“This supports our initial assumption that the signal was made by human intelligence, not extraterrestrial intelligence,” said Doug Vakoch, President of METI International (Messaging Extraterrestrial Intelligence), a group doing follow-up observations of the star system HD 164595, where the signal was thought to maybe, perhaps originate.
When the news broke of the possible alien signal, SETI scientists were quick to temper the excitement with measured skepticism, saying more often than not, these signals end up being “natural radio transients” (stellar flare, active galactic nucleus, microlensing of a background source, etc.) or interference of a terrestrial nature (a passing satellite or a microwave oven, for example.)
But still, people were excited and the news went viral. Crazy viral.
“Being no stranger to how the media can hype SETI stories, I can sympathize with those at the center of the latest dustup,” said astronomer and SETI researcher Jason Wright from Penn State University. “It’s understandable that many content outlets, seeking ‘clickbait’ headlines, would spin this particular story in the most intriguing, exciting way, and once that happens a ‘bidding war’ of hype can make the story spin out of control.”
But is it all about clickbait? Since I’m part of the media (and admittedly was initially very excited about this story,) I’d like to think that the excitement and viral-tendencies of news about possible alien signals say more about humanity’s fervent hope that we aren’t alone in the cosmos, rather than who can get the most pageviews.
And I do know that researchers who dedicate their careers to the search for alien signals and Earth-like planets aren’t doing so just so they can keep telling us to not get excited. They, too, are hoping for that chance, that very remote possibility, that we’ve got company in our big and magnificent Universe.
“You can’t always be cynical,” said SETI senior astronomer Seth Shostak. “If a signal is looking promising, we are going to check it out.”
And that’s the thing, say the researchers. They get signals like this all the time.
“This is the sort of thing SETI researchers do all the time, because by the nature of the search, radio SETI experiments come across strong signals all the time,” Vakoch said via email. “At the end of the day, these need to be confirmed as coming from distant locations in space, and if we can’t, we need to consider them spurious. The unusual feature of HD 164595 is that this process of checking is being followed by the media.”
And while scientists were surprised (and maybe annoyed) at the amount of attention the ‘alien signal’ news got this week, there is an upside.
“The silver living here is that those who read the more responsible stories carefully will learn a lot about how SETI works,” Wright told Universe Today, “that communication SETI researchers see “one-off” signals all the time from both astronomical and terrestrial sources, in addition to perhaps the occasional instrumental glitch. Searches using arrays (like the ATA) have an automatic check against many of these, but in any event no one will be popping the champaign until a signal repeats enough for an independent telescope and instrument to detect it, and its intelligent origin is clear.”
“The public is getting an inside view of the usual process of following up interesting SETI candidates,” said Vakoch. “This helps the public understand the standard process of doing SETI: we find interesting signals, and then we see if we can verify them. If not, we move on.”
Vakoch and Wright said that the confirmation process, however, involves a lot of steps, and it’s not always easy or quick to follow-up. So, most of the time, determining the source of the signal takes time.
“Unlike Hollywood movies, where you get a quick “yes or no” about a possible signal from aliens,” Vakoch explained, “the real SETI confirmation process takes some time. It’s easy to think that all we need to do is get on the phone with an astronomer at another location, and we’re all set. But even when colleagues at other facilities are willing to observe, they may face technical limitations.”
Typical radio SETI searches look for narrowband signals, and most observatories aren’t set up to detect such signals on short notice. And even though radio observatories can make observations even when it’s cloudy, there can be other types of local interference at certain radio frequencies.
“If you need to do a real-time follow-up of a promising SETI signal, you might face significant roadblocks to a ready confirmation – even if the signal is really there,” Vakoch said.
Another upside of the recent media attention is that SETI researchers can let everyone know they aren’t getting much funding for this type of research, and the search could really use a lot more eyes and ears on the Universe, as Jill Tartar tweeted:
Re: HD 164595 – who knows? One telescope is not enough and an array is better.
“It’s all the more evident that we need to replicate these innovative optical SETI systems over and over,”Vakoch said, “so we can have a global network of modest-sized observatories ready for follow-up of promising SETI signals. Developing such a network is one of METI International’s top priorities as an organization.”
Wright said while the public interest in SETI is great, sometimes the media (or the tin foil hat crowd or conspiracy theorists) can blow things out of proportion.
“This can make it hard for anyone doing SETI to talk about their work, because any mention of ‘strange’ or ‘candidate’ signals has the potential to enter that echo chamber,” he said.
Which can go viral.
But if anyone is worried that SETI researchers are keeping secrets or not telling the whole story, I can personally vouch that during this week, absolutely every SETI researcher I contacted answered all my questions in an extremely timely manner (and provided even more information than I was expecting) plus, other researchers contacted me, asking to be able to explain the signal and the process of how SETI works.
“Nothing would make us more excited than to verify it,” said Bill Diamond, president and CEO of SETI, “But we have to observe it and look at the data.”
KENNEDY SPACE CENTER, FL – OSIRIS-Rex, the first American sponsored probe aimed at retrieving “pristine materials” from the surface of an asteroid and returning them to Earth has been fully assembled at its Florida launch base and is ready to blastoff ten days from today on Sep. 8. It’s a groundbreaking mission that could inform us about astrobiology and the ‘Origin of Life.’
“We are interested in that material because it is a time capsule from the earliest stages of solar system formation,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, in an interview with Universe Today beside the completed spacecraft inside the Payloads Hazardous Servicing Facility, or PHSF, clean room processing facility at NASA’s Kennedy Space Center in Florida.
With virtually all prelaunch processing complete, leading members of the science, engineering and launch team including Lauretta met with several members of the media, including Universe Today, inside the clean room for a last and exclusive up-close look and briefing with the one-of-its-kind $800 million Asteroid sampling probe last week.
OSIRIS-REx goal is to fly on a roundtrip seven-year journey to the near-Earth asteroid target named Bennu and back. 101955 Bennu is a near Earth asteroid and was selected specifically because it is a carbon-rich asteroid.
While orbiting Bennu it will move in close and snatch pristine soil samples containing organic materials from the surface using the TAGSAM collection dish, and bring them back to Earth for study by researchers using all of the most sophisticated science instruments available to humankind.
“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in the PHSF, as the probe was undergoing final preparation for shipment to the launch pad.
“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”
OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023. It has the capacity to scoop up to about 1 kg or more.
The mission will help scientists investigate how planets formed and how life began. It will also improve our understanding of asteroids that could impact Earth by measuring the Yarkovsky effect.
I asked Lauretta to explain in more detail why was Bennu selected as the target to answer fundamental questions related to the origin of life?
“We selected asteroid Bennu as the target for this mission because we feel it has the best chance of containing those pristine organic compounds from the early stage of solar system formation,” Lauretta told me.
“And that information is based on our ground based spectral characterization using telescopes here on Earth. Also, space based assets like the Hubble Space Telescope and the Spitzer Space Telescope.”
What is known about the presence of nitrogen containing compounds like amino acids and other elements on Bennu that are the building blocks of life?
“When we look at the compounds that make up these organic materials in these primitive asteroidal materials, we see a lot of carbon,” Lauretta explained.
“But we also see nitrogen, oxygen, hydrogen, sulfur and phosphorous. We call those the CHONPS. Those are the six elements we really focus on when we look at astrobiology and prebiotic chemistry and how those got into the origin of life.”
The OSIRIS-REx spacecraft was built for NASA by prime contractor Lockheed Martin at their facility near Denver, Colorado and flown to the Kennedy Space Center on May 20.
For the past three months it has undergone final integration, processing and testing inside the PHSF under extremely strict contamination control protocols to prevent contamination by particle, aerosols and most importantly organic residues like amino acids that could confuse researchers seeking to discover those very materials in the regolith samples gathered for return to Earth.
The PHFS clean room was most recently used to process the Orbital ATK Cygnus space station resupply vehicles. It has also processed NASA interplanetary probes such as the Curiosity Mars Science Laboratory and MAVEN Mars orbiter missions.
The spacecraft will reach Bennu in 2018. Once within three miles (5 km) of the asteroid, the spacecraft will begin at least six months of comprehensive surface mapping of the carbonaceous asteroid, according to Heather Enos, deputy principal investigator, in an interview with Universe Today.
“We will then move the spacecraft to within about a half kilometer or so to collect further data,” Enos elaborated.
It will map the chemistry and mineralogy of the primitive carbonaceous asteroid. The team will initially select about 10 target areas for further scrutiny as the sampling target. This will be whittled down to two, a primary and backup, Enos told me.
After analyzing the data returned, the science team then will select a site where the spacecraft’s robotic sampling arm will grab a sample of regolith and rocks. The regolith may record the earliest history of our solar system.
Engineers will command the spacecraft to gradually move on closer to the chosen sample site, and then extend the arm to snatch the pristine samples the TAGSAM sample return arm.
PI Lauretta will make the final decision on when and which site to grab the sample from.
“As the Principal Investigator for the mission I have responsibility for all of the key decisions during our operations,” Lauretta replied. “So we will be deciding on where we want to target our high resolution investigations for sample site evaluation. And ultimately what is the one location we want to send the spacecraft down to the surface of the asteroid to and collect that sample.”
“And then we have to decide like if we collected enough sample and are we ready to stow it in the sample return capsule. Or are we going to use one of our 2 contingency bottles of gas to go for a second attempt.”
“The primary objective is one successful sampling event. So when we collect 60 grams or 2 ounces of sample then we are done!”
“In the event that we decide to collect more, it will be intermixed with anything we collected on the first attempt.”
The priceless sample will then be stowed in the on board sample return capsule for the long journey back to Earth.
Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.
Bennu is a near-Earth asteroid and was selected for the sample return mission because it could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth.
OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.
Watch this USLaunchReport video shot during media visit inside the PHSF on Aug. 20, 2016:
Video caption: Our first introduction to the OSIRIS-REx asteroid bound mission in search of the origins of life, from inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center on Aug. 20, 2016. Credit: USLaunchReport
OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.
OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.
Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Ait Force Station, FL.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
We’re not saying its aliens, but this could be the most enticing SETI-related signal from space since the famous “Wow! Signal” in 1977.
Over the weekend, interstellar expert Paul Gilster broke the news that “a strong signal” was detected by Russian radio astronomers from the region around the star HD 164595. This signal has attracted enough attention that two prominent SETI observatories are quickly making follow-up observations. Alan Boyle reports in Geekwire that the Allen Telescope Array in California has already been observing the star system and the Boquete Optical SETI Observatory in Panama will make an attempt this evening, if the weather is clear.
Doug Vakoch, the President of METI International (Messaging Extraterrestrial Intelligence) told Universe Today via email that the Allen Telescope Array has already completed its initial reconnaissance of HD 164595, “with no indications of alien technologies at radio frequencies.”
“The first step in following up a putative SETI signal is to look at the same frequency where it was first detected,” Vakoch said, and with the nil detection from the ATA, “now it’s time to search other parts of the electromagnetic spectrum.”
Vakoch said METI International will be observing HD 164595 for brief laser pulses from the Boquete Optical SETI Observatory in Panama as soon as weather permits.
“It looks like the Boquete Observatory will be hit by heavy thundershowers late this afternoon and into this evening,” he said, “so we’ll likely need to wait to observe until another night. Once the evening sky is clear in Boquete, we’ll have about an hour to observe in the direction of the constellation Hercules shortly after sunset.”
The signal from HD 164595 was originally detected on May 15, 2015, by the Russian Academy of Science-operated RATAN-600 radio telescope in Zelenchukskaya, Russia. It is located about 95 light years from Earth in the constellation Hercules. The signal had a wavelength of 2.7 cm, with an estimated amplitude of 750 mJy.
Gilster wrote on his Centauri Dreams website that the researchers have worked out the strength of the signal and that if “it came from an isotropic beacon, it would be of a power possible only for a Kardashev Type II civilization,” which means a civilization capable of harnessing the energy of the entire star, and developing something like a Dyson sphere surrounding the star, and transfer all the energy to the planet.
If the beam was narrow and sent directly to our Solar System, the researchers say it would be of a power available to a Kardashev Type I civilization, a type of civilization more advanced than us that is able to harness the full amount of solar power it receives from its star.
Of course, like any other signal, such as the recent study of the dimming light curve of KIC 8462852 (Tabby’s Star) that is still being researched, it is possible the signal comes from other “natural” events such microlensing of a background source or even comets as been proposed for both Tabby’s Star or the “Wow! Signal.”
The SETI website explains that narrow-band signals – ones that are only a few Hertz wide or less – are the mark of a purposely built transmitter. “Natural cosmic noisemakers, such as pulsars, quasars, and the turbulent, thin interstellar gas of our own Milky Way, do not make radio signals that are this narrow. The static from these objects is spread all across the dial.”
Update: A member of the SETI@Home team posted a note online that they were “unimpressed” with the paper from the Russian radio astronomers. “Because the receivers used were making broad band measurements, there’s really nothing about this “signal” that would distinguish it from a natural radio transient (stellar flare, active galactic nucleus, microlensing of a background source, etc.) There’s also nothing that could distinguish it from a satellite passing through the telescope field of view. All in all, it’s relatively uninteresting from a SETI standpoint.”
So, this detection might not be as exciting as originally reported. Also SETI senior astronomer Seth Shostak has now weighed in on the topic, also with measured skepticism on the excitement, with a post about this event on the SETI website.
What has probably fueled interest in this signal is the striking similarities between the star and our Sun. HD 164595 is a star just a tad smaller than our Sun (0.99 solar masses), with the exact same metallicity. The age of the star has been estimated at 6.3 billion years it is already known to have at least one planet, HD 164595 b, a Neptune-sized world that orbits the star every 40 days. And as we’ve seen with data from the Kepler spacecraft, with the detection of one planet comes the very high probability that more planets could orbit this star.
Why the Russian team has only made this detection public now is unclear and it may have only come out now because the team wrote a paper to be discussed at an upcoming SETI committee meeting during the 67th International Astronautical Congress in Guadalajara, Mexico, on Tuesday, September 27.
As Gilster wrote, “No one is claiming that this is the work of an extraterrestrial civilization, but it is certainly worth further study.”
Many years ago, Carl Sagan predicted there could be as many as 10,000 advanced extraterrestrial civilizations in our galaxy.
After nearly 60 years of searching without success, a growing list of scientists believe life on Earth only came about because of a lucky series of evolutionary accidents, a long list of improbable events that just happened to come together at the right time and will never be repeated.
Is it possible they are right and we are all there is?
Highly unlikely.
Earth is a typical rocky planet, in an average solar system, nestled in the spiral arm of an ordinary galaxy. All the events and elements that came together to build our world could happen almost everywhere throughout the galaxy and there should be nothing unusual about the evolution of life on this planet or any others.
In a galaxy of hundreds of billions of stars, the law of averages dictates that intelligent life must exist somewhere.
So, why haven’t we found it yet?
There could be many reasons.
Looking for a radio signal in a galaxy of over 400 billion worlds across 100,000 light years and billions of radio frequencies makes the proverbial needle in a haystack sound easy. Imagine you are driving home, your spouse in one car and you in the other. There’s a thick fog making visual confirmation impossible and no cell phone reception. Luckily, a week ago you had a 250 channel CB installed in both cars. Unfortunately, you forgot to agree on a broadcast channel. To chat, the two CBs would have to be on at the same time and you’d need to independently search every channel, listen, broadcast, then move to the next, hoping to get lucky enough to land on the same channel.
What are the odds that would happen? Not very good. Multiply this scenario one hundred billion times and you have some idea of the challenges facing SETI. To add to that, advanced civilizations probably only stay radio active for a relatively short time in their development as they develop more sophisticated technology. Searching the radio spectrum would require looking at one frequency 24/7 for years to be sure you weren’t missing something and telescope time is far too expensive for that. While you were sitting on that single frequency, 20 extraterrestrial signals could have come in on other channels and you’d never know it.
The Fermi Paradox is used by many skeptics as the holy grail when trying to prove there is nobody out there. Fermi theorized that a galaxy with so much potential for life must be full of extraterrestrials. He noted that since the majority of stars are considerably older than our sun, extraterrestrials could be millions of years more advanced than us. Fermi calculated that even at sub light speed one of those civilizations should have colonized the galaxy by now and we would have seen evidence of it.
There is however a problem with that logic.
In 50,000 years, humans will probably look a little different than people do now. In 10 million years, considerably different. Imagine a civilization completely different from us from the start and 10 million years more advanced. We might not even be able to recognize them as life forms, let alone see any evidence of their existence.
Arthur C. Clarke once said advanced extraterrestrials would probably be indistinguishable to us from magic. Their communications would be like listening for an answer to drumbeats and getting only silence while the ether around you is filled with more information in a second than one could utter in a lifetime. There could be the alien equivalent of the super bowl going on a few light years away and we would probably not even have a clue.
The distances in our galaxy are incredibly vast. Current spacecraft travel about 20 times faster than the speed of a bullet. While that sounds fast, at that speed it would take a spacecraft 75,000 years to travel to our nearest star only 4 light years away. Light years are a measure of distance so if we could speed that ship up to 186,000 miles per second (300,000 km/second), it would take 4 years to reach that same star.
Looking at a star 1,000 light years away is like being in a time machine. You are not seeing it as it is now, but one thousand years ago. Our galaxy is about 100,000 light years across with over 200 billion stars. Current theory suggests there may be as many as one billion earth-like planets in our galaxy. If just one tenth of those had some kind of life, that would leave us with about 100 million worlds harboring one celled creatures or better.
If just the tiniest fraction of them, (one one hundred thousandth) managed to spawn an advanced race of beings, there could be as many as 1,000 extraterrestrial civilizations in our galaxy. Regardless of whether you consider that a lot or a little, that would mean one technically advanced alien society exists for every hundred million stars. Our nearest extraterrestrial neighbor might be very, very far away. In the movies, the speculative fiction of warp speed, hyper drive and worm holes enable spaceships to travel faster than the speed of light and breach those distances fairly easily. But if the physics of this turn out to be impossible, then even the nearest alien civilizations may find interstellar travel very difficult and quite undesirable.
Another reason extraterrestrials may have made themselves scarce could be that the galaxy is jam packed with all sorts of weird beings and wondrous destinations. In this scenario why would advanced forms of life want to come here? There are probably so many more interesting places to visit. It would be like hunting for an exotic bird and not even giving the ant hill below your feet a second look.
Stephen Hawking has said, “I believe extraterrestrial life is quite common in the universe, although intelligent life less so. Some say it has yet to appear on Earth.”
Many think once a civilization achieves radio, it has a short window of but a few hundred years before it starts to integrate artificial intelligence into its own biology. Machines do everything so much easier, with far less risk and are immortal. It is entirely possible any aliens we hear from will have morphed into something more machine like than biological.
There has been a push lately for SETI to expand its operations from just passively listening, to actively broadcasting messages into the cosmos. One of the smartest men on the planet, Stephen Hawking, doesn’t think that’s a good idea. He believes that our messages might attract unwanted attention from unsavory creatures looking to blast us back into the stone age. He uses what happened to the Native Americans when they first encountered Columbus as an example. Alien races may have had to endure the same aggressive survival of the fittest culture. If they are at least as smart as Stephen Hawking, then everyone out there could be listening and nobody is broadcasting for fear of attracting the equivalent of Darth Vader and the Evil Empire to their shores.
Or, maybe there is a signal on its way right now, having traveled thousand of years, arriving next week, month or year.
Many scientists like Paul Davies, think SETI needs to start thinking more out of the box in its search methods. He advocates analyzing places in our own solar system like the moon, planets, asteroids and the Earth for evidence that aliens have passed this way. We should also be open to the possibility that we have already received a message from the stars and don’t recognize it because it arrived by something other than radio. Physist Vladimir Charbak thinks that life may have been spread throughout the galaxy by intelligent design and there may actually be evidence of this within our own DNA just waiting to be discovered.
Another reason we have yet to detect alien life could be there is nothing out there to find. Or to put it another way, we are the only game in town. To best answer that question, ask yourself, does this seem logical? There is a very good chance that one or more worlds just in our own solar system harbor some form of life. In a galaxy with as many as one billion or more potentially habitable planets, one could almost guarantee many of them will host life. There may potentially be hundreds of millions of worlds with living things on them. Does it make sense that in all that habitable real estate we are the only race to evolve into an intelligent species?
We humans tend to think of things with a distinctly anthropomorphic spin. Notions like, life needs water, oxygen and is based on carbon. Or, an advanced alien race would use radio and their signals should repeat. In popular culture, extraterrestrials portrayed in movies look remotely like us. This is done so we can recognize emotions and that fills movie theaters. I can remember aliens portrayed in the classic science fiction television show, “The Outer Limits” as energy balls, dust motes and tumbleweeds. They weren’t the most popular episodes, but the reality is that those portrayals are probably closer to the truth than ET and his heart lamp. Extraterrestrials will probably be as different from us as we are from a blade of grass and their motivations a complete mystery. It is very possible that the reason we haven’t found them yet is one that completely eludes our understanding at this point.
So where does that leave us?
Time and patience.
If you compare the 4.5 billion year old earth to a 24 hour clock, mankind doesn’t appear until a little over a minute before midnight. Take the almost sixty years we have been looking for extraterrestrials and project that on the same clock, it probably represents only about 20 or 30 seconds worth of searching for intelligent beings who may have been around millions and perhaps billions of years longer than we have. Our passage through time is just a tiny almost imperceptible blip when compared to the evolution of our galaxy.
New, very powerful listening devices will be coming into operation soon as well as sophisticated instruments that will be able to analyze exoplanets atmospheres to look for hints of life. SETI will expand into new areas and scientists will be able to devote a lot more telescope time to the search as the newly funded (100MM) Project Breakthough Listen kicks into high gear. It will cover 10 times more of the sky and the entire 1-10GHz radio spectrum. There will be more powerful optical and infrared searches and it is estimated the project will generate in a day as much data as SETI produced in an entire year. Recently, Project Breakthrough Starshot was announced as well. Seeded by another 100MM by Russian Billionaire, Yuri Milner, this ambitious project seeks to send a tiny light propelled robotic spacecraft to our nearest star system, Alpha Centauri. Stephen Hawking thinks this can be accomplished within the next generation and that new technology would allow a journey of only 20 years.
SETI scientist Nathalie Cabrol thinks its also time for a new approach to SETI’s search, a reboot if you will. She feels that “SETI’s vision has been constrained by whether ET has technology that resembles or thinks like us. She feels that the search, so far, has in essence been a search for ourselves. Electromagnetic fingerprints of radio transmitions carry a strong like us assumption”. She proposes involving a lot more disciplines in a redesign of the search. Astrobiology, life sciences, geoscience, cognitive science and mathematics among others. Her plan is to invite the research community to help craft a new scientific roadmap for SETI that very well may redefine the meaning of life and the cosmic search for new forms of it.
Some experts say we won’t see evidence of extraterrestrials for another 1500 years. That’s the time it will take for our TV and radio signals to have reached enough stars and have the best chance to be discovered.
In my opinion, I think highly advanced extraterrestrial societies already know we’re here and in about 10-15 years we’ll start getting some of the answers we’ve been looking for.
July 20. Sound like a familiar date? If you guessed that’s when we first set foot on the Moon 47 years ago, way to go! But it’s also the 40th anniversary of Viking 1 lander, the first American probe to successfully land on Mars.
The Russians got there first on December 2, 1971 when their Mars 3 probe touched down in the Mare Sirenum region. But transmissions stopped just 14.5 seconds later, only enough time for the crippled lander to send a partial and garbled photo that unfortunately showed no identifiable features.
Viking 1 touched down on July 20, 1976 in Chryse Planitia, a smooth, circular plain in Mars’ northern equatorial region and operated for six years, far beyond the original 90 day mission. Its twin, Viking 2, landed about 4,000 miles (6,400 km) away in the vast northern plain called Utopia Planitia several weeks later on September 3. Both were packaged inside orbiters that took pictures of the landing sites before dispatching the probes.
Viking 1 was originally slated to land on July 4th to commemorate the 200th year of the founding of the United States. Some of you may remember the bicentennial celebrations underway at the time. Earlier photos taken by Mariner 9helped mission controllers pick what they thought was a safe landing site, but when the Viking 1 orbiter arrived and took a closer look, NASA deemed it too bouldery for a safe landing, so they delayed the the probe’s arrival until a safer site could be chosen. Hence the July 20th touchdown date.
My recollection at the time was that that particular date was picked to coincide with the first lunar landing.
I’ll never forget the first photo transmitted from the surface. I had started working at the News Gazette in Champaign, Ill. earlier that year in the photo department. On July 20 I joined the wire editor, a kindly. older gent named Raleigh, at the AP Photofax machine and watched the black and white image creep line-by-line from the machine. Still damp with ink, I lifted the sodden sheet into my hands, totally absorbed. Two things stood out: how incredibly sharp the picture was and ALL THOSE ROCKS! Mars looked so different from the Moon.
One day later, Viking 1 returned the first color photo from the surface and continued to operate, taking photos and doing science for 2,307 days until November 11, 1982, a record not broken until May 2010 by NASA’s Opportunity rover. It would have continued humming along for who knows how much longer were it not for a faulty command sent by mission control that resulted in a permanent loss of contact.
Viking 2 soldiered on until its batteries failed on April 11, 1980. Both landers characterized the Martian weather and radiation environment, scooped up soil samples and measured their elemental composition and send back lots of photos including the first Martian panoramas.
Each lander carried three instruments designed to look for chemical or biological signs of living or once-living organisms. Soil samples scooped up by the landers’ sample arms were delivered to three experiments in hopes of detecting organic compounds and gases either consumed or released by potential microbes when they were treated with nutrient solutions. The results from both landers were similar: neither suite of experiments found any organic (carbon-containing) compounds nor any definitive signs of Mars bugs.
Not that there wasn’t some excitement. The Labeled Release experiment (LC) actually did give positive results. A nutrient solution was added to a sample of Martian soil. If it contained microbes, they would take in the nutrients and release gases. Great gobs of gas were quickly released! As if the putative Martian microbes only needed a jigger of NASA’s chicken soup to find their strength. But the complete absence of organics in the soil made scientists doubtful that life was the cause. Instead it was thought that some inorganic chemical reaction must be behind the release. Negative results from the other two experiments reinforced their pessimism.
Fast forward to 2008 when the Phoenix lander detected strongly oxidizing perchlorates originating from the interaction of strong ultraviolet light from the Sun with soils on the planet’s surface. Since Mars lacks an ozone layer, perchlorates may not only be common but also responsible for destroying much of Mars’ erstwhile organic bounty. Other scientists have reexamined the Viking LC data in recent years and concluded just the opposite, that the gas release points to life.
A fun, “period” movie about the Viking Mission to Mars
Seems to me it’s high time we should send a new suite of experiments designed to find life. Then again, maybe we won’t have to. The Mars 202o Mission will cache Martian rocks for later pickup, so we can bring pieces of Mars back to Earth and perform experiments to our heart’s content.
In our galaxy, there may be, at least, tens of billions of habitable planets, with conditions suitable for liquid water on their surfaces. There may be habitable moons as well. On an unknown number of those worlds, life may have arisen. On an unknown fraction of life-bearing worlds, life may have evolved into complex multicellular, sexually reproducing forms.
The purposes of the newly created METI (Messaging to ExtraTerrestrial Intelligence) International include fostering multidisciplinary research in the design and transmission of interstellar messages, and building a global community of scholars from the natural sciences, social sciences, humanities, and arts concerned with the origin, distribution, and future of life in the universe.
On May 18 the organization sponsored a workshop which included presentations by biologists, psychologists, cognitive scientists, and linguists. This is the third and final installment of a series of articles about the workshop.
In previous installments, we’ve discussed some ideas about the evolution of intelligence that were featured at the workshop. Here we’ll see whether our Earthly experience can provide us with any clues about how we might communicate with aliens.
Many of the animals that we are most familiar with from daily life, like humans, cats, dogs, birds, fishes, and frogs are vertebrates, or animals with backbones. They are all descended from a common ancestor and share a nervous system organized according to the same basic plan.
Molluscs are another major group of animals that have been evolving separately from vertebrates for more than 600 million years. Although most molluscs, like slugs, snails, and shellfish, have fairly simple nervous systems, one group; the cephalopods, have evolved a much more sophisticated one.
Cephalopods include octopuses, squids, and cuttlefishes. They show cognitive and perceptual abilities rivaling those of our close vertebrate kin. Since this nervous system has a different evolutionary history than of the vertebrates, it is organized in a way completely different from our own. It can give us a glimpse of the similarities and differences we might expect between aliens and ourselves.
David Gire, an associate professor of psychology at the University of Washington, and researcher Dominic Sivitilli gave a presentation on cephalopods at the Puerto Rico workshop. Although these animals have a sophisticated brain, their nervous systems are much more decentralized than that of familiar animals. In the octopus, sensing and moving are controlled locally in the arms, which together contain as many nerve cells, or neurons, as the brain.
The animal’s eight arms are extraordinarily sensitive. Each containing hundreds of suckers, with thousands of sensory receptors on each one. By comparison, the human finger has only 241 sensory receptors per square centimeter. Many of these receptors sense chemicals, corresponding roughly to our senses of taste and smell. Much of this sensory information is processed locally in the arms. When an arm is severed from an octopus’s body, it continues to show simple behaviors on its own, and can even avoid threats. The octopus’s brain simply acts to coordinate the behaviors of its arms.
Cephalopods have acute vision. Although their eyes evolved separately from those of vertebrates, they nonetheless bear an eerie resemblance. They have a unique ability to change the pattern and color of their skin using pigment cells that are under direct control of their nervous systems. This provides them with the most sophisticated camouflage system of any animal on Earth, and is also used for social signaling.
Despite the sophisticated cognitive abilities it exhibits in the lab, the octopus is largely solitary.
Cephalopod groups exchange useful information by observing one another, but otherwise exhibit only limited social cooperation. Many current theories of the evolution of sophisticated intelligence, like Miller’s sapiosexual hypothesis, which was featured in the second installment, assume that social cooperation and competition play a central role in the evolution of complicated brains. Since cephalopods have evolved much more impressive cognitive abilities than other molluscs, their limited social behavior is surprising.
Maybe the limited social behavior of cephalopods really does set limits on their intelligence. However, Gire and Sivitilli speculate that perhaps “an intelligence capable of technological development could exist with minimum social acuity”, and the cephalopod ability to socially share information is enough. The individuals of such an alien collective, they suppose, might possess no sense of self or other.
Besides Gire and Sivitilli, Anna Dornhaus, whose ideas were featured in the first installment, also thinks that alien creatures might function together as a collective mind. Social insects, in some respects, actually do. She doubts, though, that such an entities could evolve human-like technological intelligence without something like Miller’s sapiosexuality to trigger a runaway explosion of intelligence.
But if non-sapiosexual alien technological civilizations do exist, we might find them impossible to comprehend. Given this possible gulf of incomprehension about social structure, Gire and Stivitilli suppose that the most we might aspire to accomplish in terms of interstellar communication is an exchange of mutually useful and comprehensible astronomical information.
Workshop presenter Alfred Kracher, a retired staff scientist at the Ames Laboratory of the University of Iowa, supposes that “the mental giants of the Milky Way are probably artificially intelligent machines… It would be interesting to find evidence of them, if they exist”, he writes, “but then what?” Kracher supposes that if they have emancipated themselves and evolved away from their makers, “they will have nothing in common with organic life forms, human or extraterrestrial. There is no chance of mutual understanding”. We will be able to understand aliens, he maintains, only if “it turns out that the evolution of extraterrestrial life forms is highly convergent with our own”.
Peter Todd, a professor of psychology from Indiana University, holds out hope that such convergence may actually occur. Earthly animals must solve a variety of basic problems that are presented by the physical and biological world that they inhabit.
They must effectively navigate through a world of surfaces, barriers and objects, finding food and shelter, and avoiding predators, parasites, toxins. Extraterrestrial organisms, if they evolve in an Earth-like environment, would face a generally similar set of problems. They may well arrive at similar solutions, just as the octopus evolved eyes similar to ours.
In evolution here on Earth, Todd notes, brain systems originally evolved to solve these basic physical and biological problems appear to have been re-purposed to solve new and more difficult problems, as some animals evolved to solve the problems of living and finding mates as members of societies, and then as one particular ape species went on to evolve conceptual reasoning and language. For example, disgust at bad food, useful for avoiding disease, may have been become the foundation for sexual disgust to avoid bad mates, moral disgust to avoid bad clan mates, and intellectual disgust to avoid dubious ideas.
If alien brains evolved solutions similar to the ones our brains did for negotiating the physical and biological world, they they might also have been re-purposed in similar ways. Alien minds might not be wholly different from ours, and thus hope exists for a degree of mutual understanding.
In the early 1970’s the Pioneer 10 and 11 spacecraft were launched on the first exploratory missions to the planet Jupiter and beyond. When their missions were completed, these two probes became the first objects made by humans to escape the sun’s gravitational pull and hurtle into interstellar space.
Because of the remote possibility that the spacecraft might someday be found by extraterrestrials, a team of scientists and scholars lead by Carl Sagan emplaced a message on the vehicle, etched on a metal plaque. The message consisted, in part, of a line drawing of a man and a woman. Later, the Voyager 1 and 2 spacecraft carried a message that consisted, in part, of a series of 116 digital images encoded on a phonographic record.
The assumption that aliens would see and understand images seems reasonable, since the octopus evolved an eye so similar to our own. And that’s not all. The evolutionary biologists Luitfried Von Salvini-Plawen and Ernst Mayr showed that eyes, of various sorts, have evolved forty separate times on Earth, and vision is typically a dominant sense for large, land dwelling animals. Still, there are animals that function without it, and our earliest mammalian ancestors were nocturnal. Could it be that there are aliens that lack vision, and could not understand a message based on images?
In his short story, The Country of the Blind, the great science fiction writer H. G. Wells imagined an isolated mountain village whose inhabitants had been blind for fifteen generations after a disease destroyed their vision.
A lost mountain climber, finding the village, imagines that with his power of vision, he can easily become their king. But the villagers have adapted thoroughly to a life based on touch, hearing, and smell. Instead of being impressed by their visitor’s claim that he can ‘see’, they find it incomprehensible. They begin to believe he is insane. And when they seek to ‘cure’ him by removing two strange globular growths from the front of his head, he flees.
Could their really be an alien country of the blind whose inhabitants function without vision? Workshop presenter Dr. Sheri Wells-Jensen, an associate professor of Linguistics at Bowling Green State University, doesn’t need to imagine the country of the blind, because, in a sense, she lives there. She is blind, and believes that creatures without vision could achieve a level of technology sufficient to send interstellar messages. “Sighted people”, she writes, “tend to overestimate the amount and quality of information gathered by vision alone”.
Bats and dolphins image their dimly lit environments with a kind of naturally occurring sonar called echolocation. Blind human beings can also learn to echolocate, using tongue clicks or claps as emitted signals and analyzing the returning echoes by hearing. Some can do so well enough to ride a bicycle at a moderate pace through an unfamiliar neighborhood. A human can develop the touch sensitivity needed to read braille in four months. A blind marine biologist can proficiently distinguish the species of mollusc shells by touch.
Wells-Jensen posits a hypothetical civilization which she calls the Krikkits, who lack vision but possess sensory abilities otherwise similar to those of human beings. Could such beings build a technological society? Drawing on her knowledge of the blind community and a series of experiments, she thinks they could.
Finding food would present few special difficulties, since blind naturalists can identify many plant species by touch. Agriculture could be conducted as modern blind gardeners do it, by marking crops using stakes and piles of rock, and harvesting by feel. The combination of a stick used as a cane to probe the path ahead and echolocation make traveling by foot effective and safe. A loadstone compass would further aid navigational abilities. The Krikkits might use snares rather than spears or arrows to trap animals, making tools by touch.
Mathematics is vital to building a technological society. For most human beings, with our limited memory, a paper and pencil or a blackboard are essential for doing math. Krikkits would need to find other such aids, such as tactual symbols on clay tablets, abacus-like devices, or patterns sewn on hides or fabric.
Successful blind mathematicians often have prodigious memories, and can perform complex calculations in their heads. One of history’s greatest mathematicians, Leonard Euler, was blind for the last 17 years of his life, but remained mathematically productive through the use of his memory.
The obstacles to a blind society developing technology may not be insurmountable. Blind people are capable of handling fire and even working with molten glass. Krikkits might therefore use fire for cooking, warmth, to bake clay vessels, and smelt metal ores. Initially there only astronomical knowledge would be of the sun as a source of heat. Experiments with loadstones and metals would lead to a knowledge of electricity.
Eventually, the Krikkits might imitate their sonar with radio waves, inventing radar. If their planet possessed a moon or moons, radar reflections from them might provide their first knowledge of astronomical objects other than their sun. Radar would also enable them to learn for the first time that their planet is round.
The Krikkits might learn to detect other forms of radiation like X-rays and ‘light’. The ability to detect this second mysterious form of radiation might allow them to discover the existence of the stars and develop an interest in interstellar communication.
What sorts of messages might they send or understand? Well-Jensen believes that line drawings, like the drawing of the man and the woman on the Pioneer plaque, and other such pictorial representations might be an impenetrable mystery to them. On the other hand, she speculates that Krikkits might represent large data sets through sound, and that their counterpart to charts and graphs might be equally incomprehensible to us.
Images might pose a challenge for the Krikkits, but perhaps, Wells-Jensen concedes, not an impossible one. There is evidence that bats image their world using echolocation. Kikkits might be likely to evolve similar abilities, though Wells-Jensen believes they would not be essential for making tools or handling objects.
Perhaps humans and Krikkits could find common ground by transmitting instructions for three dimensional printed objects that could be explored tactually. Wells-Jensen thinks they might also understand mathematical or logical languages proposed for interstellar communication.
The diversity of cognition and perception that we find here on Earth teaches us that if extraterrestrial intelligence exists, it is likely to be much more alien than much of science fiction has prepared us to expect. In our attempt to communicate with aliens, the gulf of mutual incomprehension may yawn as wide as the gulf of interstellar space. Yet this is a gulf we must somehow cross, if we wish ever to become citizens of the galaxy.
In the first instalment of this series, we saw that intelligence, of various sorts, is widespread across the animal kingdom. Workshop presenter Anna Dornhaus, who studies collective decision-making in insects as an associate professor at the University of Arizona, showed that even insects, with their diminutive brains, exhibit a surprising cognitive sophistication. Intelligence, of various sorts, is a likely and probable evolutionary product.
Animals evolve the cognitive abilities that they need to meet the demands of their own particular environments and lifestyles. Sophisticated brains and cognition have evolved many times on Earth, in many separate evolutionary lineages. But, of the millions of evolutionary lineages that have arisen on Earth in the 600 million years since complex life appeared, only one, that which led to human beings, produced the peculiar combination of cognitive traits that led to a technological civilization. What this tells us is that technological civilization is not the inevitable product of a long term evolutionary trend, it is rather the quirky and contingent product of particular circumstances. But what might those circumstances have been, and just how special and improbable were they?
Workshop presenter Geoffrey Miller is an associate professor of psychology at the University of New Mexico. Miller thinks he has an answer to the question of what the special circumstances that produced human evolution were. Our protohuman ancestors inhabited the African savanna. But so do many other mammals that don’t need enormous brains to survive there. The evolutionary forces driving the production of our large brains, Miller surmises, can’t be due to the challenges of survival. He thinks instead that human evolution was guided by an intelligence. But Miller is no creationist, nor does he have the alien monolith from the 1960’s science fiction classic 2001: A Space Odyssey in mind. Miller’s guiding intelligence is the intelligence that our ancestors themselves used when they selected their mates.
Miller’s theory harkens back to the ideas of the founder of modern evolutionary theory, the nineteenth century British naturalist Charles Darwin. Darwin proposed that evolution works through a process of natural selection. Animal offspring vary one from another, and are produced in too great of numbers for all of them to survive. Some starve, some are eaten by predators, others fall prey to the numerous other hazards of the natural world. A few survive to produce offspring, thereby passing on the traits that allowed them to survive. Down the generations, traits that aided survival become more elaborate and useful and traits that did not, vanished.
But Darwin was troubled by a serious problem with his theory. He knew that many animals have prominent traits that don’t seem to contribute to their survival, and are even counterproductive to it. The bright colors of many insects, the colors, elaborate plumage, and songs of birds, the huge antlers of elk, were all prominent and costly traits that couldn’t be explained by his theory of natural selection. Peacocks, with their elaborate tail feathers were everywhere in English gardens, and came to torment him.
At last, Darwin found the solution. To produce offspring, an animal must do more than just survive, it must find a partner to mate with. All the traits which worried Darwin could be explained if they served to make their bearers sexier and more beautiful to prospective mates than other competing members of their own gender. If peahens like elaborate plumage, then in each generation, they will choose to mate with the males with the most elaborate tail feathers, and reject the rest. Through the competition for mates, peacock tails will become more and more elaborate down the generations. Darwin called his new theory sexual selection.
Many subsequent evolutionary biologists regarded sexual selection as of limited importance, and lumped it in with natural selection, which was said to favor traits conducive to survival and reproductive success. However, in recent decades evolutionary biologists have come to view sexual selection in a much more favorable light. Geoffrey Miller proposed that the human brain evolved through sexual selection. Human beings, he supposes, are sapiosexual; that is, they are sexually attracted by intelligence and its products. The preference for selecting intelligent mates produced greater intelligence, which in turn allowed our ancestors to become more discerning in selecting more intelligent mates, producing a kind of amplifying feedback loop, and an explosion of intelligence.
On this account, language, music, dancing, humor, art, literature, and perhaps even morality and ethics exist because those who were good at them were deemed sexier, or more trustworthy and reliable, and were thus more successful in securing mates than those who weren’t. The elaborate human brain is like the elaborate peacock’s tail. It exists for wooing mates and not for survival. There are some important ways in which protohumans were different from peafowl. Both males and females are choosy and both have large brains. Protohumans, unlike peafowl, probably formed monogamous pair bonds. Miller’s theory has complexities that space won’t permit us to explore here. To show that his theory can work, Miller needed to develop a computer model.
If Miller is right, then just how probable is the evolution of a technological civilization, and how likely is it that we will find them elsewhere in the galaxy? Miller thinks that if complex life exists on other planets or moons, it is likely to evolve reproduction through sex, just as has happened here on Earth. For complex organisms that depend on a large and complicated body of genetic information, most mutations will be neutral or harmful. In sexual reproduction half the genes of one’s offspring come from each parent. Without this mixing of genes from other individuals, asexual lineages are likely to falter and go extinct due to an accumulation of harmful mutations. Unless sexually reproducing creatures choose their mates purely at random, sexual selection is an inevitability. So, the basic conditions for runaway sexual selection to produce a brain suited to language and technology probably exists on other worlds with complex life.
One problem, though, that Anna Dornhaus pointed out, is that in sexual selection, the trait that gets exaggerated is essentially arbitrary. There are many bird species with elaborate plumage, but none exactly like the peacock. There are many species where brains and cognitive traits matter for mating success, like the singing ability of nightingales and many other birds, or gibbons, or whales. Male bower birds build complicated structures, called bowers, out of found items, like sticks and leaves and stones and shells, to attract a female. Chimpanzees engage in complex power struggles that involve negotiation, grooming, and fighting their way to the top.
But despite the selective success of cognition and braininess in many species, our specific human sort of intelligence, with language and technology, has happened only once on Earth, and therefore might be rare in the universe. If our ancestors had found big noses rather than big brains sexy, then we might now have enormous noses rather than enormous radio telescopes capable of signaling to other worlds.
Miller is more optimistic. “It’s a rare accident” he writes, in the sense that mate preferences only rarely turn ‘sapiosexual’, focused so heavily on conspicuous displays of general intelligence… On the other hand, I think it’s likely that in any biosphere, sexual selection would eventually stumble into sapiosexual mate preferences, and then you’d get human-level intelligence and language of some sort. It might only arise in 1 out of every 100 million species though,…I suspect that in any biosphere with sexually reproducing complex organisms and a wide variety of species, you’d quite likely get at least one lineage stumbling into the sapiosexual niche within a billion years”.
A planet or moon is currently deemed potentially habitable if it orbits its parent star within the right distance range for liquid water to exist on its surface. This distance range is called the habitable zone. Since stars evolve with time, the duration of habitability is limited. Such matters can be explored through climate modeling, informed by what we know of the climates of Earth and other worlds within our solar system, and about the evolution of stars.
Current thinking is that Earth’s total duration of habitability is 6.3 to 7.8 billion years, and that our world may remain habitable for another 1.75 billion years. Since complex life has already existed on Earth for 600 million years, this seems a generous amount of time for complex life on a similar planet to stumble upon Miller’s sapiosexual niche. Stars of smaller mass than the sun are stable on longer timescales, some perhaps capable of sustaining worlds with liquid water for a hundred billion years. If Miller’s estimates are reasonable, then there may be worlds enough and time for an abundance of sapiosexual alien civilizations in our galaxy.
A central message of the METI Institute workshop is that, animals evolve whatever sort of intelligence is necessary for them to survive and reproduce under the circumstances in which they find themselves. Human-style intelligence, with language and technology, is a peculiar quirk of particular and improbable evolutionary circumstances. But we don’t know just how improbable. Given the vastness of time and number of worlds potentially available for the roll of the evolutionary dice, alien civilizations might be reasonably abundant, or they might be once-in-a-billion galaxies rare. We just don’t know. Better knowledge of the evolution of life and intelligence here on Earth might allow us to improve our estimates.
If alien civilizations do exist, what can life on Earth tell us about what their minds and senses are likely to be like? Are they, like us, visually oriented creatures, or might they rely on other senses? Can we expect that their minds might be similar enough to ours to make meaningful communication possible? These intriguing questions will be the subject of the third and final installment of this series.
Is it likely that human level intelligence and technological civilization has evolved on other worlds? If so, what kinds of sensory and cognitive systems might extraterrestrials have? This was the subject of the workshop ‘The Intelligence of SETI: Cognition and Communication in Extraterrestrial Intelligence’ held in Puerto Rico on May 18, 2016. The conference was sponsored by the newly founded METI International (Messaging to ExtraTerrestrial Intelligence). One of the organization’s central goals is to build an interdisciplinary community of scholars concerned with designing interstellar messages that can be understood by non-human minds.
At present, the only clues we have to the nature of extraterrestrial minds and perception are those that can be garnered by a careful study of the evolution of mind and perception here on Earth. The workshop included nine speakers from universities in the United States and Sweden, specializing in biology, psychology, cognitive science, and linguistics. It had sessions on the evolution of cognition and the likely communicative and cognitive abilities of extraterrestrials.
Doug Vakoch, a psychologist and the founder and president of METI International, notes that astronomers and physicists properly concern themselves largely with the technologies needed to detect alien intelligence. However, finding and successfully communicating with aliens may require attention to the evolution and possible nature of alien intelligence. “The exciting thing about this workshop”, Vakoch writes, “is that the speakers are giving concrete guidelines about how to apply insights from basic research in biology and linguistics to constructing interstellar messages”. In this, the first installment dealing with the conference, we’ll focus on the question of whether the evolution of technological societies on other planets is likely to be common, or rare.
We now know that most stars have planets, and rocky planets similar to or somewhat larger than the Earth or Venus are commonplace. Within this abundant class of worlds, there are likely to be tens of billions with conditions suitable for sustaining liquid water on their surfaces in our galaxy. We don’t yet know how likely it is that life will arise on such worlds. But suppose, as many scientists suspect, that simple life is abundant. How likely is it that alien civilizations will appear; civilizations with which we could communicate and exchange ideas, and which could make their presence known to us by signaling into space? This was a central question explored at the conference.
In addressing such questions, scientists have two main sets of clues to draw on. The first comes from the study of the enormous diversity of behavior and nervous and sensory systems of the animal species that inhabit our Earth; an endeavor that has been called cognitive ecology. The second set of clues come from modern biology’s central principle; the theory of evolution. Evolutionary theory can provide scientific explanations of how and why various senses and cognitive systems have come to exist here on Earth, and can guide our expectations about what might exist elsewhere.
The basics of the electrochemical signalling that make animal nervous systems possible have deep evolutionary roots. Even plants and bacteria have electrochemical signalling systems that share some basic features with those in our brains. Conference presenter Dr. Anna Dornhaus studies how social insects make decisions collectively as an associate professor at the University of Arizona. She defines cognitive ability as the ability to solve problems with a nervous system, and sometimes also by social cooperation. An animal is more ‘intelligent’ if its problem solving abilities are more generalized. Defined this way, intelligence is widespread among animals. Skills traditionally thought to be the sole province of primates (monkeys and apes, including human beings) have now been shown to be surprisingly common.
For example, cognitive skills like social learning and teaching, generalizing from examples, using tools, recognizing individuals of one’s species, making plans, and understanding spatial relationships have all been shown to exist in arthropods (an animal group consisting of insects, spiders, and crustaceans). The evidence shows the surprising power of the diminutive brains of insects, and indicates that we know little of the relationship between brain size and cognitive ability.
But different animals often have different sets of cognitive skills, and if a species is good at one cognitive skill, that doesn’t necessarily mean it will be good at others. Human beings are special, not because we have some specific cognitive ability that other animals lack, but because we possess a wide range of cognitive abilities that are more exaggerated and highly developed than in other animals.
Although the Earth, as a planet, has existed for 4.6 billion years, complex animals with hard body parts don’t appear in the fossil record until 600 million years ago, and complex life didn’t appear on land until about 400 million years ago. Looking across the animal kingdom as a whole, three groups of animals, following separate evolutionary paths, have evolved especially complex nervous systems and behaviors. We’ve already mentioned arthropods, and the sophisticated behaviors mediated by their diminutive yet powerful brains.
Molluscs, a group of animals that includes slugs and shellfish, have also produced a group of brainy animals; the cephalopods. The cephalopods include octopuses, squids, and cuttlefish. The octopus has the most complex nervous system of any animal without a backbone. As the product of a different evolutionary path, the octopus’s sophisticated brain has a plan of organization that is completely alien to that of more familiar animals with backbones.
The third group to have produced sophisticated brains are the vertebrates; animals with backbones. They include fishes, amphibians, reptiles, birds, and mammals, including human beings. Although all vertebrate brains bear a family resemblance, complex brains have evolved from simpler brains many separate times along different paths of vertebrate evolution, and each such brain has its own unique characteristics.
Along one path, birds have evolved a sophisticated forebrain, and with it, a flexible and creative capacity to make and use tools, an ability to classify and categorize objects, and even a rudimentary understanding of numbers. Following a different path, and based on a different plan of forebrain organization, mammals have also evolved sophisticated intelligence. Three groups of mammals; elephants, cetaceans (a group of aquatic mammals including dophins, porpoises, and whales), and primates (monkeys and apes, including human beings) have evolved the most complex brains on Earth.
Given the evidence that intelligent problem solving skills of various sorts have evolved many times over, along many different evolutionary pathways, in an amazing range of animal groups, one might suspect that Dornhaus believes that human-style cognitive abilities and civilizations are widespread in the universe. In fact, she doesn’t. She thinks that humans with their exaggerated cognitive abilities and unique ability to use language to express complex and novel sorts of information are a quirky and unusual fluke of evolution, and might, for all we know, be wildly improbable. Her argument that alien civilizations probably aren’t widespread resembles one stated by the imminent and influential American evolutionary biologist Ernst Mayr in his 1988 book Towards a New Philosophy of Biology.
There are currently more than 10 million different species of animals on Earth. All but one have failed to evolve the human level of intelligence. This makes the chance of evolving human intelligence less than one in 10 million. Over the last six hundred million years since complex life has appeared on Earth, there have been tens of million different animal species, each existing for roughly 1-10 million years. But, so far as we know, only one of them, Homo sapiens, ever produced a technological society. The human lineage diverged from that of other great ape species about 8 million years ago, but we don’t see evidence of distinctly human innovation until about 50,000 years ago, which is, perhaps, another indication of its rarity.
Despite the apparent improbability of human level intelligence evolving in any one lineage, Earth, as a whole, with its vast array of evolutionary lineages, has nonetheless produced a technological civilization. But that still doesn’t tell us very much. For the present, Earth is the only habitable planet that we know much of anything about. And, since Earth produced us, we are working with a biased sample. So we can’t be at all confident that the presence of human civilization on Earth implies that similar civilizations are likely to occur elsewhere.
For all we know, the quirky set of events that produced human beings might be so wildly improbable that human civilization is unique in a hundred billion galaxies. But, we don’t know for sure that alien civilizations are wildly improbable either. Dornhaus freely concedes that neither she nor anybody has a good idea of just how improbable human intelligence might be, since the evolution of intelligence is still so poorly understood.
Most current evolutionary thinking, following in the footsteps of Mayr and others, holds that human civilization was not the inevitable product of a long-term evolutionary trend, but rather the quirky consequence of a particular and improbable set of evolutionary events. What sort of events might those have been, and just how improbable were they? Dornhaus supports a popular theory proposed by Dr. Geoffrey Miller, an evolutionary psychologist who is an associate professor in the Department of Psychology at the University of New Mexico and who also spoke at the METI institute workshop.
In our next installment we’ll explore Miller’s theories in a bit more detail, and see why the abundance of extraterrestrial civilizations might depend on whether or not aliens think big brains are sexy.
Three more potentially Earthlike worlds have been discovered in our galactic backyard, announced online today by the European Southern Observatory. Researchers using the 60-cm TRAPPIST telescope at ESO’s La Silla observatory in Chile have identified three Earth-sized exoplanets orbiting a star just 40 light-years away.
The star, originally classified as 2MASS J23062928-0502285 but now known more conveniently as TRAPPIST-1, is a dim “ultracool” red dwarf star only .05% as bright as our Sun . Located in the constellation Aquarius, it’s now the 37th-farthest star known to host orbiting exoplanets.
The exoplanets were discovered via the transit method (TRAPPIST stands for Transiting Planets and Planetesimals Small Telescope) through which the light from a star is observed to dim slightly by planets passing in front of it from our point of view. This is the same method that NASA’s Kepler spacecraft has used to find over 1,000 confirmed exoplanets.
As an ultracool dwarf TRAPPIST-1 is a very small and dim and isn’t easily visible from Earth, but it’s its very dimness that has allowed its planets to be discovered with existing technology. Their subtle silhouettes may have been lost in the glare of larger, brighter stars.
Follow-up measurements of the three exoplanets indicated that they are all approximately Earth-sized and have temperatures ranging from Earthlike to Venuslike (which is, admittedly, a fairly large range.) They orbit their host star very closely with periods measured in Earth days, not years.
“With such short orbital periods, the planets are between 20 and 100 times closer to their star than the Earth to the Sun,” said Michael Gillon, lead author of the research paper. “The structure of this planetary system is much more similar in scale to the system of Jupiter’s moons than to that of the Solar System.”
Although these three new exoplanets are Earth-sized they do not yet classify as “potentially habitable,” at least by the standards of the Planetary Habitability Laboratory (PHL) operated by the University of Puerto Rico at Arecibo. The planets fall outside PHL’s required habitable zone; two are too close to the host star and one is too far away.
In addition there are certain factors that planets orbiting ultracool dwarfs would have to contend with in order to be friendly to life, not the least of which is the exposure to energetic outbursts from solar flares.
This does not guarantee that the exoplanets are completely uninhabitable, though; it’s entirely possible that there are regions on or within them where life could exist, not unlike Mars or some of the moons in our own Solar System.
The exoplanets are all likely tidally locked in their orbits, so even though the closest two are too hot on their star-facing side and too cold on the other, there may be regions along the east or west terminators that maintain a climate conducive to life.
“Now we have to investigate if they’re habitable,” said co-author Julien de Wit at MIT in Cambridge, Mass. “We will investigate what kind of atmosphere they have, and then will search for biomarkers and signs of life.”
Discovering three planets orbiting such a small yet extremely common type of star hints that there are likely many, many more such worlds in our galaxy and the Universe as a whole.
“So far, the existence of such ‘red worlds’ orbiting ultra-cool dwarf stars was purely theoretical, but now we have not just one lonely planet around such a faint red star but a complete system of three planets,” said study co-author Emmanuel Jehin.
The team’s research was presented in a paper entitled “Temperate Earth-sized planets transiting a nearby ultracool dwarf star” and will be published in Nature.
Note: the original version of this article described 2MASS J23062928-0502285 (TRAPPIST-1) as a brown dwarf based on its classification on the Simbad archive. But at M8V it is “definitely a star,” according to co-author Julien de Wit in an email, although at the very low end of the red dwarf line. Corrections have been made above.
Evidence of water and a warmer, wetter climate abound on Mars, but did life ever put its stamp on the Red Planet? Rocks may hold the secret. Knobby protuberances of rock discovered by the Spirit Rover in 2008 near the rock outcrop Home Plate in Gusev Crater caught the attention of scientists back on Earth. They look like cauliflower or coral, but were these strange Martian rocks sculpted by microbes, wind or some other process?
When analyzed by Spirit’s mini-TES (Mini-Thermal Emission Spectrometer), they proved to be made of nearly pure silica (SiO2), a mineral that forms in hot, volcanic environments. Rainwater and snow seep into cracks in the ground and come in contact with rocks heated by magma from below. Heated to hundreds of degrees, the water becomes buoyant and rises back toward the surface, dissolving silica and other minerals along the way before depositing them around a vent or fumarole. Here on Earth, silica precipitated from water leaves a pale border around many Yellowstone National Park’s hot springs.
Both at Yellowstone, the Taupo Volcanic Zonein New Zealand and in Iceland, heat-loving bacteria are intimately involved in creating curious bulbous and branching shapes in silica formations that strongly resemble the Martian cauliflower rocks. New research presented at the American Geophysical Union meeting last month by planetary geologist Steven Ruff and geology professor Jack Farmer, both of Arizona State University, explores the possibility that microbes might have been involved in fashioning the Martian rocks, too.
A sizzling visit to El Tatio’s geysers
The researchers ventured to the remote geyser fields of El Tatio in the Chilean Atacama Desert to study an environment that may have mimicked Gusev Crater billions of years ago when it bubbled with hydrothermal activity. One of the driest places on Earth, the Atacama’s average elevation is 13,000 feet (4 km), exposing it to considerably more UV light from the sun and extreme temperatures ranging from -13°F to 113°F (-10° to 45°C). Outside of parts of Antarctica, it’s about as close to Mars as you’ll find on Earth.
Ruff and Farmer studied silica deposits around hot springs and geysers in El Tatio and discovered forms they call “micro-digitate silica structures” similar in appearance and composition to those on Mars (Here’s a photo). The infrared spectra of the two were also a good match. They’re still analyzing the samples to determine if heat-loving microbes may have played a role in their formation, but hypothesize that the features are “micro-stromatolites” much like those found at Yellowstone and Taupo.
Stromatolites form when a sticky film of bacteria traps and cements mineral grains to create a thin layer. Other layers form atop that one until a laminar mound or column results. The most ancient stromatolites on Earth may be about 3.5 billion years old. If Ruff finds evidence of biology in the El Tatio formations in the punishing Atacama Desert environment, it puts us one step closer to considering the possibility that ancient bacteria may have been at work on Mars.
Silica forms may originate with biology or from non-biological processes like wind, water and other environmental factors. Short of going there and collecting samples, there’s no way to be certain if the cauliflower rocks are imprinted with the signature of past Martian life. But at least we know of a promising place to look during a future sample return mission to the Red Planet. Indeed, according to Ruff, the Columbia Hills inside Gusev Crater he short list of potential sites for the 2020 Mars rover.
More resources:
Steve Ruff paper comparing El Tatio with an early hot springs environment in Gusev Crater