Is Our Universe Ruled by Artificial Intelligence?

bender_futurama.thumbnail.png

Science fiction is filled with unusual alien species. But apart from the occasional robot, biological life is running the show. But NASA scientist, Dr. Steven Dick, sees a future Universe that has evolved past biology. Where every intelligence is artificial. Consider the likelihood of a postbiological Universe.

Does intelligent life exist beyond Earth? It’s easily the most profound and challenging question that humans have ever asked. The consequences of discovering other intelligent life would ripple through every aspect of human society, and actually meeting another species would be even more challenging.

But are there abundant intelligent life forms out there? Or is the biological life on Earth just a stage? Just a single step towards our inevitable technological existence.

In a recent paper published in the journal Acta Astronautica, entitled The Post Biological Universe, Dr. Steven Dick notes how every search for extraterrestrial intelligence assumes that life will be biological. And yet, here on Earth we can see that intelligent life develops more and more sophisticated tools over time. And these tools will eventually lead to artificial intelligence that outstrips its makers.

If extraterrestrials are out there, they likely live in much older civilizations than ours, and have already transitioned through biology and into technology. The majority of worlds out there are already postbiological.

According to many scientists, it’s easy for civilizations to be older than us. The first metal rich stars with terrestrial planets could have formed a billion years after the Big Bang – 12.5 billion years ago. If intelligent life took another 5 billion years to evolve, just like it did here on Earth, that still means life could have been around for 7.5 billion years.

Plenty of time to evolve into intelligent life, and then transition into artificial intelligence.

Cultural advancement also seems to be an inevitable consequence of evolution. Not just humans, but many animals, such as chimpanzees have demonstrated that technology can be developed, improved and passed down from generation to generation.

Here’s a quote from the paper,

Hans Moravec, a highly respected AI pioneer and robotic expert at Carnegie-Mellon, predicted “What awaits is not oblivion but rather a future which, from our present vantage point, is best described by the words ‘postbiological’ or even ‘supernatural’. It is a world in which the human race has been swept away by the tide of cultural change, usurped by its own artificial progeny.” Our machines, Moravec predicted, will eventually transcend us, and be “released from the plodding pace of biological evolution.”

How could this change the search for extraterrestrials? Well, when you’re looking for robots, you can look anywhere. Dr. Dick suggests that the SETI community consider the environmental tolerance of robots and the availability of resources beyond planets. AI will be looking for places that provide the most raw material and energy – think quasars, not habitable planets.

Postbiologicals probably have no interesting talking with us regular biologicals. But it might be possible for us to intercept their communications if we know what we’re looking for.

He also thinks that postbiologicals might be more interested in receiving our communications, that talking to us. We should consider very special messages that we might want to send out to the AI civilizations.

Of course, the difference between our minds and theirs might be so great that communication is impossible.

But it doesn’t hurt to try.

Original Source: Acta Astronautica

Salt Deposits on Mars Might Be the Right Place to Search for Life

marsdeposits.thumbnail.jpg

Researchers announced today that they have discovered large salt deposits on the surface of Mars. These deposits point to places where large quantities of water existed on the surface of the Red Planet, perhaps for millions of years. And this might be some of the best places to go looking for evidence of life, past and present.

A team led by Mikki Osterloo at the University of Hawaii, Honolulu have turned up approximately 200 separate spots on southern Mars that seem to have ancient deposits of sodium chloride. In other words, they’ve found table salt sitting on the surface of Mars.

The sites, discovered by NASA’s Mars Odyssey spacecraft, range in size from 1 square km (.6 square miles) to 25 square kms.

So how did this salt get there? One possibility is that it came from groundwater, reaching the surface in low spots. The water would evaporate and leave the mineral deposits over the course of millions of years. Since the sites are largely disconnected from one another, it rules out the possibility the salt was left by an ocean that evaporated billions of years ago.

“Many of the deposits lie in basins with channels leading into them,” said Philip Christensen, co-author and principal investigator for the camera at Arizona State University. “This is the kind of feature, like salt-pan deposits on Earth, that’s consistent with water flowing in over a long time.”

Don’t go looking for life today, though. The scientists think the salt deposits were formed approximately 3.5 to 3.9 billion years ago. This was a time when Mars had much warmer and wetter conditions than the frigid, dry climate on the planet today.

Until now, researchers have been looking for other evidence of past water on the surface of Mars, like clay or sulfate minerals. Clay is evidence that a region was weathered by water, and sulfates are caused by water evaporation. These salts offer an alternative place to look for evidence of past life.

To get salt deposits of this size, you would need to have large quantities of water sitting on the surface of Mars for a long time. And this is crucial in the search for life. You want a habitat that endures for a long time.

Original Source: NASA/JPL News Release

Making the Best First Impression, with Aliens

ata_pix3.thumbnail.jpg

Did you know the SETI Institute has a Director of Interstellar Message Composition? I did not know that. I guess it makes sense. If we’re going to be communicating with aliens, we’ll want to be careful about the words we choose. Get it right, and we’ve got extraterrestrial friends, here to uplift us to the galactic community. Get it wrong and we might be looking at radio silence, or worse…

So how should we present ourselves to prospective galactic neighbours?

Douglas Vakoch, the aforementioned Director of Interstellar Message Composition at the SETI Institute has done some thinking about this, and recently wrote it up in an article entitled, How we Present Ourselves to Aliens.

The trick, of course, is to make a good first impression. When the aliens finally receive our first communications, we want them to be wowed. But should we hide our more violent tendencies, or is the best strategy to just be honest. Sure, we fight a few wars here and there, but that’s just a phase we’re working through.

Vakoch thinks that honesty is the best policy. Sure we’re flawed, but what member of the Milky Way club didn’t ravage society with constant warfare and nearly destroy their environment before they reached perfection?

The aliens might be touched at our honestly, recalling their own struggle to get to a stable, peaceful society. Or they might just send in the berserkers to wipe the violent apes off the planet.

And how should we communicate? Could we just transmit CAT-scans of the human body, demonstrating both our physique and level of technology. Or should the mathematicians do our talking for us, communicating in terms of pi until we’ve a mutual mathematical appreciation happening. Do we send our beautiful music, hoping their like it? But what if they hate it?

Whatever we say, and however we say it, that first impression is everything.

So let me know. What would you say, and how would you say it? And if the aliens actually replied, what would we do then?

Original Source: SETI Institute

Meteorites Can Be Rich With the Ingredients of Life

chondrites.thumbnail.jpg

How did life arise on Earth? How did we get from rocks and water to the abundance and variety that we see today? Perhaps the raw ingredients for life, amino acids, were delivered to Earth by a steady bombardment of meteorites. Researchers have turned up space rocks with concentrations of amino acids 10x higher than previously measured, raising hopes that the early Solar System was awash in organic material.

The study was done by Marilyn Fogel of Carnegie’s Geophysical Laboratory and Conel Alexander of the Department of Terrestrial Magnetism with Zita Martins of Imperial College London and two colleagues, and will be published in Meteoritics and Planetary Science.

If you’re like me, the astronomy stuff’s fine, but the biology news is a little baffling (I forward the kids’ biology questions to my wife). Amino acids are organic molecules that form the backbone of proteins, which make much of life’s structures and drive chemical reactions in cells. Amino acids are naturally occurring, but they somehow came together to make the first proteins in the Earth’s early days.

The researchers took samples from three meteorites collected during recent expeditions to Antarctica. The meteorites are from a type called CR chondrites, which are through to contain ancient organic materials that date back to the earliest times of the Solar System. At one point, these meteorites were part of a larger “parent body”, which was later shattered by impacts.

One sample had few amino acids, but the other two had the highest concentration ever seen in primitive meteorites.

“The amino acids probably formed within the parent body before it broke up,” says Alexander. “For instance. ammonia and other chemical precursors from the solar nebula, or even the interstellar medium, could have combined in the presence of water to make the amino acids. Then, after the break up, some of the fragments could have showered down onto the Earth and the other terrestrial planets. These same precursors are likely to have been present in other primitive bodies, such as comets, that were also raining material onto the early Earth. ”

So this points to the conclusion that the early Solar System was a much richer source of organic molecules than researchers previously believed. And the constant rain of amino acid-laden meteorites would have delivered this material to the primordial soup where life first emerged.

Exactly how the amino acids became the first proteins… that’s still one of the biggest mysteries in science.

Original Source: Carnegie Institution for Science News Release

Germs Living in Space “Almost Three Times as Likely to Cause Disease”

salmonella.thumbnail.jpg

In one experiment on board Space Shuttle Endeavor (STS-123) launched early this morning (at 2:28 am EST), the reaction of terrestrial bacteria to zero-G will be tested. When compared with test bacteria bred here on Earth, previous studies suggest that germs bred in space are far more potent and are more likely to cause illness to people in space. The Endeavor mission will continue this experiment in the aim to find some way to prevent these microscopic astronauts causing too many problems to the continuing missions on board the International Space Station and future space tourism companies. Until a solution is found, don’t go ordering fish off the in-flight menu on your next spaceship ride…

Wherever humans go, a whole zoo of bacteria will follow. Most of the bacteria hitching a ride on our skin and inside our bodies live in symbiosis with us, but occasionally problem bugs like salmonella or Escherichia coli (E-coli) can get out of control, causing problems such as common food poisoning to more serious, life-threatening ailments such as tetanus, diphtheria, syphilis, cholera… (the list is pretty long.)

So, as humans venture into space, it is inevitable that bacteria will come too – the whole symbiotic and parasitic jungle – exploring space with us.

Bacteria will mutate, often very quickly, adapting to the environment surrounding the little microbes. Mutation is the difference between a bacteria being harmless to becoming deadly. Mutations help bacteria to survive and as an example, they can become antibiotic resistant. This is a huge problem in places where antibiotics are used very regularly (such as hospitals); genetic information is passed down the generations of bacteria (often doubling in population in a matter of minutes). If just one microbe has the genetic ability to survive a type of antibiotic, its number will multiply, creating a strain of “superbug” that can avoid being killed by antibiotics – one of the most basic examples of “natural selection”. Methicillin-resistant Staphylococcus aureus (MRSA) is one particular nasty strain of the otherwise benign Staphylococcus genus which has mutated to resist commonly used antibiotics.

It is of paramount importance to understand how bacteria react to space conditions, so problems with potentially dangerous forms of bacteria, such as MRSA, can be avoided.

Scientists have discovered that the fairly common salmonella bacteria, usually responsible for terrible food poisoning outbreaks here on Earth, is far more likely to cause serious disease in space and has a much faster rate of reproduction in zero-G. The virilence of salmonella increases drastically in the absense of gravity. The findings from the 2006 Space Shuttle Atlantis mission showed that space-borne bacteria are three times more likely to cause harm to humans in space than humans on the ground, further work was obviously needed to address this potentially deadly barrier to the success of space missions.

The project leader of these experiments, Dr. Cheryl Nickerson (at the Center for Infectious Diseases and Vaccinology, Arizona State University’s Biodesign Institute), hopes to find ways of blocking potentially deadly bacteria from multiplying so quickly in space and find out why zero-G is such a good environment for bacteria to grow. She headed the 2006 experiments on Atlantis.

We are very fortunate to get a follow up flight opportunity, because in spaceflight, you only get one shot for everything to go just right […] We saw unique bacterial responses in flight and these responses are giving us new information about how Salmonella causes disease. NASA is giving us the opportunity to independently replicate the virulence studies of Salmonella typhimurium from our last shuttle experiment and to do a follow-up experiment to test our hypothesis about new ways this bacteria causes disease in this unique environment.” – Cheryl Nickerson.

This is obviously a high priority experiment for NASA and the future of manned missions into space. More precautions and safeguards need to be put into place so humankind can adapt to this new, microscopic threat, not from unknown alien bacteria, but from our own germs.

Source: EurekAlert

Do Advanced Civilizations Communicate with Neutrinos?

ice_cube.thumbnail.jpg

It’s one of the biggest questions in all humanity: are we alone in the Universe? Either way, the answer is significant. And so, scientists are searching for intelligence out there. Huge arrays of radio telescopes, like the Allen Array scan the skies for radio broadcasts. And researchers have also proposed that aliens might be using lasers to communicate with us. A Russian researcher is proposing another way that aliens might be communicating with us – with neutrinos.

To borrow a quote from the Hitchhiker’s Guide to the Galaxy, “Space is big. You just won’t believe how vastly, hugely, mind- bogglingly big it is.” When you’re attempting to communicate across the vast distances of space, you need huge amounts of energy. Just look at a star, even though it’s generating an incomprehensible amount of energy every second, the brightness drops dramatically with distance.

Instead of broadcasting in all directions, the other strategy is to focus your communications towards a specific location. A targeted beam of radio waves or laser light towards another star still requires an enormous amount of energy, but it’s less.

To save energy, alien civilizations might not be using radio or optical light at all, they might be communicating in a completely different way, with neutrinos.

Researcher Z. K. Silagadze at the Budker Institute of Nuclear Physics and Novosibirsk State University recently posted this idea to the Arxiv pre-press mailing list. His article is called SETI and Muon Collider.

It might sound like science fiction, but scientists are starting to understand how to generate beams of neutrinos – by creating beams of muons. Beams of these unstable particles can be generated in large particle accelerators. The muon beam decays quickly into a focused beam of neutrinos that can travel for light years and still remain remarkably coherent. A beam fired at relatively nearby star Tau Ceti, 12 light-years away, would open up to about 600 astronomical units across – enough to bathe the whole system in neutrinos that could be tracked back to a specific source star.

Finding neutrinos here on Earth is difficult. We’ve got an incredible amount of neutrinos stream towards us from the Sun. In fact, you’ve got billions of neutrinos passing through your body every second and you never feel them because never interact. It takes a huge vat of water, protected underground from other radiation and a suite of sensitive detectors. And even then, they only turn up a few thousand neutrinos a year.

In fact, a neutrino can pass through light-years of pure lead and not even notice.

But there are some advantages. Neutrino detectors are omnidirectional – they don’t have to be targeted in a specific direction to “tune in” a signal coming from a star. If the stream of neutrinos is passing through the Earth, we should be able to detect it, and then track back the source after the fact.

Neutrino detectors are also sensitive to many different energy levels. They don’t have to scan specific frequencies, they can detect high energy neutrinos as easily as low-energy ones.

According to Silagadze, the newly developed IceCube neutrino observatory being built in Antarctica should have the sensitivity to spot neutrinos generated on purpose by alien civilizations – whether they’re targeting us specifically, or we’re just overhearing their conversations.

It has been suggested that advanced civilizations might deliberately choose neutrinos for communications because it shuts out the very young, and not mature civilizations from the galactic conversation.

But give us a few years, and we’ll be listening.

Original Source: Arxiv

First Experiment Starts in ISS Columbus Module Testing Plant Growth

01_arabidopsis_large0.thumbnail.jpg

The brand new ESA Columbus Module installed on the International Space Station (ISS) by the STS-122 crew last week is beginning a first run of biological experiments. This first experiment tests the reaction of root growth in different gravitational states. Of particular interest is how the roots of seeds develop in space when compared to terrestrial conditions. This has obvious applications for growing plants in space, underpinning agricultural science in some of the most extreme and challenging environments man will experience.

Today saw the first ever experiment on the ESA Columbus Module on board the ISS. European astronaut Léopold Eyharts activated the Waving and Coiling of Arabidopsis Roots at Different g-levels (WAICO) experiment, comparing two types of arabidopsis seed (one wild and one genetically modified) in gravity conditions from zero to one Earth gravity (or 1G). The arabidopsis seed is derived from the arabidopsis thaliana plant which copes very well in restricted space and thrives in hostile surroundings.
The Columbus module Biolab where biological experiments will be carried out on the ISS (credit: ESA)
The WAICO experiment will last for 10 to 15 days and the sprouted seeds will be returned by the STS-123 Space Shuttle mission due for launch on March 11th so the results can be analysed. Throughout the experiment, using the brand new “Biolab” equipment (pictured), the advanced telemetry of the Columbus Module will relay real-time video of seed development to ESA scientists in Germany.

The development of the root growth will be scrutinized; especially the amount of “waving” and “coiling” that occurs as a reaction to different gravity conditions. These experiments will also help terrestrial farming methods, giving farmers the opportunity to optimize plant growing conditions.

Source: ESA

Earth Life Forms Ejected on Asteroid Impact Could Survive and Return Again

asteroid-impact.thumbnail.jpg

Does this mean that, perhaps, we can go home again?

If an asteroid or comet impacted Earth, the resulting ejection of materials could contain life forms. According to a study published in the journal Astrobiology, these life forms could survive and then seed another planet or moon with life. Additionally, Earth could also be re-seeded with life by those same life forms.

Ah, there’s no place like home.

If rock fragments containing embedded microorganisms were ejected into space, at least some of those organisms might survive and reseed Earth or seed another planetary surface able to support life. This scenario, which is called lithopanspermia was examined in studies called systematic shock recovery experiments designed to simulate this type of situation where microorganisms are transported between planets via meteorites.

The researchers sandwiched dry layers of three kinds of biological test ingredients, including bacterial endospores, endolithic cyanobacteria, and epilithic lichens, into rocks analogous to rocks from Mars. They then simulated the shock pressures Martian meteorites experienced when they were ejected from Mars and determined the ability of the organisms to survive the harsh conditions.

The organisms are hardy examples of microbes that can withstand extreme environmental stress and represent potential ‘hitchhikers’ within impact-ejected rocks.

“Given that impacts have occurred on planetary bodies throughout the history of our solar system,” says Sherry L. Cady, PhD, Associate Professor in the Department of Geology at Portland State University, “the hypothesis that life in rock could have been transferred between planets at different times during the past 3.5 billion years is plausible.”

And not only is it plausible that Mars rocks could be transferred to Earth and vice versa, but ejected rocks from Earth could possibly return and land back on their home planet. Given the contemplation of the destruction of life on Earth, it’s somewhat comforting to think that we could perhaps start over again from our own ingredients.

Original News Source: Astrobiology Press Release

Titan has “Hundreds of Times More” Liquid Hydrocarbons Than Earth

titan_25km.thumbnail.jpg

According to new Cassini data, Saturns largest moon, Titan, has “hundreds” times more liquid hydrocarbons than all the liquid fossil fuel deposits on Earth. This is impressive as Titan’s 5150 km diameter is only about 50% larger than Earth’s Moon and only a little larger than the planet Mercury. Titan’s hydrocarbons cycle into the atmosphere, fall as rain and collect in lakes creating massive lakes and dunes.

Titan is a planet-sized hydrocarbon factory. Instead of water, vast quantities of organic chemicals rain down on the moon’s surface, pooling in huge reservoirs of liquid methane and ethane. Solid carbon-based molecules are also present in the dune region around the equator, dwarfing Earth’s total coal supplies. Carl Sagan coined the term “tholins” to describe prebiotic chemicals, and the dunes of Titan are expected to be teeming with them. Tholins are essential for the beginning of carbon-based organisms, so these new observations by Cassini will stir massive amounts of excitement for planetary physicists and biologists alike.

The cold -179°C (-290°F) landscape of Titan is currently being mapped by the Cassini probe as it orbits the ringed gas giant, Saturn. Some 20% of the moons surface has been catalogued and so far several hundred hydrocarbon seas and lakes have been discovered. These lakes, individually, have enough methane/ethane energy to fuel the whole of the US for 300 years.

These new findings have been published in the January 29th issue of the Geophysical Research Letters by Ralph Lorenz from the Cassini radar team (Johns Hopkins University Applied Physics Laboratory, USA). Lorenz said on reviewing the Cassini data that, “we know that some lakes are more than 10 m or so deep because they appear literally pitch-black to the radar. If they were shallow we’d see the bottom, and we don’t.” He also steps into the life-beyond-Earth debate by pointing out: “We are carbon-based life, and understanding how far along the chain of complexity towards life that chemistry can go in an environment like Titan will be important in understanding the origins of life throughout the universe.”

The ESA Huygens probe separated from Cassini and dropped slowly through the Titan atmosphere in January 2005 analyzing the atmospheric composition and taking some breathtaking images of the surrounding landscape. To complement the huge amount of data assembled from Huygens decent, Cassini will flyby the moon again on February 22nd to take radar data of the Huygens landing site.

Source: Physorg.com

Has a Signal from ET Really Been Detected?

ata-gregorian.thumbnail.jpg

Have you heard the news? A television station in Oakland California was reporting that researchers working with SETI@home discovered a signal believed to be from extraterrestrials. Is it true? Has the most important discovery is the history of humanity been made? Do we have definitive proof that there are aliens out there with interesting things to say to us?

No.

Actually, I was going to give this the big write up, but Phil beat me to the punch. So, I’ll just point you over at his coverage.