiments exhibit higher initial order which decays only slowly,” the paper states. “This suggests a robust biological response.”

While some critics of the findings claim that such a process of identifying life has not yet been perfected — not even here on Earth — the results are certainly intriguing… enough to bolster support for further investigation into Viking data and perhaps re-evaluate the historic mission’s “inconclusive” findings.

The team’s paper can be found here.

Image credits: NASA/JPL-Caltech. Also, read more on Irene Klotz’s article on Discovery News.

How Would Humans Respond to First Contact from an Alien World?

Artist concept of an exoplanet. Credit: David A. Hardy.

[/caption]

According to Star Trek lore, it is only 51 years until humans encounter their first contact with an alien species. In the movie “Star Trek: First Contact,” on April 5, 2063, Vulcans pay a visit to an Earth recovering from a war-torn period (see the movie clip below.) But will such a planet-wide, history-changing event ever really take place? If you are logical, like Spock and his Vulcan species, science points towards the inevitability of first contact. This is according to journalist Marc Kaufman, who is a science writer for the Washington Post and author of the book “First Contact: Scientific Breakthroughs in the Hunt for life Beyond Earth.” He writes that from humanity’s point of view, first contact would be a “harbinger of a new frontier in a dramatically changed cosmos.”

What are some of the arguments for and against the likelihood of first contact ever taking place and what would the implications be?

“One argument against first contact is from those who say there is no other life in the Universe,” said Kaufman, speaking to Universe Today via phone, “and with that is the Fermi paradox, which says that if there is so much life out there, why hasn’t it visited us yet? That was first posited back in the 1950’s and with everything we’ve learned since then, it seems rather presumptuous and Earth-centric to say that because no one has come to Earth, there is no life out there.”

Kaufman argues the Universe is so vast, the number of exoplanets is so huge – with the number of exoplanets in habitable zones now gaining in numbers almost daily – and we now understand that all the makings for the building blocks of life are out in space, so it defies logic to argue there is no other life out there.

Another argument against first contact states there might be microbial life elsewhere in the Universe, but it is not intelligent. “This is where the Fermi paradox comes in even more,” Kaufman said. “It certainly is true — as far as we know — that no intelligent life has made contact with Earth. But when you look at the amount of time we’ve been a technologically advanced society, it has only been a few hundred years. In the vastness of time, that is a pitifully small amount of time – truly nothing.”

In the immensity of cosmological time, Kaufman said, it is quite possible that microbial life emerged and evolved a billion years ago on another world and we missed coinciding with it, as civilizations could have come and gone.

“But all the makings are there and unless we want to say that Earth was made through divine creation or only through an unbelievable set of circumstances this is the only place in the Universe where life began, it just seems hugely, hugely implausible,” Kaufman said.

So, Kaufman says, the best, most logical argument is that life exists beyond Earth and in some instances includes what we would consider intelligence.

“If you have microbial life and billions of planets in habitable zones, the logic says that some of them will advance like we did,” Kaufman said. “There’s no reason to say that evolution is exclusive to Earth. It feels very 14th or 15th century-Earth-centric to say that we are the only place where there is intelligent life.”

Our continued scientific understanding, and in particular, the recent ongoing finding of so many exoplanets, has been a real revolution in our understanding of the cosmos, Kaufman said, and it is a huge boost to the logic of finding life elsewhere.

“It was hypothesized for decades, if not centuries that other planets were out there,” he said. “Now that we are finding planets almost every day, from a scientific perspective, it shows us that if the science is pointing in a certain direction, you just need to have the technology and the knowledge catch up to that hypothesis.”

Kaufman says that like the surge in finding exoplanets, astrobiology is likely the next area of science where breakthroughs will happen.

“Scientists almost unanimously believe there is other life out there, but we just don’t have the technology to find it yet,” he said. “Even with the recent potential cuts in NASA’s budget for planetary missions, and even if NASA is not able to send up as many missions, there is a broad movement going on in college campuses and institutes – from working on synthetic life, to studies in cosmology, and astrochemistry — all of those things are moving forward because there is a real sense that something is within reach. This area of science is just going to blossom.”

So if tomorrow (or on April 5, 2063) a spaceship shows up, how would we respond?

“On one level, I’d hope there would be a huge amount of wonder and awe and a recognition of the vastness of the Universe. But I also imagine there would be a lot of defensiveness, as well,” said Kaufman, referring to some, like Stephen Hawking, who say we shouldn’t send messages out into space — because if a more technically advanced civilization comes to Earth, the outcome for the less advanced (us) would likely be bad.

But Kaufman has hope that Earthlings would welcome a visit.

“Look at the continuing fascination of Roswell or UFOs,” he said. “Throughout history, humans have looked to the skies and thought that we’ve experienced something ‘out there’ – be it angels or gods or spaceships. There is, I believe, a deep human craving that we aren’t alone, and that would be a significant part of our response.”

For more information see Kaufman’s book, and website,”Habitable Zones”

Could There Be Life In Them Thar Pits?

Computer-generated perspective of the Tractus Catene pit chains. Credit: ESA/DLR/FU Berlin (G. Neukum)

[/caption]

Recent images from ESA’s Mars Express spacecraft reveal long rows of crater-like depressions lining the flanks of ancient Martian volcanoes located in the planet’s vast Tharsis region. Rather than being the result of impact events, these “pit chains” were likely caused by underground lava flows — and could be a prime location for look for life.

Like similar features found on Earth, lava tubes on Mars are the result of rivers of magma that carved channels beneath the surface. When these channels empty out, a hollow tube is left. If the roof of a particularly large tube is near the surface the roof can eventually collapse, creating a surface depression… or, in some cases, opening up to the surface entirely.

Even though volcanism on Mars isn’t currently active — the last eruptions probably took place at least over a million years ago — the features left by volcanic activity are still very much present today and likely well-preserved beneath the Martian surface.

Shielded from harsh solar and cosmic radiation, the interior of such lava tubes could provide a safe haven for microbial life — especially if groundwater had found its way inside at some point.

Even though the surface of Mars can receive 250 times the radiation levels found on Earth, the layers of soil and rock surrounding the tubes can provide adequate protection for life, whether it be ancient Martian microbes or future explorers from Earth.

A wider image of the Tractus Catena region showing the large shield volcano Ascraeus Mons. Credits: ESA/DLR/FU Berlin (G. Neukum)

Of course, water and protection from radiation aren’t the only factors necessary for life. There also needs to be some source of heat. Fortunately, the pit chains imaged by Mars Express happen to be within one of the most volcano-laden areas of the Red Planet, a region called the Arcadia quadrangle. Within this area exist some of the largest volcanoes on Mars — and the Tractus Catena pits are located right in the middle of them.

If a heat source were ever to have been beneath the surface of Mars, there would be a good chance it would have been here.

And if our own planet is any measure of such things, where there’s heat and water there is often some form of life — however extreme the conditions may be.

“I’d like to see us land ON a volcano,” Dr. Tracy Gregg, a volcanologist with the University of Buffalo, had once told Universe Today back in 2004. “Right on the flanks. Often the best place to look for evidence of life on any planet is near volcanoes.”

“That may sound counterintuitive, but think about Yellowstone National Park , which really is nothing but a huge volcano,” Gregg elaborated. “Even when the weather in Wyoming is 20 below zero, all the geysers, which are fed by volcanic heat, are swarming with bacteria and all kinds of happy little things cruising around in the water. So, since we think that the necessary ingredients for life on Earth were water and heat, we are looking for the same things on Mars.”

As far as any remaining geothermal activity still happening beneath the Martian surface?

“I strongly suspect there are still molten (or at least mushy) magma bodies beneath the huge Tharsis volcanoes,” Gregg had said. (Read the full article here.)

On Earth, lava tubes, caves and underground spaces of all kinds harbor life, often specialized forms that are found no place else. Could this be (or have once been) the case on Mars as well? Only future exploration will tell. Until then, places like Tractus Catena will remain on scientists’ short list of places to look.

Read more on the ESA website here.

“Tidal Venuses” May Have Been Wrung Out To Dry

Extreme heating from tidal stresses may render a "Tidal Venus" planet inhabitable

[/caption]

Earth-sized exoplanets within a distant star’s habitable zone could still be very much uninhabitable, depending on potential tidal stresses — either past or present — that could have “squeezed out” all the water, leaving behind a bone-dry ball of rock.

New research by an international team of scientists suggests that even a moderately eccentric orbit within a star’s habitable zone could exert tidal stress on an Earth-sized planet, enough that the increased surface heating due to friction would boil off any liquid water via extreme greenhouse effect.

Such planets are dubbed “Tidal Venuses”, due to their resemblance to our own super-heated planetary neighbor. This evolutionary possibility could be a factor in determining the actual habitability of an exoplanet, regardless of how much solar heating (insolation) it receives from its star.

The research, led by Dr. Rory Barnes of the University of Washington in Seattle, states that even an exoplanet currently in a circular, stable orbit could have formed with a much more eccentric orbit, thus subjecting it to tidal forces. Any liquid water present after formation would then have been slowly but steadily evaporated and the necessary hydrogen atoms lost to space.

The risk of such a “desiccating greenhouse” effect would be much greater on exoplanets orbiting lower-luminosity stars, since any potential habitable zone would be closer in to the star and thus prone to stronger tidal forces.

And as far as such an effect working to create habitable zones further out in orbit than otherwise permissible by stellar radiation alone… well, that wouldn’t necessarily be the case.

Even if an exoplanetary version of, say, Europa, could be heated through tidal forces to maintain liquid water on or below its surface, a rocky world the size of Earth (or larger) would still likely end up being rather inhospitable.

“One couldn’t do it for an Earthlike planet — the tidal heating of the interior would likely make the surface covered by super-volcanoes,” Dr. Barnes told Universe Today.

So even though the right-sized exoplanets may be found in the so-called “Goldilocks zone” of their star, they may still not be “just right” for life as we know it.

The team’s full paper can be found here.

New Analysis of Clay Deposits in Ancient Martian Lakes

Map of 226 ancient lakes on Mars. Credit: Goudge, T.A., Head, J.W., Mustard, J.F. and Fassett, C.I./MOLA/NASA

[/caption]

Mars was once a much wetter world than it is now, with hot springs, rivers, lakes and perhaps even oceans. Just how wet exactly, and for how long, is still a subject of considerable debate. One vital clue comes from clay mineral deposits and sediments left over after the water disappeared, but still visible now. They provide a valuable insight into what Mars used to be like, and why it is the cold, dry place we see today.

A team of scientists from Brown University has just completed a new study of ancient lake beds on Mars, specifically looking at the clay deposits within them, to try to determine how many of these lakes still contain such deposits and their composition. So what do they tell us about conditions on early Mars? How does this affect the search for evidence of life?

As it turns out, about a third of the lake beds examined still show evidence for clay deposits. A total of 79 lake beds out of 226 studied to be exact, indicating that they are less common on Mars than on Earth. The reason for this may be that the chemistry of the water was not ideal for preserving clays or that the lakes were relatively short-lived.

The paper was just published in Icarus on March 2, 2012.

From the abstract:

“These results indicate that hydrated and evaporite minerals are not as commonly associated with lacustrine deposits on Mars as they are on Earth. This suggests in situ alteration and mineral precipitation, a common source of such minerals in terrestrial lakes, was not a major process occurring in these paleolacustrine systems, and that the observed minerals are likely to be present as transported material within the lacustrine deposits. The lack of widespread in situ alteration also suggests that either the water chemistry in these paleolake systems was not conducive to aqueous alteration and mineral precipitation, or that the open-basin lake systems were relatively short-lived.”

Images for the study came from the Mars Reconnaissance Orbiter, Mars Odyssey and Mars Express spacecraft.

Clay deposits have become a primary focus of study by orbiters and rovers, as they could preserve fossil traces of early life, just as they do on Earth. Even if they are less common on Mars, the fact that they do exist there is exciting, and there is now much interest in exploring them further. Apart from underground, they are the best places to look for such evidence of life. It is also possible that additional deposits have been buried underground, waiting to be discovered.

The Opportunity rover is currently very close to a treasure trove of clays in Endeavour crater, and it is expected to head straight for them after its winter “hibernation” is over in the next few months. The Curiosity rover, en route to Mars right now, will land in Gale crater next July, where there are also clay deposits near the base of a mountainous peak within the crater. Gale crater is thought to be another site of a former Martian lake.

The abstract is available here (with full paper available for purchase).

Life Will Always Find a Way… To Eat Everything

A type of worm from the Dorvilleids family. The first known species to consume Archaea.
A type of worm from the Dorvilleids family. The first known species to consume Archaea.

[/caption]
A couple of consumption stories crossed my desk today, so I thought I’d merge them together. The bottom line is that everything’s on the menu. If there’s energy to be extracted from something, life is going to find a way to consume it.

We’ve got a deep sea worm that seems to be able to thrive from any of the three main branches of life on Earth – the first known example of a creature that consumes Archaea.

And then there’s the discovery of a fungus capable of consuming large amounts of polyurethane plastic.

Eating from all three branches of the tree of life

The first example of this comes from research done at Oregon State University about a single-celled microorganism called Archaea. This class of life is one of the three basic “domains of life” on Earth, including bacteria and eukaryota (multi-celled creatures like us).

Scientists believed that Archaea were completely disconnected from the food web – the circle of life just didn’t include them – but researchers at Oregon State University tried feeding two varieties of Archaea to a type of deep sea worms that live near the “black smoker” vents off the coast of North America.

To their surprise, these worms were perfectly happy eating Archaea, as well as standard meals of bacteria, spinach or rice. They grew at the same rate, regardless of what branch their food was hanging from on the tree of life.

That brings new meaning to the term “omnivore”.

You can read more about their research here.

Scraping fungus off a tree in Ecuador. Image credit: Yale University
Scraping fungus off a tree in Ecuador. Image credit: Yale University


Next up, a fungus that will eat your plastic.

Researchers from Yale University have discovered a variety of fungi in the Amazon Rainforest (where else?), that can “eat” a common form of plastic known as polyurethane. This, of course, would be the holy grail of recycling, since there’s no natural process that will get rid of plastic.

While exploring the Amazon, they discovered a fungus in the rainforest of Ecuador and brought it back to the lab for analysis. They experimented with it a bit and discovered just how quickly it could consume plastic. In one report, the fungus was only 10 days old and had significantly consumed about a quart’s worth of plastic – without needing any oxygen.

The puzzling part, of course, is trying to figure out what this fungus normally eats in the wild, since it’s not growing on plastic trees.

Here’s more info on the plastic gobbling fungus.

Is There Life on Earth?

An Earthshine-lit moon sets over ESO's Paranal Observatory in Chile.

[/caption]

It may seem like a silly question — of course there’s life on Earth — but what if we didn’t know that? What if we were looking at Earth from another vantage point, from another planet in another star system, perhaps? Would we be able to discern then if Earth were in fact teeming with life? All we’d have to go on would be the tiniest bit of light reflected off Earth, nearly lost in the intense glare of the Sun.

Researchers have found that the secret is knowing what kind of light to look for. And they discovered this with a little help from the Moon.

How Earthshine works. (ESO/L. Calçada)

By using Earthshine — sunlight light reflected off Earth onto the Moon — astronomers with the European Southern Observatory have been able to discern variations that correlate with identifying factors of our planet as being a happy home for life.

In observations made with ESO’s Very Large Telescope (VLT), the presence of oceans, clouds, atmospheric gases and even plants could be detected in the reflected Earthshine.

The breakthrough method was the use of spectropolarimetry, which measures polarized light reflected from Earth. Like polarized sunglasses are able to filter out reflected glare to allow you to see clearer, spectropolarimetry can focus on light reflected off a planet, allowing scientists to more clearly identify important biological signatures.

“The light from a distant exoplanet is overwhelmed by the glare of the host star, so it’s very difficult to analyze — a bit like trying to study a grain of dust beside a powerful light bulb,” said Stefano Bagnulo of the Armagh Observatory, Northern Ireland, and co-author of the study. “But the light reflected by a planet is polarized, while the light from the host star is not. So polarimetric techniques help us to pick out the faint reflected light of an exoplanet from the dazzling starlight.”

Since we have fairly reliable proof that life does in fact exist on Earth, this provides astronomers with a process and a benchmark for locating evidence of life on other distant worlds — life as we know it, anyway.

Read more on the ESO website here.

Main image credit: ESO/B. Tafreshi/TWAN (twanight.org). This research was presented in a paper, “Biosignatures as revealed by spectropolarimetry of Earthshine”, by M. Sterzik et al. to appear in the journal Nature on 1st March 2012. The team is composed of Michael F. Sterzik (ESO, Chile), Stefano Bagnulo (Armagh Observatory, Northern Ireland, UK) and Enric Palle (Instituto de Astrofisica de Canarias, Tenerife, Spain).