NASA and SpaceX are now targeting Dec. 19 as the launch date for the next unmanned cargo run to the International Space Station (ISS) under NASA’s Commercial Resupply Services contract.
The fifth SpaceX cargo mission was postponed from Dec. 16 to Dec. 19 to “allow SpaceX to take extra time to ensure they do everything possible on the ground to prepare for a successful launch,” according to a statement from NASA.
The Dragon spacecraft will launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
Both the Falcon 9 rocket and its Dragon spacecraft are in good health, according to NASA.
The mission dubbed SpaceX CRS-5 is slated for liftoff at 1:20 p.m.
An on time liftoff will result in a rendezvous with the ISS on Sunday. The crew would grapple the Dragon with the stations 57 foot long robotic arm at about 6 a.m.
US astronaut and station commander Barry Wilmore will operate the Canadarm2 to capture the SpaceX Dragon when it arrives Sunday morning. ESA astronaut Samantha Cristoforetti will assist Wilmore working at a robotics workstation inside the domed Cupola module during the commercial craft’s approach and rendezvous.
The unmanned cargo freighter is loaded with more than 3,700 pounds of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear.
The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.
Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.
A secondary objective of SpaceX is to attempt to recover the Falcon 9 first stage on an off shore barge.
The SpaceX CRS-4 mission to the ISS concluded with a successful splashdown on Oct 25 after a month long stay.
The SpaceX CRS-5 launch is the first cargo launch to the ISS since the doomed Orbital Sciences Antares/Cygnus launch ended in catastrophe on Oct. 28.
With Antares launches on indefinite hold, the US supply train to the ISS is now wholly dependent on SpaceX.
Orbital Sciences has now contracted United Launch Alliance (ULA) to launch the firms Cygnus cargo freighter to the ISS by late 2015 on an Atlas V rocket.
Video Caption: Last moments of Orion descent as viewed from the recovery ship USS Anchorage. Credit: NASA/US Navy
Relive the final moments of the first test flight of NASA’s Orion spacecraft on Dec. 5, 2014, through this amazing series of up close videos showing the spacecraft plummeting back to Earth through the rollicking ocean recovery by dive teams from the US Navy and the USS Anchorage amphibious ship.
The two orbit, 4.5 hour flight maiden test flight of Orion on the Exploration Flight Test-1 (EFT-1) mission was a complete success.
It was brought back to land to the US Naval Base San Diego, California.
Orion’s test flight began with a flawless launch on Dec. 5 as it roared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
The unpiloted test flight of Orion on the EFT-1 mission ignited NASA’s roadmap to send Humans to Mars by the 2030s by carrying the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.
Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.
Video Caption: NASA TV covers the final moments of Orion spacecraft descent and splashdown in the Pacific Ocean approximately 600 miles southwest of San Diego on Dec. 5, 2014, as viewed live from the Ikhana airborne drone. Credit: NASA TV
The spacecraft was loaded with over 1200 sensors to collect critical performance data from numerous systems throughout the mission for evaluation by engineers.
EFT-1 tested the rocket, second stage, and jettison mechanisms as well as avionics, attitude control, computers, environmental controls, and electronic systems inside the Orion spacecraft and ocean recovery operations.
It also tested the effects of intense radiation by traveling twice through the Van Allen radiation belt.
After successfully accomplishing all its orbital flight test objectives, the capsule fired its thrusters and began the rapid fire 10 minute plummet back to Earth.
During the high speed atmospheric reentry, it approached speeds of 20,000 mph (32,000 kph), approximating 85% of the reentry velocity for astronauts returning from voyages to the Red Planet.
The capsule endured scorching temperatures near 4,000 degrees Fahrenheit in a critical and successful test of the 16.5-foot-wide heat shield and thermal protection tiles.
The entire system of reentry hardware, commands, and 11 drogue and main parachutes performed flawlessly.
Finally, Orion descended on a trio of massive red and white main parachutes to achieve a statistical bulls-eye splashdown in the Pacific Ocean, 600 miles southwest of San Diego, at 11:29 a.m. EST.
It splashed down within one mile of the touchdown spot predicted by mission controllers after returning from an altitude of over 3600 miles above Earth.
The three main parachutes slowed Orion to about 17 mph (27 kph).
Here’s a magnificent up close and personal view direct from the US Navy teams that recovered Orion on Dec. 5, 2014.
Video Caption: Just released footage of the Orion Spacecraft landing and recovery! See all the sights and sounds, gurgling, and more from onboard the Zodiac boats with the dive teams on Dec. 5, 2014. See the initial recovery operations, including safing the crew module and towing it into the well deck of the USS Anchorage, a landing platform-dock ship. Credit: US Navy
Navy teams in Zodiac boats had attached a collar and winch line to Orion at sea and then safely towed it into the flooded well deck of the USS Anchorage and positioned it over rubber “speed bumps.”
Next they secured Orion inside its recovery cradle and transported it back to US Naval Base San Diego where it was off-loaded from the USS Anchorage.
The Orion EFT-1 spacecraft was recovered by a combined team from NASA, the U.S. Navy, and Orion prime contractor Lockheed Martin.
Orion has been offloaded from the USS Anchorage and moved about a mile to the “Mole Pier” where Lockheed Martin technicians have conducted the first test inspection of the crew module and collected test data.
It will soon be hauled on a flatbed truck across the US for a nearly two week trip back to Kennedy where it will arrive just in time for the Christmas holidays.
Technicians at KSC will examine every nook and cranny of Orion and will dissemble it for up close inspection and lessons learned.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
After a brilliant first test flight, and historic Pacific Ocean splashdown and recovery on Dec. 5, 2014, NASA’s Orion spacecraft was brought onshore inside the USS Anchorage to the US Naval Base San Diego and has now been offloaded for the cross country trek back her home base in Florida.
Orion was off-loaded from the well deck of the USS Anchorage Monday night after the amphibious ship docked in San Diego.
NASA officials pronounced the two orbit, 4.5 hour flight maiden test flight of Orion on the Exploration Flight Test-1 (EFT-1) mission to be a complete success.
The EFT-1 spacecraft was recovered at sea, brought to land, and off-loaded by a combined team from NASA, the U.S. Navy, and Orion prime contractor Lockheed Martin.
Years of planning, rehearsals, and hard work on land, in the air, and at sea paid off handsomely for the Orion Recovery Team, led by the Ground Systems Development and Operations Program (GSDO) based at NASA’s Kennedy Space Center in Florida.
“The recovery of Orion was flawless,” said Jeremy Graeber, NASA recovery director. “We wanted to be patient, take our time. We didn’t rush.”
Navy teams in Zodiac boats had attached a collar and winch line to Orion at sea and then safely towed it into the flooded well deck of the USS Anchorage and positioned it over rubber “speed bumps.”
Next they secured Orion inside its recovery cradle and transported it back to US Naval Base San Diego where it was off-loaded from the USS Anchorage.
Orion has now been moved about a mile to the “Mole Pier” where Lockheed Martin has conducted the first test inspection of the crew module and collected test data.
Next, it was placed into the crew module transportation fixture with a rigorous environmental control system and generator to ensure the crew module’s safety during transport.
Orion will be hauled on a flatbed truck across the US for a nearly two-week trip back to Kennedy where it will arrive just in time for the Christmas holidays.
Technicians at KSC will examine every nook and cranny of Orion, and will disassemble it for up close inspection and lessons learned.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – NASA’s exploration roadmap aimed at sending Humans to Mars in the 2030s got off the ground magnificently with the flawless launch and landing of the agency’s new Orion deep space capsule on its maiden voyage to space on Friday, Dec. 5, 2014.
“The first look looks really good from a data standpoint and will help us as we go forward,” said Bill Gerstenmaier, NASA’s associate administrator for the Human Exploration and Operations Directorate, at the post Orion landing media briefing at the Kennedy Space Center (KSC).
“We, as a species, are meant to press humanity further into the solar system and this is a first step. What a tremendous team effort.”
Orion roared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
The unpiloted test flight of Orion on the Exploration Flight Test-1 (EFT-1) mission carried the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.
Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.
The first stage of the mammoth, triple barreled Delta IV Heavy generates some two million pounds of liftoff thrust and was the only rocket powerful enough to launch Orion and achieve its intended goals.
During the two orbit, 4.5 hour flight, Orion reached an altitude of 3,604 miles above Earth, about 15 times higher than the International Space Station (ISS).
The Delta rocket’s main stage and upper stage performed so well that Orion was injected into orbit within an accuracy of about 1 foot of the planned orbit, said Larry Price, Lockheed Martin Deputy Orion Program Manager in an interview with Universe Today.
“It’s phenomenal,” Price told me. NASA selected Lockheed Martin a decade ago as the prime contractor to design and build Orion.
Orion was assembled, integrated, and tested inside the Neil Armstrong Operations & Checkout Facility at KSC.
“Lockheed Martin did a tremendous job of getting Orion ready,” noted Gerstenmaier.
“Thanks to everyone for getting us to be the leader in space.”
The EFT-1 mission concluded with a successful parachute-assisted splashdown of the Orion crew module in the Pacific Ocean, 600 miles southwest of San Diego.
“It was a difficult mission,” said Mark Geyer, NASA’s Orion program manager at the KSC briefing. It appears to have been nearly flawless.”
“It is hard to have a better day than today, The upper stage put us right where we needed to be.”
“Today’s flight test of Orion is a huge step for NASA and a really critical part of our work to pioneer deep space on our Journey to Mars,” said NASA Administrator Charles Bolden.
“The teams did a tremendous job putting Orion through its paces in the real environment it will endure as we push the boundary of human exploration in the coming years.”
The spacecraft was loaded with over 1200 sensors to collect critical performance data on numerous systems throughout the mission for evaluation by engineers.
EFT-1 tested the rocket, second stage, and jettison mechanisms, as well as avionics, attitude control, computers, environmental controls, and electronic systems inside the Orion spacecraft and ocean recovery operations.
It also tested the effects of intense radiation by traveling twice through the Van Allen radiation belt.
Approximately 3 hours and 20 minutes into the mission, the spacecraft separated and soon experienced the highest radiation levels of the mission.
At about 4 hours and 15 minutes, the capsule began its high speed re-entry through the atmosphere at speeds approaching 20,000 mph, thereby testing the 16.5-foot-wide heat shield at speeds approximating 85% of the reentry velocity for astronauts returning from voyages to the Red Planet.
The capsule survived scorching temperatures near 4,000 degrees Fahrenheit in a successful test of the heat shield and thermal protection tiles, before splashing down on a trio of parachutes in the Pacific Ocean at 11:29 a.m. EST.
The purpose was to check out many, but not all, of the systems critical to the safety of astronauts who will eventually travel to deep space in Orion.
“When Orion started there were still a lot of Apollo veterans. Now we have finally done something for our generation,” said Mike Hawes, Lockheed Martin Orion Program manager.
Onboard cameras captured stunning views during many stages of the EFT-1 mission, including the fairing jettison and views out the window.
“Some of those pictures where you could see the frame of the window, you don’t feel like you’re watching like a satellite, you feel like an astronaut yourself,” Geyer said.
“That picture really meant something to me,” said astronaut Rex Walheim, who flew on the final space shuttle mission on STS-135.
A drone captured stunning images of Orion during the final plummet to Earth and parachute deployment.
The pace of the Orion program is constrained by budgets and is slower than anyone wishes.
The next Orion launch on the EM-1 mission is slated for the second half of 2018 and will also be unmanned during the debut launch of NASA’s powerful new SLS rocket.
America’s astronauts flying aboard Orion will venture farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System starting around 2020 or 2021 on Orion’s first crewed flight atop NASA’s new monster rocket – the SLS – concurrently under development.
Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Orion’s inaugural launch on Dec. 5, 2014 atop United Launch Alliance Delta 4 Heavy rocket at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station, Florida at 7:05 a.m. Credit: Alex Polimeni/Zero-G News/AmericaSpace
Expanded with a growing gallery![/caption]
KENNEDY SPACE CENTER, FL – After four decades of waiting, the dawn of a new era in space exploration finally began with the dawn liftoff of NASA’s first Orion spacecraft on Friday, Dec. 5, 2014.
The picture perfect liftoff of Orion on its inaugural unmanned test flight relit the path to send humans beyond low Earth orbit for the first time since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.
Orion soared to space atop a United Launch Alliance Delta IV Heavy rocket at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Enjoy the spectacular launch photo gallery from my fellow space journalists and photographers captured from various up close locations ringing the Delta launch complex.
Tens of thousands of spectators descended upon the Kennedy Space Center to be an eyewitness to history and the new space era – and they were universally thrilled.
Orion is the first human rated spacecraft to fly beyond low Earth orbit since Apollo 17 and was built by prime contractor Lockheed Martin.
The EFT-1 mission was a complete success.
The Orion program began about a decade ago.
America’s astronauts flying aboard Orion will venture farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System starting around 2020 or 2021 on Orion’s first crewed flight atop NASA’s new monster rocket – the SLS – concurrently under development.
Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
After a decade of hard work, numerous twists and turns, and ups and downs, NASA’s new Orion deep space crew vehicle is finally, and officially, marching towards its maiden blastoff in less than two week’s time.
The Orion spacecraft cleared one of the final hurdles to its first launch when top managers from NASA and Lockheed Martin successfully completed a key review of the vehicle’s systems ahead of the looming Dec. 4 flight test.
Orion passed the Flight Readiness Review (FRR) on Thursday, Nov. 20, and officials announced that the spacecraft is “GO” for proceeding on the road to launch – and one day on to Mars!
The FRR is a rigorous assessment of the spacecraft, its systems, mission operations, and support functions needed to successfully complete Orion’s first voyage to space.
Lockheed Martin is the prime contractor for Orion and recently completed its fabrication in the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center in September 2014.
Orion will lift off on a Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed Exploration Flight Test-1 (EFT-1) mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
The United Launch Alliance Delta IV Heavy rocket is the world’s most powerful rocket and the only booster sufficiently powerful to launch the 50,000 pound Orion EFT-1 spacecraft to orbit.
The rocket was transported to pad 37 in late September. Then, on Nov. 12, this path finding Orion spacecraft was itself rolled out to the launch pad and hoisted and bolted atop the Delta IV Heavy.
The critical December test flight will pave the way for the first human missions to deep space in more than four decades since NASA’s Apollo moon landing missions ended in 1972.
To learn more about the major events and goals happening during Orion’s EFT-1 mission be sure to check out NASA’s cool new set of infographics explaining the 8 key events in my story – here.
The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
EFT-1 will test the rocket, second stage, jettison mechanisms, as well as avionics, attitude control, computers, and electronic systems inside the Orion spacecraft.
Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.
Orion is NASA’s next generation human rated vehicle that will carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.
Watch for Ken’s ongoing Orion coverage and he’ll be onsite at KSC in the days leading up to the historic launch on Dec. 4.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
After years of effort, NASA’s pathfinding Orion spacecraft was rolled out to the launch pad early this morning, Wednesday, Nov. 12, and hoisted atop the rocket that will blast it to space on its history making maiden test flight in December.
Orion’s penultimate journey began late Tuesday, when the spacecraft was moved 22 miles on a wheeled transporter from the Kennedy Space Center assembly site to the Cape Canaveral launch site at pad 37 for an eight hour ride.
Watch a timelapse of the journey, below:
Technicians then lifted the 50,000 pound spacecraft about 200 feet onto a United Launch Alliance Delta IV Heavy rocket, the world’s most powerful rocket, in preparation for its first trip to space.
Orion’s promise is that it will fly America’s astronauts back to deep space for the first time in over four decades since the NASA’s Apollo moon landing missions ended in 1972.
Liftoff of the state-of-the-art Orion spacecraft on the unmanned Exploration Flight Test-1 (EFT-1) mission is slated for December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
“This is the next step on our journey to Mars, and it’s a big one,” said William Gerstenmaier, NASA’s associate administrator for human exploration and operations.
“In less than a month, Orion will travel farther than any spacecraft built for humans has been in more than 40 years. That’s a huge milestone for NASA, and for all of us who want to see humans go to deep space.”
Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.
The fully assembled Orion vehicle stack consists of the crew module, service module, launch abort system, and adapter that connect it to the Delta IV Heavy rocket. It was completed in October inside Kennedy’s Launch Abort System Facility.
Today’s move was completed without issue after a one day delay due to storms in the KSC area.
The triple barreled Delta IV Heavy booster became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program in 2011 and is the only rocket sufficiently powerful to launch the Orion EFT-1 spacecraft.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
Orion will travel almost 60,000 miles into space during the uncrewed Dec. 4 test flight.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
Orbiting 200 miles above the Earth, Retired Astronaut Chris Hadfield could easily photograph the ridges of the Himalayan Mountains, the textures of the Sahara Desert and the shadows cast by the tallest buildings in Manhattan.
“The view of the world when you have it just right there through the visor of your helmet is overpoweringly gorgeous,” said Hadfield, speaking Oct. 14 at the American Museum of Natural History in New York City. “It is phenomenal. The world is pouring by with all its colors and textures so fast.”
Although Hadfield has already shared many of his photos via social media, he unveiled another 150 images in his latest book, “You Are Here: Around The World in 92 Minutes.” The photographs open a rare window onto the Earth, illuminating our planet’s beauty and the consequences of human settlement.
The book is designed to replicate a single 92-minute orbit aboard the International Space Station. “It’s as if you and I are sitting at the window of the space station, and I said, ‘let’s go around the world once. I want to show you the really cool stuff,’ ” said Hadfield.
The astronaut, famed for his zero-gravity rendition of David Bowie’s “Space Oddity,” took approximately 45,000 photos during his 146-day stint on the space station in 2013. That’s roughly 300 photos per day every day. Since NASA does not set aside specific time slots for astronauts to take photos, Hadfield did so while he should have been asleep or serenading millions with his guitar.
Why? Beauty triggers an unexplained emotional reaction, explained Hadfield. It also provides the best means of communication. Although the space station is an incredible scientific laboratory, art is equally important, he added, because it’s a way to reach people who might not otherwise be interested in the scientific nitty-gritty.
Hadfield is often attributed for humanizing space travel in a way that others before him had not. His use of social media, videos designed to quench our curiosity about living in space, and music, demonstrate a sheer passion that has inspired millions.
His photos not only share the natural beauty of our home planet, but also many signs of humanity, from bright city lights to the devastations of climate change as lakes dry up and disappear. “There’s so much information in just one glimpse out the window of human decision making and geology,” said Hadfield.
Hadfield’s remote yet vivid photos stand as a reminder of both the magnificence and fragility of life on our planet. “To have the world on one side, like this huge kaleidoscope, and then the bottomlessness of the Universe right there beside you,” said Hadfield, trailing off in awe. “You’re not on the world looking at it. You’re in the Universe with the world.”
The emergency launch abort system (LAS) has been installed on NASA’s pathfinding Orion crew capsule to prepare for its first launch – now just under two months away.
Technicians and engineers working inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center in Florida joined the LAS to the top of the Orion EFT-1 crew module on Friday, Oct. 3, 2014.
Attaching the LAS is one of the final component assembly steps leading up to the inaugural uncrewed liftoff of the state-of-the-art Orion EFT-1 spacecraft in December.
The maiden blastoff of Orion on the EFT-1 mission is slated for December 4, 2014 from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida atop the triple barreled United Launch Alliance (ULA) Delta IV Heavy booster.
Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System.
Indeed last week and this past month has been an extremely busy time for Orion’s launch preparations. And I’ve been present at KSC reporting first hand on many Orion processing events over the past few years.
Assembly of the Orion EFT-1 capsule and stacking atop the service module was completed at KSC in September. I witnessed the rollout of the Orion crew module/service module (CM/SM) stack on Sept. 11, 2014 on a 36 wheeled transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building and transport to the Payload Hazardous Servicing Facility (PHFS) for fueling. Read my Orion move story – here.
Running in parallel to processing of the Orion spacecraft is the processing of the triple barreled United Launch Alliance Delta IV Heavy. The Delta rocket assembly was completed by late September and detailed from my visit to the ULA Horizontal Integration Facility (HIF)- here.
The Delta rocket was moved to its Cape Canaveral launch pad overnight Sept 30 and hoisted at the pad on Oct. 1. Read my story – here.
“We’ve been working toward this launch for months, and we’re in the final stretch,” says former shuttle commander and Kennedy Space Center Director Bob Cabana.
The LAS stands at the very top of the Orion launch stack, bolted above the crew module, and it plays a critically important role to ensure crew safety.
In case of an emergency situation, the LAS is designed to ignite within milliseconds to rapidly propel the astronauts inside the crew module away from the rocket and save the astronauts lives. The quartet of LAS abort motors would generate some 500,000 pounds of thrust to pull the capsule away from the rocket.
For the EFT-1 mission, the LAS will be mostly inactive since no crew is aboard.
Thus the abort motors are inert and not filled with solid fuel propellant. However the jettison motors will be active in order to pull the LAS and Orion’s nose fairing away from the spacecraft just before Orion goes into orbit.
The LAS is one of the five primary components of the flight test vehicle for the EFT-1 mission and will be active on future Orion flights.
The Orion stack is scheduled to remain inside the LASF until mid-November. At that time when the Delta IV Heavy rocket is ready for integration with the spacecraft, Orion will be transported to pad 37 and hoisted atop the rocket.
The Delta IV Heavy became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program and is the only rocket sufficiently powerful to launch the Orion EFT-1 spacecraft.
The first stage generates some 2 million pounds of liftoff thrust.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
“This mission is a stepping stone on NASA’s journey to Mars,” said NASA Associate Administrator Robert Lightfoot during the boosters unveiling earlier this year at the Cape. “The EFT-1 mission is so important to NASA. We will test the capsule with a reentry velocity of about 85% of what’s expected by [astronauts] returning from Mars.”
“We will test the heat shield, the separation of the fairing and exercise over 50% of the eventual software and electronic systems inside the Orion spacecraft. We will also test the recovery systems coming back into the Pacific Ocean.”
Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.
Learn more about Orion, Space Taxis and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations
Oct 14: “What’s the Future of America’s Human Spaceflight Program with Orion and Commercial Astronaut Taxis” & “Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 7:30 PM
Oct 23/24: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA
The march towards first launch of NASA’s next generation Orion crew vehicle is accelerating rapidly.
The world’s most powerful rocket – the United Launch Alliance Delta IV Heavy – was moved to its Cape Canaveral launch pad overnight and raised at the pad today, Oct. 1, thereby setting in motion the final steps to prepare for blastoff of NASA’s new Orion capsule on its first test flight in just over two months.
All the pieces are ready and now it’s just a matter of attaching all those components together for the inaugural uncrewed liftoff of the state-of-the-art Orion spacecraft on its maiden mission dubbed Exploration Flight Test-1 (EFT-1) in December.
“We’ve been working toward this launch for months, and we’re in the final stretch,” said Kennedy Director Bob Cabana, in a NASA statement.
“Orion is almost complete and the rocket that will send it into space is on the launch pad. We’re 64 days away from taking the next step in deep space exploration.”
The triple barreled Delta IV Heavy topped by the Orion EFT-1 capsule is slated to blastoff on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
After a nearly two day delay due to drenching rain storms, the Delta IV Heavy integrated first and second stages were transported horizontally overnight Wednesday starting around 10 p.m. from the processing hanger inside ULA’s Horizontal Integration Facility (HIF) to the nearby launch complex and servicing gantry at Pad 37.
Early this morning, the rocket was hoisted up into its launch configuration. Several of my space photo-journalist colleagues were on hand. See their photos herein.
From now until launch technicians will conduct the final processing, testing and checkout of the Delta IV Heavy booster. They will also carry out “a high fidelity rehearsal to include fully powering up the booster and loading the tanks with fuel and oxidizer,” according to ULA.
“This is a tremendous milestone and gets us one step closer to our launch later this year,” said Tony Taliancich, ULA’s director of East Coast Launch Operations, in a ULA statement.
“The team has worked extremely hard to ensure this vehicle is processed with the utmost attention to detail and focus on mission success.”
“The Delta IV Heavy is the world’s most powerful launch vehicle flying today, and we are excited to be supporting our customer for this critical flight test to collect data and reduce overall mission risks and costs for the program,” said Taliancich.
NASA’s Orion Program manager Mark Geyer told me in a recent interview that the Orion spacecraft, built by prime contractor Lockheed Martin, will be transported to the pad around November 10 or 11. Then the Orion will be hoisted and attached to the top of the Delta IV Heavy rocket at the base of its service module.
The Delta IV Heavy first stage is comprised of a trio of three Common Booster Cores (CBCs).
Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.
The Delta IV Heavy became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program and is the only vehicle that is sufficiently powerful to launch the Orion EFT-1 spacecraft.
The first CBC booster was attached to the center booster in June. The second one was attached in early August.
I recently visited the HIF during a media tour after the three CBCs had been joined together as well as earlier this year after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville. See my photos herein.
I was also on hand at KSC when the Orion crew module/service module (CM/SM) stack was rolled out on Sept. 11, 2014, on a 36 wheeled transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building.
It was moved about 1 mile to the KSC fueling facility named the Payload Hazardous Servicing Facility (PHFS). Read my Orion move story – here.
Fueling of Orion was completed over the weekend and it has now been moved to the Launch Abort System Facility (LASF) for the installation of its last component – the Launch Abort System (LAS).
Orion’s next stop is SLC-37.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
NASA is simultaneously developing a monster heavy lift rocket known as the Space Launch System or SLS, that will eventually launch Orion on its deep space missions.
The maiden SLS/Orion launch on the Exploration Mission-1 (EM-1) unmanned test flight is now scheduled for no later than November 2018 – read my story here.
SLS will be the world’s most powerful rocket ever built and the assembly of its core stage has begun at NASA’s Michoud Assembly Facility in New Orleans. Read my story – here.
Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.