Earth Could Spread Life Across The Milky Way

Panspermia Illustration Courtesy of Wikipedia

[/caption]

Most of us are familiar with the concept of panspermia – where living organisms can be “seeded” from comet or asteroid impacts – but where does the life-giving content come from? According to a research group led by Mauricio Reyes-Ruiz from the National Autonomous University of Mexico, it just might come from Earth.

Inspired by the discovery of Moon and Mars rocks found on Earth from meteor strikes, the team began computer modeling of what might happen if pieces of Earth were transported across the Solar System via a collision scenario. The simulation involved 10,000 Earth particles moving over a period of 30,000 years. The amount of matter is tiny compared to the bulk our planet and it’s a blink of the eye in cosmic time, but scientists theorize that extreme lifeforms might be able to exist that long in space.

“The collision probability is greater than previously reported,” said Reyes-Ruiz. “It has been suggested that the ejection to interplanetary space of terrestrial crustal material, accelerated in a large impact, may result in the interchange of biological material between Earth and other Solar System bodies”

Could pieces of Earth really reach other planets? According to older theories, chances were good that some might reach the Moon or Venus, but gravity from the Sun and Earth makes reaching Mars improbable. However, the new simulations show a Mars impact – and even Jupiter – to be probable with the right ejection speeds. By involving slightly more particles at five times the rate of motion, the new results show the particles could even go beyond the Solar System. Oddly enough, the faster they moved, the lesser their chances of encountering the Moon and Venus became. Of the 10,242 tested, 691 particles ‘escaped’ out of the Solar System entirely, and six landed on Jupiter itself. Is this a Neil Young vision of flying Mother Nature’s silver seed to a new home?

Chris Shepherd of the Institute of Physics in London, who was not involved in the study, might agree with this conclusion. “This is an intriguing piece of work. The team have mapped out a really interesting scenario,” he said. One possible collision zone is Europa, the moon of Jupiter, and while the team did not simulate the number of particles that would specifically land there, many astronomers believe that it contains a large ocean, and could therefore support life.”

Original Story Source: Cosmos Magazine News Release. For Further Study: Dynamics of escaping Earth ejecta and their collision probability with different Solar System bodies.

Mars May Have Once Been a Cold, Wet World

2 billion years ago Mars may have featured a frigid ocean. Credit: Taylor Perron/UC Berkeley.

[/caption]

Many planetary scientists suspect that Mars, now cold and very dry, once had a liquid water ocean covering parts of its surface. But this does not necessarily mean that the Red Planet was ever a tropical paradise… a recent paper by a team of astrobiologists suggests that Mars was much more bitter than balmy.

Astrobiologist Alberto Fairyn and colleagues have published a paper in the journal Nature Geoscience suggesting that the marked absence of phyllosilicates in Mars’ northern lowlands is indicative of a cold ocean environment, with perhaps even a boundary of frozen glaciers.

Phyllosilicates are minerals that, on Earth, are found readily in marine sediments and sedimentary rock that was formed in the presence of an ocean environment. These same minerals have also been seen via orbiting spacecraft spectrometers to be present in sediments located in Mars’ equatorial regions, but not in the northern latitudes. Fairyn and his team, intrigued by the disparity between existing models that described Mars as being once warm and wet and the lack of phyllosilicates in the north, used new climatic and geochemical models to deduce that Mars’ northern oceans must have been consistently near freezing, with portions even covered over by ice.

Did Mars once have ice-covered seas? (Original image © Maggie & David. Edited by J. Major.)

The current presence of moraines in the northern highlands also suggests that glaciers may have surrounded these frigid seas, which may have prevented the transportation of phyllosilicates down to the northern ocean basin. Again, to use our own planet as an analogy, moraines are rocky debris left over from the movement of glaciers. Their existence on Mars strongly suggests a period of early glaciation.

The research by Fairyn et al. contradict – or, more aptly, combine –  two leading concepts of early Mars: one, that it was cold and dry and the existence of any liquid water was restricted to the equator for small periods of time; and two, that it was once globally warmer and wetter and sustained rivers, lakes and oceans of liquid water for extended periods.

Thus a cold Mars with an Arctic, icy ocean seems to be a more fitting causation of the current state of the planet, suggests Fairyn.

More research is planned, including running through more low-temperature models and hunting for ancient coastal areas that may have been impacted by icebergs. This will no doubt prove to be a challenge since much of the evidence is now buried deep beneath newer sediments and volcanic deposits. Still, Fairyn is confident that his model may help solve a long-standing debate over the history of the Red Planet.

Read more in an article by Bob Yirka on PhysOrg.

_____________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor or on Facebook for the most up-to-date astronomy awesomeness!

Microfossils Discovered On Earth Could Aid In Finding Ancient Life On Mars

This image of the Centauri-Hellas Montes region was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at a portion of a trough in the Nili Fossae region of Mars is shown in enhanced color in this image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. Credit: NASA/JPL-Caltech/Univ. of Arizona

[/caption]

What does a more than three billion year old sandstone formation in Western Australia have in common with Mars? The Aussie stones contain the oldest living microbial record of life on Earth – and it might be the basis of fossil discovery on Mars. The early Archaean rocks are providing geologists with microfossil evidence that early life might have been utilizing sulpher – instead of oxygen – for their ecosystems.

“At last we have good solid evidence for life over 3.4 billion years ago. It confirms there were bacteria at this time, living without oxygen,” said co-researcher Professor Martin Brasier at Oxford University, UK. “Such bacteria are still common today. Sulphur bacteria are found in smelly ditches, soil, hot springs, hydrothermal vents – anywhere where there’s little free oxygen and they can live off organic matter,” he explained.

But providing morphological evidence for these sulphur-metabolizing bacteria hasn’t been as easy as just digging up some stones. The first detection came in 2007 at Strelley Pool, a now arid area which may have once been an estuary or shallow water region. Associated with micrometre-sized pyrite crystals, these microstructures show all the right ingredients for early life properties, such as hollow cell lumens and carbonaceous cell walls enriched in nitrogen. Spheroidal and ellipsoidal forms are good indicators of bacterial formations and tubular sheaths point to multiple cell growth. They also display pyrite content, but there’s no “fool’s gold” here in these light isotopes… it’s a metabolic by-products of the cells.

“Life likes lighter isotopes, so if you have a light signature in these minerals then it looks biological,” said lead author Dr David Wacey from the University of Western Australia. “There are ways to get the same signature without biology, but that generally requires very high temperatures. So when you put together the light isotope signature with the fact the pyrite is right next to the microfossils – just a couple of microns away – then it really does look like there was a whole sulphur ecosystem there,” he reported to BBC News.

So what does this discovery have to do with Mars? In its northern hemisphere is a region called Nili Fossae which photographically bears a strong resemblance to Australia’s Pilbara region – home to Strelley Pool. With a huge amount of clay minerals documented, Nili Fossae just might be the ideal place for US space agency’s Curiosity-Mars Science Laboratory rover mission to begin a search for early Martian life forms. But don’t get too excited just yet… The study on a remote planet is going to prove even more difficult than here on Earth.

“Some of the instruments we used can fill a whole room, but some of them can be miniaturised,” said Dr Wacey. “A rover could narrow down the targets but then you’d really have to bring samples back to Earth to study them in detail.”

Original Story Source: BBC News – Science and Environment and Nature Geoscience.

Replication of Arsenic Life Experiment Not Successful So Far

A replication of the arsenic life experiment being done by biologist Rosie Redfield. Image credit: Rosie Redfield.

[/caption]

One of the most vocal and ardent critics of the so-called ‘arsenic life’ experiment which was published in December 2010 was biologist Rosie Redfield from the University of British Columbia in Vancouver. The science paper by NASA astrobiologist Felisa Wolfe-Simon and her team reported that a type of bacteria in Mono Lake in California can live and grow almost entirely on arsenic, a poison, and incorporates it into its DNA. Redfield called the paper “lots of flim-flam, but very little reliable information.” Her opinion was quickly seconded by many other biologists/bloggers.

Redfield has been working on replicating the experiment done by Wolfe-Simon, and doing in her work in front of the world, so to speak. She is detailing her work in an open lab notebook on her blog. So far, she reports that her results contradict Wolfe-Simon et al.’s observations.

To date, Redfield is finding that the bacteria, called GFAJ-1, is not living and growing in arsenic, but dying. Redfield says her work refutes that cells from the GFAJ-1 could use arsenic for growth in place of phosphorus, and when arsenic was added to the low-phosphorus medium in which the bacteria was living, the bacteria was killed. Additionally, in other test viles, the growth properties Redfield is finding for GFAJ-1 don’t match those reported by Wolfe-Simon and her team, which claimed that the bacteria could not grow on a low concentration of phosphorus, and that the bacteria could grow on arsenic in the absence of phosphorus.

Felisa Wolfe-Simon, right, a NASA astrobiology research fellow in residence at the USGS, and Ronald Oremland, an expert in arsenic microbiology at the USGS, examine sediment in August 2009 from Mono Lake in eastern California. Credit: © 2009 Henry Bortman

Redfield’s two major early criticisms of the original paper were that the authors had not ruled out the possibility that the bacteria were feeding on phosphorus contaminating their growth medium; and that the bacterial DNA was not properly purified, so that the arsenic detected might not actually have been in DNA.

An article in Nature reports that other researchers also working on replicating the experiment with GFAJ-1 laud Redfield’s efforts, but say it is too early to conclude that she has debunked the original work.

Additionally, one problem is that Redfield she did not replicate the experiment exactly, as she had to add one nutrient not used by the authors of the original arsenic life paper in order for the bacteria to grow.

This is not the first time scientists have written open notebooks during the replication of controversial findings, but it might be one of the more notable, given the amount of media attention the arsenic life paper received.

Redfield is also hoping that her work will highlight the benefits of open notebook-type research.

You can read Redfield’s blog about her work at this link.

Sources: Nature, Redfield’s blog.

Astronomy Without A Telescope – The Unlikeliness Of Being

The Search for ExtraTerrestrial Intelligence could be a waste of time according to a recent statistical analysis of the likelihood of life arising spontaneously on habitable-zone exoplanets out there in the wider universe (and let's face it - when have predictive statistics ever got it wrong?) Credit: SETI Institute.

[/caption]

History has proved time and again that mathematical modelling is no substitute for a telescope (or other data collection device). Nonetheless, some theoreticians have recently put forward a statistical analysis which suggests that life is probably very rare in the universe – despite the apparent prevalence of habitable-zone exoplanets, being found by the Kepler mission and other exoplanet search techniques.

You would be right to be skeptical, given the Bayesian analysis undertaken is based on our singular experience of abiogenesis – being the origin of life from non-life, here on Earth. Indeed, the seemingly rapid abiogenesis that occurred on Earth soon after its formation is suggested to be the clinching proof that abiogenesis on habitable-zone exoplanets must be rare. Hmm…

Bayes theorem provides a basis for estimating the likelihood that a prior assumption or hypothesis (e.g. that abiogenesis is common on habitable-zone exoplanets) is correct, using whatever evidence is available. Its usage is nicely demonstrated in solving the Monty Hall problem.

Go here for the detail, but in a nutshell:
There are three doors, one with a car behind it and the other two have goats. You announce which door you will pick – knowing that it carries a 1/3 probability of hiding the car. Then Monty Hall, who knows where the car is, opens another door to reveal a goat. So, now you know that door always had a zero probability of hiding the car. So, the likelihood of the remaining door hiding the car carries the remaining 2/3 probability of the system, since there was always an absolute 1/1 probability that the car was behind one of the three doors. So, it makes more sense for you to open that remaining door, instead of the first one you picked.

In this story, Monty Hall opening the door with a goat represents new data. It doesn’t allow you to definitively determine where the car is, but it does allow you to recalculate the likelihood that your prior hypothesis (that the car is behind the first door you picked) is correct.

Applying Bayesian analysis to the problem of abiogenesis on habitable-zone exoplanets is a bit of a stretch. Speigel and Turner argue that the evidence we have available to us – that life began quite soon after the Earth became habitable – contributes nothing to estimating the likelihood that life arises routinely on habitable-zone exoplanets.

They remind us that we need to acknowledge the anthropic nature of the observation we are making. We are here after 3.5 billion years of evolution – which has given us the capacity to gather together the evidence that life began here 3.5 billion years ago, shortly after the Earth first became habitable. But that is only because this is how things unfolded here on Earth. In the absence of more data, the apparent rapidity of abiogenesis here on Earth could just be a fluke.

Stromatolites - which were a fairly early form of life on Earth. Earth became inhabited by such early life shortly after it became habitable. This might seem suggestive that life is somewhat inevitable when the conditions are right. But a statistician is never going to buy such an argument when it's based on a single example.

This is a fair point, but a largely philosophical one. It informs the subsequent six pages of Spiegel and Turner’s Bayesian analysis, but it is not a conclusion of that analysis.

The authors seek to remind us that interviewing one person and finding that she or he likes baked beans does not allow us to conclude that all people like baked beans. Yes agree, but that’s just statistics – it’s not really Bayesian statistics.

If we are ever able to closely study an exoplanet that has been in a habitable state for 3.5 billion years and discover that either it has life, or that it does not – that will be equivalent to Monty Hall opening another door.

But for now, we might just be a fluke… or we might not be. What we need is more data.

Further reading: Spiegel and Turner. Life might be rare despite its early emergence on Earth: a Bayesian analysis of the probability of abiogenesis.

Dramatic New NASA Animation Depicts Next Mars Rover in Action

NASA's Mars Science Laboratory Curiosity rover. Curiosity is a mobile robot for investigating Mars' past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011. The mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. This mast supports two remote-sensing instruments: the Mast Camera, or "eyes," for stereo color viewing of surrounding terrain and material collected by the arm; and, the ChemCam instrument, which is a laser that vaporizes material from rocks up to about 9 meters (30 feet) away and determines what elements the rocks are made of. Credit: NASA/JPL-Caltech. New NASA High Resolution Curiosity Animations below

[/caption]

NASA’s next Mars rover, the Curiosity Mars Science Laboratory, will soon embark on a quantum leap in humankind’s scientific exploration of the Martian surface -the most Earthlike planet in our Solar System.

To get a birds eye understanding of Curiosity’s magnificent capabilities, check out the dramatic new high resolution animation below which depicts NASA’s next Mars rover traversing tantalizing terrain for clues to whether Martian microbial life may have existed, evolved and been sustained in past or present times.


The new action packed animation is 11 minutes in length. It depicts sequences starting with Earth departure, smashing through the Martian atmosphere, the nail biting terror of the never before used rocket-backpack sky crane landing system and then progressing through the assorted science instrument capabilities that Curiosity will bring to bear during its minimum two year expedition across hitherto unseen and unexplored Martian landscapes, mountains and craters.

Curiosity is equipped with 10 science instruments. The three meter long robot is five times the weight of any previous Mars rover.

Those who closely follow the adventures of NASA’s Spirit and Opportunity rovers, like myself, will quickly recognize several of the panoramic scenes which have been included to give a realistic feeling of vistas to expect from the car sized Curiosity rover.

Here is a shorter 4 minute animation with expert narration


Along the way you’ll experience Curiosity zapping rocks with a laser, deftly maneuvering her robotic arm and camera mast and retrieving and analyzing Martian soil samples.

“It is a treat for the 2,000 or more people who have worked on the Mars Science Laboratory during the past eight years to watch these action scenes of the hardware the project has developed and assembled,” said Mars Science Laboratory Project Manager Pete Theisinger at NASA’s Jet Propulsion Laboratory, Pasadena, Calif, in a NASA statement. “The animation also provides an exciting view of this mission for any fan of adventure and exploration.”

Curiosity - The Next Mars Rover analyzes Martian rocks
Curiosity rover examines a rock on Mars with a set of tools at the end of the rover's arm, which extends about 2 meters (7 feet). Two instruments on the arm can study rocks up close. Also, a drill can collect sample material from inside of rocks and a scoop can pick up samples of soil. The arm can sieve the samples and deliver fine powder to instruments inside the rover for thorough analysis. Credit: NASA/JPL-Caltech

Curiosity was flown this week from her birthplace at NASA’s Jet Propulsion Laboratory in California to her future launch site in Florida aboard a C-17 military cargo transport aircraft.

She arrived at the Shuttle Landing Facility (SLF) at the Kennedy Space Center on June 22. The SLF is the same landing strip where I watched the STS-135 crew arrive for NASA’s final shuttle mission just days earlier days for their final launch countdown training.

NASA has scheduled Curiosity to blast off for the red planet on Nov. 25, 2011 from Cape Canaveral Air Force Station aboard an Atlas V rocket. Curiosity will touchdown in August 2012 at a landing site that will be announced soon by Ed Weiler, NASA Associate Administrator for the Science Mission Directorate in Washington, D.C.

Curiosity rover traverses new Martian terrain in search of habitats for microbial life. Credit: NASA/JPL-Caltech

Read my prior features about Curiosity
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth
Curiosity Mars Rover Almost Complete
Curiosity Rover Testing in Harsh Mars-like Environment

Packing a Mars Rover for the Trip to Florida

Check out this way cool time-lapse movie of NASA’s Curiosity Mars rover as its being packed up for her trip to Florida.

The video covers a 4 day period from June 13 to 17 and is condensed to just 1 minute. Watch the JPL engineers and technicians prepare Curiosity and the descent stage for shipping to the Kennedy Space Center in Florida and place it inside a large protective shipping container. Continue reading “Packing a Mars Rover for the Trip to Florida”

Rocky, Low-Mass Planet Discovered by Microlensing

A low-mass, rocky planet orbits a distant sun
A low-mass, rocky planet orbits a distant sun

[/caption]

 

In planet hunting today, there seems to be one burning question that nearly every new article published touches on: Where did these planets come from?

As astronomers discovered the first extrasolar planets, it quickly became obvious that the formation theories that we’d built on our own solar system were only part of the story. They didn’t predict the vast number of hot Jupiters astronomers found nearly everywhere. Astronomers went back to the drawing board to put more details into the theory, breaking formation down into quick, single collapses and more gradual accretion of gas disks, and worrying about the effects of migration. It’s likely all these effects take place to some extent, but ferreting out just how much is now the big challenge for astronomers. Hampering their efforts is the biased sample from the gravitational-wobble technique which preferentially discovered high mass, tightly orbiting planets. The addition of Kepler to planet hunter’s arsenal has removed some of this bias, readily finding planets to far lower masses, but still prefers planets in short orbits where they are more likely to transit. However, the addition of another technique, gravitational microlensing, promises to find planets down to 10 Earth masses, much further out from their parent stars. Using this technique, a team of astronomers has just announced the detection of a rocky planet just in this range.

According to the Extrasolar Planet Encyclopaedia, astronomers have discovered 13 planets using gravitational microlensing. The newly announced one, MOA-2009-BLG-266Lb, is estimated to be just over 10 times the mass of Earth and orbits at a distance of 3.2 AUs around a parent star with roughly half the mass of the Sun. The new finding is important because it is one of the first planets in this mass range that lies beyond the “snow line”, the distance during formation of a planetary system beyond which ice can form from water, ammonia, and methane. This presence of icy grains is expected to assist in the formation of planets since it creates additional, solid material to form the planetary core. Just beyond the snow line, astronomers would expect that planets would form the most quickly since, as you move further, beyond this line, the density drops. Models have predicted that planets forming here should quickly reach a mass of 10 Earth masses by accumulating most of the solid material in the vicinity. The forming planet then, can slowly accrete gaseous envelopes. If it accumulates this material quickly enough, the gaseous atmosphere may become too massive and collapse, beginning a rapid gas accretion phase forming a gas giant.

The timing of these three phases, as well as their distance dependency, makes testable predictions that can be contrasted with the observations as astronomers discover more planets in this vicinity. In particular, it has suggested that we should see few gas giants around low mass stars because the gas disk is expected to dissipate before the atmosphere collapse leading to the rapid accretion phase. This expectation has been generally supported by the findings of the 500+ confirmed extrasolar planets, as well as the 1,200+ candidates from Kepler, lending credence to this core collapse + slow accretion model. Additionally, Kepler has also reported a large population of relatively low mass planets, interior to the snow line. This too supports the hypothesis since the greater difficulty in forming cores without the presence of ice would hamper the formation of large planets. However, other predictions, such as not expecting massive planets in tight orbits, is still largely contradictory to the hypothesis and greater testing with additional discoveries will be needed.

Assisting with this, several new observing programs will be coming on line in the near future. The Optical Gravitational Lensing Experiment IV (OGLE-IV) has just entered operation and a new program at Wise Observatory in Tel Aviv will begin operation following up on microlensing events next year. Also expected in the near future is the Korean Microlensing Network (KMT-Net) which will operate telescopes in South Africa, Chile, and Australia using 1.6 meter telescopes covering 4 square degrees of the galactic bulge.

Red Suns and Black Trees: Shedding a New Light on Alien Plants

 

[/caption]

The grass may definitely not be greener on some alien worlds, suggests a new study from the UK. For example, planets in double-star systems could have grey or black vegetation.

Researcher Jack O’Malley-James of the University of St Andrews in Scotland worked out how photosynthesis in plants is affected by the color of the light they receive. On Earth, most plants have evolved to be green in order to take advantage of the yellowish color of the sunlight that’s received on the surface of our planet. (Our Sun, classified as a “Population I yellow dwarf star”, would look bright white from space but our atmosphere makes it appear yellow.) There are lots of other stars like our Sun in the Universe, and many of them are in multiple systems sharing orbits with other types of stars…red dwarfs, blue stars, red giants, white dwarfs…stars come in many different colors depending on their composition, age, size and temperature. We may be used to yellow but nature really has no preference! (Although red dwarfs happen to be the garden variety star in our own galaxy.)

Terrestrial examples of dark-colored plants

Planets that orbit within these multiple systems and exist within the habitable “Goldilocks” zone (and we are finding more and more candidates every day!) could evolve plants that depend on suns with different colors than ours. Green does a good job powering photosynthesis here, but on a planet orbiting a red dwarf and Sun-like star plants could very well be grey or black to absorb more light energy, according to O’Malley-James.

“Our simulations suggest that planets in multi-star systems may host exotic forms of the more familiar plants we see on Earth. Plants with dim red dwarf suns for example, may appear black to our eyes, absorbing across the entire visible wavelength range in order to use as much of the available light as possible.”

– Jack O’Malley-James, School of Physics and Astronomy, University of St Andrews

The study takes into consideration many different combinations of star varieties and how any potential life-sustaining planets could orbit them.

In some instances different portions of a planet may be illuminated by a differently-colored star in a pair…what sorts of variations in plant (and subsequently, animal) evolution could arise then?

And it’s not just the colors of plants that could evolve differently. “For planets orbiting two stars like our own, harmful radiation from intense stellar  flares could lead to plants that develop their own UV-blocking sunscreens, or photosynthesizing microorganisms that can move in response to a sudden flare,” said O’Malley-James.

Kermit may have been right all along…being green might really not be easy!

Read more on the Royal Astronomical Society’s news release or on the University of St Andrews website.

Top image credit: Jason Major

Curiosity Mars Rover Almost Complete

Curiosity Mars Rover almost complete at NASA’s Jet Propulsion Laboratory – Side View. The rover for NASA's Mars Science Laboratory mission, named Curiosity, is about 3 meters (10 feet) long, not counting the additional length that the rover's arm can be extended forward. The front of the rover is on the left in this side view. The arm is partially raised but not extended. Rising from the rover deck just behind the front wheels is the remote sensing mast. Credit: NASA/JPL-Caltech

[/caption]

NASA’s massive ‘Curiosity’ rover is almost ready to begin the first leg of its long trek to the surface of the Red Planet. Engineers at NASA’s Jet Propulsion Laboratory in California are nearly finished with assembling and testing all the components of the Mars Science Laboratory (MSL) mission (see photos above and below).

The MSL team plans to ship Curiosity as well as the cruise stage, descent stage and back shell to the Kennedy Space Center (KSC) in May and June. After arriving at KSC, all the pieces will be integrated together and tested during final assembly in a clean room. The rover will then be installed inside a 5 meter diameter nose cone, shipped the short distance to Cape Canaveral and then bolted atop an Atlas V rocket (photo below).

Top of Mars Rover Curiosity's Remote Sensing Mast.
The remote sensing mast on NASA Mars rover Curiosity holds two science instruments for studying the rover's surroundings and two stereo navigation cameras for use in driving the rover and planning rover activities. Credit: NASA/JPL-Caltech

The launch window for Curiosity extends from Nov. 25 to Dec. 18, 2011. The first stage of the powerful Atlas V rocket will be augmented with four solid rocket boosters. The Atlas V has previously launched two planetary missions; the Mars Reconnaissance Orbiter (MRO) and the New Horizons mission to Pluto.

Take a long gander at the 3 meter long rover because its appearance is now very much how it will look while it’s roving along intriguing martian landscapes for at least two earth years after landing in August 2012.

NASA Mars Rover Curiosity at JPL, View from Front Left Corner.
Support equipment is holding the Mars rover Curiosity slightly off the floor. When the wheels are on the ground, the top of the rover's mast is about 2.2 meters (7 feet) above ground level. Credit: NASA/JPL-Caltech

The mini-Cooper sized Curiosity rover is equipped with 10 science instruments to investigate Martian soil and rock samples in far greater detail than ever before. Curiosity’s science payload weighs ten times more than any prior Mars rover mission.

The goal is to search for clues to environmental conditions favorable for microbial life and for preserving evidence about whether Martian life ever existed in the past or today. NASA is scrutinizing a list of four potential landing sites for the best chance of finding a habitable zone.

Arm and Mast of Curiosity Mars Rover.
Curiosity's arm and remote sensing mast carry science instruments and other tools for the mission. This image, taken April 4, 2011, inside the Spacecraft Assembly Facility at JPL shows the arm on the left and the mast just right of center. Credit: NASA/JPL-Caltech
Atlas V rocket at pad 41 at Cape Canaveral Air Force Station.
An Atlas V rocket similar to this one with a 5 meter diameter nose cone – but with 4 solid rocket boosters added - will launch Curiosity to Mars in late 2011. Credit: Ken Kremer
Atlas V launch vehicle will blast Curiosity to Mars