Researchers in Antarctica got a surprise visit from a creature in a borehole 185 meters (600 feet) below the Antarctic ice, where there is usually no light. A Lyssianasid amphipod, a shrimp-like creature can be seen swimming in this video. A NASA team had lowered a small video camera to get the first-ever photograph of the underside of an ice shelf when the curious little 7 cm (3- inch) shrimp stopped by to check out the equipment. Scientists say this could challenge the idea of where and how forms of life can survive. Anyone else thinking Europa?
Continue reading “Unexpected Life Found Under Antarctic Ice”
Nailing Down Goldilocks: What’s “Just Right” for Exo-Earths?
For Goldilocks, the porridge had to be not too hot, and not too cold … the right temperature was all she needed.
For an Earth-like planet to harbor life, or multicellular life, certainly temperature is important, but what else is important? And what makes the temperature of an exo-Earth “just right”?
Some recent studies have concluded that answering these questions can be surprisingly difficult, and that some of the answers are surprisingly curious.
Consider the tilt of an exo-Earth’s axis, its obliquity.
In the “Rare Earth” hypothesis, this is a Goldilocks criterion; unless the tilt is kept stable (by a moon like our Moon), and at a “just right” angle, the climates will swing too wildly for multicellular life to form: too many snowball Earths (the whole globe covered in snow and ice with an enhanced albedo effect), or too much risk of a runaway greenhouse.
“We find that planets with small ocean fractions or polar continents can experience very severe seasonal climatic variations,” Columbia University’s David Spiegel writes*, summing up the results of an extensive series of models investigating the effects of obliquity, land/ocean coverage, and rotation on Earth-like planets, “but that these planets also might maintain seasonally and regionally habitable conditions over a larger range of orbital radii than more Earth-like planets.” And the real surprise? “Our results provide indications that the modeled climates are somewhat less prone to dynamical snowball transitions at high obliquity.” In other words, an exo-Earth tilted nearly right over (much like Uranus) may be less likely to suffer snowball Earth events than our, Goldilocks, Earth!
Consider ultra-violet radiation.
“Ultraviolet radiation is a double-edged sword to life. If it is too strong, the terrestrial biological systems will be damaged. And if it is too weak, the synthesis of many biochemical compounds cannot go along,” says Jianpo Guo of China’s Yunnan Observatory** “For the host stars with effective temperatures lower than 4,600 K, the ultraviolet habitable zones are closer than the habitable zones. For the host stars with effective temperatures higher than 7,137 K, the ultraviolet habitable zones are farther than the habitable zones.” This result doesn’t change what we already knew about habitability zones around main sequence stars, but it effectively rules out the possibility of life on planets around post-red giant stars (assuming any could survive their homesun going red giant!)
Consider the effects of clouds.
Calculations of the habitability zones – the radii of the orbits of an exo-Earth, around its homesun – for main sequence stars usually assume an astronomers’ heaven – permanent clear skies (i.e. no clouds). But Earth has clouds, and clouds most definitely have an effect on average global temperatures! “The albedo effect is only weakly dependent on the incident stellar spectra because the optical properties (especially the scattering albedo) remain almost constant in the wavelength range of the maximum of the incident stellar radiation,” a German team’s recent study*** on the effects of clouds on habitability concludes (they looked at main sequence homesuns of spectral classes F, G, K, and M). This sounds like Gaia is Goldilocks’ friend; however, “The greenhouse effect of the high-level cloud on the other hand depends on the temperatures of the lower atmosphere, which in turn are an indirect consequence of the different types of central stars,” the team concludes (remember that an exo-Earth’s global temperature depends upon both the albedo and greenhouse effects). So, the take-home message? “Planets with Earth-like clouds in their atmospheres can be located closer to the central star or farther away compared to planets with clear sky atmospheres. The change in distance depends on the type of cloud. In general, low-level clouds result in a decrease of distance because of their albedo effect, while the high-level clouds lead to an increase in distance.”
“Just right” is tricky to pin down.
* lead author; Princeton University’s Kristen Manou and Colombia University’s Caleb Scharf are the co-authors (“Habitable Climates: The Influence of Obliquity”, The Astrophysical Journal, Volume 691, Issue 1, pp. 596-610 (2009); arXiv:0807.4180 is the preprint)
** lead author; Fenghui Zhang, Xianfei Zhang, and Zhanwen Han, all also at the Yunnan Observatory, are the co-authors (“Habitable zones and UV habitable zones around host stars”, Astrophysics and Space Science, Volume 325, Number 1, pp. 25-30 (2010))
*** “Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones”, Kitzmann et al., accepted for publication in Astronomy & Astrophysics (2010); arXiv:1002.2927 is the preprint.
ESA’s Tough Choice: Dark Matter, Sun Close Flyby, Exoplanets (Pick Two)
Key questions relevant to fundamental physics and cosmology, namely the nature of the mysterious dark energy and dark matter (Euclid); the frequency of exoplanets around other stars, including Earth-analogs (PLATO); take the closest look at our Sun yet possible, approaching to just 62 solar radii (Solar Orbiter) … but only two! What would be your picks?
These three mission concepts have been chosen by the European Space Agency’s Science Programme Committee (SPC) as candidates for two medium-class missions to be launched no earlier than 2017. They now enter the definition phase, the next step required before the final decision is taken as to which missions are implemented.
These three missions are the finalists from 52 proposals that were either made or carried forward in 2007. They were whittled down to just six mission proposals in 2008 and sent for industrial assessment. Now that the reports from those studies are in, the missions have been pared down again. “It was a very difficult selection process. All the missions contained very strong science cases,” says Lennart Nordh, Swedish National Space Board and chair of the SPC.
And the tough decisions are not yet over. Only two missions out of three of them: Euclid, PLATO and Solar Orbiter, can be selected for the M-class launch slots. All three missions present challenges that will have to be resolved at the definition phase. A specific challenge, of which the SPC was conscious, is the ability of these missions to fit within the available budget. The final decision about which missions to implement will be taken after the definition activities are completed, which is foreseen to be in mid-2011.
[/caption]
Euclid is an ESA mission to map the geometry of the dark Universe. The mission would investigate the distance-redshift relationship and the evolution of cosmic structures. It would achieve this by measuring shapes and redshifts of galaxies and clusters of galaxies out to redshifts ~2, or equivalently to a look-back time of 10 billion years. It would therefore cover the entire period over which dark energy played a significant role in accelerating the expansion.
By approaching as close as 62 solar radii, Solar Orbiter would view the solar atmosphere with high spatial resolution and combine this with measurements made in-situ. Over the extended mission periods Solar Orbiter would deliver images and data that would cover the polar regions and the side of the Sun not visible from Earth. Solar Orbiter would coordinate its scientific mission with NASA’s Solar Probe Plus within the joint HELEX program (Heliophysics Explorers) to maximize their combined science return.
PLATO (PLAnetary Transit and Oscillations of stars) would discover and characterize a large number of close-by exoplanetary systems, with a precision in the determination of mass and radius of 1%.
In addition, the SPC has decided to consider at its next meeting in June, whether to also select a European contribution to the SPICA mission.
SPICA would be an infrared space telescope led by the Japanese Space Agency JAXA. It would provide ‘missing-link’ infrared coverage in the region of the spectrum between that seen by the ESA-NASA Webb telescope and the ground-based ALMA telescope. SPICA would focus on the conditions for planet formation and distant young galaxies.
“These missions continue the European commitment to world-class space science,” says David Southwood, ESA Director of Science and Robotic Exploration, “They demonstrate that ESA’s Cosmic Vision programme is still clearly focused on addressing the most important space science.”
Source: ESA chooses three scientific missions for further study
Ozone on Mars: Two Windows Better Than One
Understanding the present-day Martian climate gives us insights into its past climate, which in turn provides a science-based context for answering questions about the possibility of life on ancient Mars.
Our understanding of Mars’ climate today is neatly packaged as climate models, which in turn provide powerful consistency checks – and sources of inspiration – for the climate models which describe anthropogenic global warming here on Earth.
But how can we work out what the climate on Mars is, today? A new, coordinated observation campaign to measure ozone in the Martian atmosphere gives us, the interested public, our own window into just how painstaking – yet exciting – the scientific grunt work can be.
[/caption]
The Martian atmosphere has played a key role in shaping the planet’s history and surface. Observations of the key atmospheric components are essential for the development of accurate models of the Martian climate. These in turn are needed to better understand if climate conditions in the past may have supported liquid water, and for optimizing the design of future surface-based assets at Mars.
Ozone is an important tracer of photochemical processes in the atmosphere of Mars. Its abundance, which can be derived from the molecule’s characteristic absorption spectroscopy features in spectra of the atmosphere, is intricately linked to that of other constituents and it is an important indicator of atmospheric chemistry. To test predictions by current models of photochemical processes and general atmospheric circulation patterns, observations of spatial and temporal ozone variations are required.
The Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) instrument on Mars Express has been measuring ozone abundances in the Martian atmosphere since 2003, gradually building up a global picture as the spacecraft orbits the planet.
These measurements can be complemented by ground-based observations taken at different times and probing different sites on Mars, thereby extending the spatial and temporal coverage of the SPICAM measurements. To quantitatively link the ground-based observations with those by Mars Express, coordinated campaigns are set up to obtain simultaneous measurements.
Infrared heterodyne spectroscopy, such as that provided by the Heterodyne Instrument for Planetary Wind and Composition (HIPWAC), provides the only direct access to ozone on Mars with ground-based telescopes; the very high spectral resolving power (greater than 1 million) allows Martian ozone spectral features to be resolved when they are Doppler shifted away from ozone lines of terrestrial origin.
A coordinated campaign to measure ozone in the atmosphere of Mars, using SPICAM and HIPWAC, has been ongoing since 2006. The most recent element of this campaign was a series of ground-based observations using HIPWAC on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea in Hawai’i. These were obtained between 8 and 11 December 2009 by a team of astronomers led by Kelly Fast from the Planetary Systems Laboratory, at NASA’s Goddard Space Flight Center (GSFC), in the USA.
About the image: HIPWAC spectrum of Mars’ atmosphere over a location on Martian latitude 40°N; acquired on 11 December 2009 during an observation campaign with the IRTF 3 m telescope in Hawai’i. This unprocessed spectrum displays features of ozone and carbon dioxide from Mars, as well as ozone in the Earth’s atmosphere through which the observation was made. Processing techniques will model and remove the terrestrial contribution from the spectrum and determine the amount of ozone at this northern position on Mars.
The observations had been coordinated in advance with the Mars Express science operations team, to ensure overlap with ozone measurements made in this same period with SPICAM.
The main goal of the December 2009 campaign was to confirm that observations made with SPICAM (which measures the broad ozone absorption spectra feature centered at around 250 nm) and HIPWAC (which detects and measures ozone absorption features at 9.7 μm) retrieve the same total ozone abundances, despite being performed at two different parts of the electromagnetic spectrum and having different sensitivities to the ozone profile. A similar campaign in 2008, had largely validated the consistency of the ozone measurement results obtained with SPICAM and the HIPWAC instrument.
The weather conditions and the seeing were very good at the IRTF site during the December 2009 campaign, which allowed for good quality spectra to be obtained with the HIPWAC instrument.
Kelly and her colleagues gathered ozone measurements for a number of locations on Mars, both in the planet’s northern and southern hemisphere. During this four-day campaign the SPICAM observations were limited to the northern hemisphere. Several HIPWAC measurements were simultaneous with observations by SPICAM allowing a direct comparison. Other HIPWAC measurements were made close in time to SPICAM orbital passes that occurred outside of the ground-based telescope observations and will also be used for comparison.
The team also performed measurements of the ozone abundance over the Syrtis Major region, which will help to constrain photochemical models in this region.
Analysis of the data from this recent campaign is ongoing, with another follow-up campaign of coordinated HIPWAC and SPICAM observations already scheduled for March this year.
Putting the compatibility of the data from these two instruments on a firm base will support combining the ground-based infrared measurements with the SPICAM ultraviolet measurements in testing the photochemical models of the Martian atmosphere. The extended coverage obtained by combining these datasets helps to more accurately test predictions by atmospheric models.
It will also quantitatively link the SPICAM observations to longer-term measurements made with the HIPWAC instrument and its predecessor IRHS (the Infrared Heterodyne Spectrometer) that go back to 1988. This will support the study of the long-term behavior of ozone and associated chemistry in the atmosphere of Mars on a timescale longer than the current missions to Mars.
Sources: ESA, a paper published in the 15 September 2009 issue of Icarus
Missing Early Stars Found, With No Place Left to Hide
[/caption]
Astronomer sleuths have solved a cosmic mystery by finding primitive stars that have been stealthily concealed. Using ESO’s Very Large Telescope a group of astronomers have uncovered an important astrophysical puzzle concerning the oldest stars in our galactic neighborhood — which is crucial for our understanding of the earliest stars in the Universe. . “We have, in effect, found a flaw in the forensic methods used until now,” said Else Starkenburg, lead author of a paper reporting the new findings. “Our improved approach allows us to uncover the primitive stars hidden among all the other, more common stars.”
Primitive stars are thought to have formed from material forged shortly after the Big Bang, 13.7 billion years ago. They typically have less than one thousandth the amount of chemical elements heavier than hydrogen and helium found in the Sun and are called “extremely metal-poor stars.” They belong to one of the first generations of stars in the nearby Universe. Such stars are extremely rare and mainly observed in the Milky Way.
Cosmologists think that larger galaxies like the Milky Way formed from the merger of smaller galaxies. Our Milky Way’s population of extremely metal-poor or “primitive” stars should already have been present in the dwarf galaxies from which it formed, and similar populations should be present in other dwarf galaxies. “So far, evidence for them has been scarce,” said co-author Giuseppina Battaglia. “Large surveys conducted in the last few years kept showing that the most ancient populations of stars in the Milky Way and dwarf galaxies did not match, which was not at all expected from cosmological models.”
Element abundances are measured from spectra, which provide the chemical fingerprints of stars. The Dwarf galaxies Abundances and Radial-velocities Team used the FLAMES instrument on ESO’s Very Large Telescope to measure the spectra of over 2000 individual giant stars in four of our galactic neighbors, the Fornax, Sculptor, Sextans and Carina dwarf galaxies. Since the dwarf galaxies are typically 300,000 light years away — which is about three times the size of our Milky Way — only strong features in the spectrum could be measured, like a vague, smeared fingerprint. The team found that none of their large collection of spectral fingerprints actually seemed to belong to the class of stars they were after, the rare, extremely metal-poor stars found in the Milky Way.
The team of astronomers around Starkenburg has now shed new light on the problem through careful comparison of spectra to computer-based models. They found that only subtle differences distinguish the chemical fingerprint of a normal metal-poor star from that of an extremely metal-poor star, explaining why previous methods did not succeed in making the identification.
The astronomers also confirmed the almost pristine status of several extremely metal-poor stars thanks to much more detailed spectra obtained with the UVES instrument on ESO’s Very Large Telescope. “Compared to the vague fingerprints we had before, this would be as if we looked at the fingerprint through a microscope,” explains team member Vanessa Hill. “Unfortunately, just a small number of stars can be observed this way because it is very time consuming.”
“Among the new extremely metal-poor stars discovered in these dwarf galaxies, three have a relative amount of heavy chemical elements between only 1/3000 and 1/10 000 of what is observed in our Sun, including the current record holder of the most primitive star found outside the Milky Way,” said team member Martin Tafelmeyer.
“Not only has our work revealed some of the very interesting, first stars in these galaxies, but it also provides a new, powerful technique to uncover more such stars,” concluded Starkenburg. “From now on there is no place left to hide!”
Source: ESO
If the Earth is Rare, We May Not Hear from ET
[/caption]
If civilization-forming intelligent life is rare in our Milky Way galaxy, chances are we won’t hear from ET before the Sun goes red giant, in about five billion years’ time; however, if we do hear from ET before then, we’ll have lots of nice chats before the Earth is sterilized.
That’s the conclusion from a recent study of Ward and Brownlee’s Rare Earth hypothesis by Duncan Forgan and Ken Rice, in which they made a toy galaxy, simulating the real one we live in, and ran it 30 times. In their toy galaxy, intelligent life formed on Earth-like planets only, just as it does in the Rare Earth hypothesis.
While the Forgan and Rice simulations are still limited and somewhat unrealistic, they give a better handle on SETI’s chances for success than either the Drake equation or Fermi’s “Where are they?”
“The Drake equation itself does suffer from some key weaknesses: it relies strongly on mean estimations of variables such as the star formation rate; it is unable to incorporate the effects of the physico-chemical history of the galaxy, or the time-dependence of its terms,” Forgan says, “Indeed, it is criticized for its polarizing effect on “contact optimists” and “contact pessimists”, who ascribe very different values to the parameters, and return values of the number of galactic civilizations who can communicate with Earth between a hundred-thousandth and a million (!)”
Building on the work of Vukotic and Cirkovic, Forgan developed a Monte Carlo-based simulation of our galaxy; as inputs, he used the best estimates of actual astrophysical parameters such as the star formation rate, initial mass function, a star’s time spent on the main sequence, likelihood of death from the skies, etc. For several key inputs however, “the model goes beyond relatively well-constrained parameters, and becomes hypothesis,” Forgan explains, “In essence, the method generates a Galaxy of a billion stars, each with their own stellar properties (mass, luminosity, location in the Galaxy, etc.) randomly selected from observed statistical distributions. Planetary systems are then generated for these stars in a similar manner, and life is allowed to evolve in these planets according to some hypothesis of origin. The end result is a mock Galaxy which is statistically representative of the Milky Way. To quantify random sampling errors, this process is repeated many times: this allows an estimation of the sample mean and sample standard deviation of the output variables obtained.”
Forgan simulated the Rare Earth hypothesis by allowing animal life – the only kind of life from which intelligent civilizations can arise – to form only if homeworld’s mass is between a half and two Earths, if homesun’s mass is between a half and 1.5 times our Sun’s, homeworld has at least one moon (for tides and axial stability), and if homesun has at least one planet of mass at least ten times that of Earth, in an outer orbit (to cut down on death from the skies due to asteroids and comets).
The good news for SETI is that a galaxy like ours should host hundreds of intelligent civilizations (though, somewhat surprisingly, there is no galactic goldilocks zone); the bad news is that during the time such a civilization could communicate with an ET – between when it becomes technologically advanced enough and when it is wiped out by homesun going red giant – there are, in most simulations, no other such civilizations (or if there are, they are too far away) … we, or ET, would be alone.
But it’s not all bad news; if we are not alone, then once contact is established, we will have many phone calls with ET.
To be sure, this is but a work-in-progress. “Numerical modeling of this type is generally a shadow of the entity it attempts to model, in this case the Milky Way and its constituent stars, planets and other objects,” Forgan and Rice say; several improvements are already being worked on.
Sources: “A numerical testbed for hypotheses of extraterrestrial life and intelligence” (Forgan D., 2009, International Journal of Astrobiology, 8, 121), and “Numerical Testing of The Rare Earth Hypothesis using Monte Carlo Realisation Techniques” (arXiv:1001:1680); this too will be published in IJA, likely in April.
How Common are Solar Systems Like Ours?
Solar system montage. Credit: NASA
On the whole, we’d like to think we’re special, but we also hope we aren’t alone in the Universe. Astronomers have been trying to figure out just how common solar systems like ours are across the cosmos, and during one moment of epiphany one scientist figured out how to make the calculations. It took a worldwide collaboration of astronomers to do the work, but they concluded that about 10 – 15 percent of stars in the universe host systems of planets like our own, with several gas giant planets in the outer part of the solar system.
“Now we know our place in the universe,” said Ohio State University astronomer Scott Gaudi. “Solar systems like our own are not rare, but we’re not in the majority, either.”
The find comes from a collaboration headquartered at Ohio State called the Microlensing Follow-Up Network (MicroFUN), which searches the sky for extrasolar planets.
MicroFUN astronomers use gravitational microlensing — which occurs when one star happens to cross in front of another as seen from Earth. The nearer star magnifies the light from the more distant star like a lens. If planets are orbiting the lens star, they boost the magnification briefly as they pass by.
During his talk at the American Astronomical Society meeting in Washington, DC today, Gaudi said, “Planetary microlensing basically is looking for planets you can’t see around stars you can’t see.”
This method is especially good at detecting giant planets in the outer reaches of solar systems — planets analogous to our own Jupiter.
This latest MicroFUN result is the culmination of 10 years’ work — and one sudden epiphany, explained Gaudi and Andrew Gould, professor of astronomy at Ohio State.
Ten years ago, Gaudi wrote his doctoral thesis on a method for calculating the likelihood that extrasolar planets exist. At the time, he concluded that less than 45 percent of stars could harbor a configuration similar to our own solar system.
Then, in December of 2009, Gould was examining a newly discovered planet with Cheongho Han of the Institute for Astrophysics at Chungbuk National University in Korea. The two were reviewing the range of properties among extrasolar planets discovered so far, when Gould saw a pattern.
“Basically, I realized that the answer was in Scott’s thesis from 10 years ago,” Gould said. “Using the last four years of MicroFUN data, we could add a few robust assumptions to his calculations, and we could now say how common planet systems are in the universe.”
The find boils down to a statistical analysis: in the last four years, the MicroFUN survey has discovered only one solar system like our own — a system with two gas giants resembling Jupiter and Saturn, which astronomers discovered in 2006 and reported in the journal Science in 2008.
“We’ve only found this one system, and we should have found about eight by now — if every star had a solar system like Earth’s,” Gaudi said.
The slow rate of discovery makes sense if only a small number of systems — around 10 percent — are like ours, they determined.
“While it is true that this initial determination is based on just one solar system and our final number could change a lot, this study shows that we can begin to make this measurement with the experiments we are doing today,” Gaudi added.
As to the possibility of life as we know it existing elsewhere in the universe, scientists will now be able to make a rough guess based on how many solar systems are like our own.
Our solar system may be a minority, but Gould said that the outcome of the study is actually positive.
“With billions of stars out there, even narrowing the odds to 10 percent leaves a few hundred million systems that might be like ours,” he said.
At the AAS conference today, Gaudi was awarded the Helen B. Warner Prize for Astronomy.
Source: AAS, EurekAlert
Mars 2016 Methane Orbiter: Searching for Signs of Life
[/caption]
The new joint Mars exploration program of NASA and ESA is quickly pushing forward to implement an agreed upon framework to construct an ambitious new generation of red planet orbiters and landers starting with the 2016 and 2018 launch windows.
The European-led ExoMars Trace Gas Mission Orbiter (TGM) has been selected as the first spacecraft of the joint initiative and is set to launch in January 2016 aboard a NASA supplied Atlas 5 rocket for a 9 month cruise to Mars. The purpose is to study trace gases in the martian atmosphere, in particular the sources and concentration of methane which has significant biological implications. Variable amounts of methane have been detected by a martian orbiter and ground based telescopes on earth. The orbiter will likely be accompanied by a small static lander provided by ESA and dubbed the Entry, Descent and Landing Demonstrator Module (EDM).
The NASA Mars Program is shifting its science strategy to coincide with the new joint venture with ESA and also to build upon recent discoveries from the current international fleet of martian orbiters and surface explorers Spirit, Opportunity and Phoenix (see my earlier mars mosaics). Doug McCuiston, NASA’s director of Mars Exploration at NASA HQ told me in an interview that, “NASA is progressing quickly from ‘Follow the Water’ through assessing habitability and on to a theme of ‘Seeking the Signs of Life’. Looking directly for life is probably a needle in the haystack, but the signatures of past or present life may be more wide spread through organics, methane sources, etc”.
NASA and ESA will issue an “Announcement of Opportunity for the orbiter in January 2010” soliciting proposals for a suite of science instruments according to McCuiston. “The science instruments will be competitively selected. They are open to participation by US scientists who can also serve as the Principal Investigators (PI’s)”. Proposals are due in 3 months and will be jointly evaluated by NASA and ESA. Instrument selections are targeted for announcement in July 2010 and the entire cost of the NASA funded instruments is cost capped at $100 million.
“The 2016 mission must still be formally approved by NASA after a Preliminary Design Review, which will occur either in late 2010 or early 2011. Funding until then is covered in the Mars Program’s Next Decade wedge, where all new-start missions reside until approved, or not, by the Agency”, McCuiston told me. ESA’s Council of Ministers just gave the “green light” and formally approved an initial budget of 850 million euros ($1.2 Billion) to start implementing their ExoMars program for the 2016 and 2018 missions on 17 December at ESA Headquarters in Paris, France. Another 150 million euros will be requested within two years to complete the funding requirement for both missions.
ESA has had to repeatedly delay its own ExoMars spacecraft program since it was announced several years ago due to growing complexity, insufficient budgets and technical challenges resulting in a de-scoping of the science objectives and a reduction in weight of the landed science payload. The ExoMars rover was originally scheduled to launch in 2009 and is now set for 2018 as part of the new architecture.
The Trace Gas orbiter combines elements of ESA’s earlier proposed ExoMars orbiter and NASA’s proposed Mars Science Orbiter. As currently envisioned the spacecraft will have a mass of about 1100 kg and carry a roughly 115 kg science payload, the minimum deemed necessary to accomplish its goals. The instruments must be highly sensitive in order to be capable of detecting the identity and extremely low concentration of atmospheric trace gases, characterizing the spatial and temporal variation of methane and other important species, locating the source origin of the trace gases and determining if they are caused by biologic or geologic processes. Current photochemical models cannot explain the presence of methane in the martain atmosphere nor its rapid appearance and destruction in space, time or quantity.
Among the instruments planned are a trace gas detector and mapper, a thermal infrared imager and both a wide angle camera and a high resolution stereo color camera (1 – 2 meter resolution). “All the data will be jointly shared and will comply with NASA’s policies on fully open access and posting into the Planetary Data System”, said McCuiston.
Another key objective of the orbiter will be to establish a data relay capability for all surface missions up to 2022, starting with 2016 lander and two rovers slotted for 2018. This timeframe could potentially coincide with Mars Sample Return missions, a long sought goal of many scientists.
If the budget allows, ESA plans to piggyback a small companion lander (EDM) which would test critical technologies for future missions. McCuiston informed me that, “The objective of this ESA Technology Demonstrator is validating the ability to land moderate payloads, so the landing site selection will not be science-driven. So expect something like Meridiani or Gusev—large, flat and safe. NASA will assist ESA engineering as requested, and within ITAR constraints.” EDM will use parachutes, radar and clusters of pulsing liquid propulsion thrusters to land.
“ESA plans a competitive call for instruments on their 3-4 kg payload”, McCuiston explained. “The Announcement of Opportunity will be open to US proposers as well so there may be some US PI’s. ESA wants a camera to ‘prove’ they got to the ground. Otherwise there is no significant role planned for NASA in the EDM”.
The lander would likely function as a weather station and be relatively short lived, perhaps 8 Sols or martian days, depending on the capacity of the batteries. ESA is not including a long term power source, such as from solar arrays, so the surface science will thus be limited in duration.
The orbiter and lander would separate upon arrival at Mars. The orbiter will use a series of aerobraking maneuvers to eventually settle into a 400 km high circular science orbit inclined at about 74 degrees.
The joint Mars architecture was formally agreed upon last summer at a bilateral meeting between Ed Weiler (NASA) and David Southwood (ESA) in Plymouth, UK. Weiler is NASA’s Associate Administrator for the Science Mission Directorate and Southwood is ESA’s Director of Science and Robotic Exploration. They signed an agreement creating the Mars Exploration Joint Initiative (MEJI) which essentially weds the Mars programs of NASA and ESA and delineates their respective program responsibilities and goals.
“The key to moving forward on Mars exploration is international collaboration with Europe”, Weiler said to me in an interview. “We don’t have enough money to do these missions separately. The easy things have been done and the new ones are more complex and expensive. Cost overruns on Mars Science Lab (MSL) have created budgetary problems for future mars missions”. To pay for the MSL overrun, funds have to be taken from future mars budget allocations from fiscal years 2010 to 2014.
“2016 is a logical starting point to work together. NASA can have a 2016 mission if we work with Europe but not if we work alone. We can do so much more by working together since we both have the same objectives scientifically and want to carry out the same types of mission”. Weiler and Southwood instructed their respective science teams to meet and lay out a realistic and scientifically justifiable approach. Weiler explained to me that his goal and hope was to reinstate an exciting Mars architecture with new spacecraft launching at every opportunity which occurs every 26 months and which advance the state of the art for science. “It’s very important to demonstrate a critical new technology on each succeeding mission”.
More on the 2018 mission plan and beyond in a follow up report.
Could there be Life on Jupiter and Saturn’s Moons?
The ongoing search for the existence of life that doesn’t call the Earth ‘home’ could potentially find that life right here in our own Solar System. There is considerable debate about whether evidence for that life has already been found on Mars, but astronomers might do well to look at other, more exotic locations in our neighborhood.
At the recent meeting of the American Geophysical Union in San Fransisco, Francis Nimmo, who is a professor of Earth and planetary sciences at UC Santa Cruz, said that the conditions on Saturn’s moon Enceladus, and Jupiter’s moon Europa may be just right to harbor life.
Nimmo said, “Liquid water is the one requirement for life that everyone can agree on.” The water underneath the icy crusts of Enceladus and Europa may just be teeming with alien fish and algae, or more basic forms of life such as bacteria.
Nimmo is one of a long list of scientists speculating on the existence of life on these watery moons. A discovery of any life form originating from a planet other than the Earth “would be the scientific discovery of the millennium,” Nimmo said. And even saying that is an understatement.
If life were able to exist in the watery oceans of the moons around Saturn and Jupiter, Nimmo said, it would mean that the ‘habitable zone’ around a star would extend much further out than previously thought, to moons that orbit large gas giants in other systems around faraway stars.
The possible ocean under the surface of Enceladus may receives its heat from the tidal forces of Saturn. That is, if there is an ocean under the surface of Enceladus, as that topic is still somewhat debated among astronomers. The constant tug of Saturn’s gravitational pull may stretch the interior of the planet enough to heat the water below the crust of ice, which is estimated to vary in thickness between 25km to 45km. Geysers of frozen water forced out of crack on Enceladus’ surface have been observed by the Cassini mission, and the craft has even flown through the plume of one of these jets.
Here’s a video of Carolyn Porco, who leads the imaging team on the Cassini mission, talking about the potential for life inside the moon, and some of the discoveries made by Cassini so far:
Evidence for the ocean under Europa’s icy skin comes from the Galileo mission, which passed by the moon in 2000 and took measurements of the moon’s magnetic field. Variations in the magnetic field have led astronomers to believe there is a vast ocean of water under the surface, leading to natural suppositions about the potential of its habitability.
Europa’s ocean is heated much in the same way as that of Enceladus: both moons have an eccentric orbit around their much more massive planets, and this orbit causes a shift in the way the planet tugs on their interiors, causing friction in the cores which in turn heats them up.
The core and surface of these moons both are possible sources of chemicals that are necessary for life to form. Impacts from comets can leave molecules on the surface, and light from the Sun breaks down compounds as well. Organic molecules and minerals may originate in the cores of the moons, streaming out into the watery ‘mantle’. Such nutrients could potentially support small communities of exotic bacteria like those seen around hydrothermal vents here on Earth.
Of course, just because these moons are habitable doesn’t mean that life exists there, as Nimmo and other planetary scientists are quick to point out. Cassini may still provide evidence of life on Enceladus, as the data from this last flyby of the plumes is still being analyzed. Future missions to Europa, such as the proposed ‘interplanetary submarine‘, may also give us an answer to the question of life’s existence elsewhere, and of course the quest continues for a mission to Mars that will finally give us some idea of its habitability now or in the past.
Until the data comes back from these missions, though, we’ll still have to wait and speculate.
Source: UC Santa Cruz press release
Signs of Life Detected on the Moon?
Image from the Moon Impact Probe of the lunar surface. Credit: ISRO
A website based in India has reported researchers with the Chandrayaan-1 mission may have found “signs of life in some form or the other on the Moon.” DNAIndia.com quoted Surendra Pal, associate director of the Indian Space Research Organization (ISRO) Satellite Centre as saying that Chandrayaan-1 picked up signatures of organic matter on parts of the Moon’s surface. “The findings are being analyzed and scrutinized for validation by ISRO scientists and peer reviewers,” Pal said.
Sources in India say Chandrayaan project director M. Annadurai later commented that the story was broken very prematurely. However, he did not dismiss the idea.
At a press conference Tuesday at the American Geophysical Union fall conference, scientists from NASA’s Lunar Reconnaissance Orbiter also hinted at possible organics locked away in the lunar regolith. When asked directly about the Chandrayaan-1 claim of finding life on the Moon, NASA’s chief lunar scientist, Mike Wargo, certainly did not dismiss the idea either but said, “It is an intriguing suggestion, and we are certainly very interested in learning more of their results.”
Chandrayaan-1’s Moon Impact Probe, or MIP impacted the within the Shackleton Crater on the Moon’s south pole on Nov. 14, 2008. An anonymous Chandrayaan-1 scientist said MIP’s mass spectrometer detected chemical signatures of organic matter in the soil kicked up by the impact.
“Certain atomic numbers were observed that indicated the presence of carbon components. This indicates the possibility of the presence of organic matter (on the Moon),” a senior scientist told DNAIndia.
The scientist added the source of the organics could be comets or meteorites which have deposited the matter on the Moon’s surface but the recent discovery by another impact probe — the LCROSS mission — of ice in the polar regions of the Moon also “lend credence to the possibility of organic matter there.”
Undoubtedly, getting from carbon compounds directly to organics is a bit of a stretch, but amino acids have been detected in comets and were also found in pieces of the asteroid 2008 TC3 that landed in Africa over a year ago. Over the millennia, the Moon has been bombarded by comet and asteroid hits.
We’ll keep you posted on any official announcements by ISRO.
Sources: BAUT Forum, DNA India, AGU press conference