An Exoplanet is Definitely Orbiting Two Stars

Artist's impression of Kepler-16b, the first planet known to definitively orbit two stars - what's called a circumbinary planet. The planet, which can be seen in the foreground, was discovered by NASA's Kepler mission. Credit: NASA/JPL-Caltech/T. Pyle

Remember that iconic scene in Star Wars, where a young Skywalker steps out onto the surface of Tatooine and watches the setting of two suns? As it turns out, this may be what it is like for lifeforms on the exoplanet known as Kepler-16, a rocky planet that orbits in a binary star system. Originally discovered by NASA’s Kepler mission, an international team of astronomers recently confirmed that this planet orbits two stars at once – what is known as a circumbinary planet.

Continue reading “An Exoplanet is Definitely Orbiting Two Stars”

Astronomers Detect the Closest Fast Radio Burst Ever Seen

A cluster of ancient stars (left) close to the spiral galaxy Messier 81 (M81) is the source of extraordinarily bright and short radio signals. The image shows in blue-white a graph of how one flash’s brightness changed over the course of only tens of microseconds. (Image credit: ASTRON/Daniëlle Futselaar, artsource.nl)

Fast Radio Bursts (FRBs) are among the top mysteries facing astronomers today. First discovered in 2007 (the famous “Lorimer Burst“), these energetic events consist of huge bursts of radio waves that typically last mere milliseconds. While most events observed to date have been one-off events, astronomers have detected a few FRBs that were repeating in nature. The cause of these bursts remains unknown, with theories ranging from rotating neutron stars and magnetars to extraterrestrials!

Since the first event was detected fifteen years ago, improvements in our instruments and dedicated arrays have led to many more detections! In another milestone, an international team of astronomers recently made high-precision measurements of a repeating FRB located in the spiral galaxy Messier 81 (M81)- the closest FRB observed to date. The team’s findings have helped resolve some questions about this mysterious phenomenon while raising others.

Continue reading “Astronomers Detect the Closest Fast Radio Burst Ever Seen”

A Detailed Simulation of the Universe Creates Structures Very Similar to the Milky Way and its Surroundings

Simulation of dark matter and gas. Credit: Illustris Collaboration (CC BY-SA 4.0)

In their pursuit of understanding cosmic evolution, scientists rely on a two-pronged approach. Using advanced instruments, astronomical surveys attempt to look farther and farther into space (and back in time) to study the earliest periods of the Universe. At the same time, scientists create simulations that attempt to model how the Universe has evolved based on our understanding of physics. When the two match, astrophysicists and cosmologists know they are on the right track!

In recent years, increasingly-detailed simulations have been made using increasingly sophisticated supercomputers, which have yielded increasingly accurate results. Recently, an international team of researchers led by the University of Helsinki conducted the most accurate simulations to date. Known as SIBELIUS-DARK, these simulations accurately predicted the evolution of our corner of the cosmos from the Big Bang to the present day.

Continue reading “A Detailed Simulation of the Universe Creates Structures Very Similar to the Milky Way and its Surroundings”

Gaia Finds Ancient Satellite Galaxy Pontus Embedded in Milky Way

Artist's impression of the ESA's Gaia Observatory. Credit: ESA

A recent study looked at stellar streams hidden in Gaia data, to uncover evidence of an ancient remnant dubbed Pontus.

Our home galaxy the Milky Way is a monster with a ravenous past. In its estimated 12 billion years of existence, our galaxy has swallowed smaller satellite galaxies whole, with collisions resulting in massive rounds of star formation. We see threads of these remnant mergers as streams of stars and clusters, strung out around the Milky Way.

Continue reading “Gaia Finds Ancient Satellite Galaxy Pontus Embedded in Milky Way”

James Webb Might be Able to Detect Other Civilizations by their Air Pollution

The James Webb Space Telescope (JWST), launched last December, has been slowly powering up its instruments and unfurling its sunshield, and is now in the process of aligning its mirrors in preparation for operation. Within a few months, the most powerful space telescope ever built is going to set its sights on the stars. Astronomers are hoping that what JWST sees will change the way we understand our universe, just as the Hubble Space Telescope did decades before.

One tantalizing capability that JWST offers that Hubble could not is the opportunity to directly image planets orbiting distant stars, and maybe, just maybe, detect signs of life.

Continue reading “James Webb Might be Able to Detect Other Civilizations by their Air Pollution”

Imaging the Galaxy’s Centre in Unprecedented Detail Reveals More Mysterious Filaments

Milky Way centre by the MeerKAT array of 65 radio dishes in South Africa. Credit: SAROA

The inner 600 light years of our galaxy is a maelstrom of cosmic radiation, turbulent swirling gas clouds, intense star formation, supernovae, huge bubbles of radio energy, and of course a giant supermassive black hole. This bustling downtown of the Milky Way is a potential treasure trove of discovery but has been difficult to study as the galaxy’s central regions are obscured by dust and glaring radiation. But a new image of this region with unprecedented detail reveals more than we’ve ever seen before. We find some familiar objects like supernovae but also some mysterious structures – gaseous filaments dozens of light years long channeling electrons at near light speed.

Behold, the galaxy’s centre as never seen before:

The new MeerKAT image of the Galactic centre region is shown with the Galactic plane running horizontally across the image. Many new and previously-known radio features are evident, including supernova remnants, compact star-forming regions, and the large population of mysterious radio filaments. Colours indicate bright radio emission, while fainter emission is shown in greyscale. Credit: I. Heywood, SARAO. Image description: SARAO
Continue reading “Imaging the Galaxy’s Centre in Unprecedented Detail Reveals More Mysterious Filaments”

TESS Finds Almost 100 Quadruple Star Systems

This is an artist's illustration of the quadruple star system 30 Arietis. Astronomers are discovering more quadruple star systems as observational power increases. Image Credit: Karen Teramura, UH IfA

NASA’s Transiting Exoplanet Survey Satellite (TESS) has found over 5000 candidate exoplanet candidates, and 197 confirmed exoplanets since its mission began in late 2018. TESS is good at finding exoplanets, but the spacecraft is a powerful scientific platform, and it’s made other discoveries, too. Scientists working with TESS recently announced 97 quadruple star candidates, nearly doubling the number of known quadruple systems.

Continue reading “TESS Finds Almost 100 Quadruple Star Systems”

One of Life’s Building Blocks can Form in Space

A new kind of chemical reaction can explain how peptides can form on the icy layers of cosmic dust grains. Those peptides could have been transported to the early Earth by meteorites, asteroids or comets. Image Credit: © S. Krasnokutski / MPIA Graphics Department

Peptides are one of the smallest biomolecules and are one of life’s critical building blocks. New research shows that they could form on the surfaces of icy grains in space. This discovery lends credence to the idea that meteoroids, asteroids, or comets could have given life on Earth a kick start by crashing into the planet and delivering biological building blocks.

Continue reading “One of Life’s Building Blocks can Form in Space”

Lasers Could Send Missions to Mars in Only 45 Days

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

NASA and China plan to mount crewed missions to Mars in the next decade. While this represents a tremendous leap in terms of space exploration, it also presents significant logistical and technological challenges. For starters, missions can only launch for Mars every 26 months when our two planets are at the closest points in their orbit to each other (during an “Opposition“). Using current technology, it would take six to nine months to transit from Earth to Mars.

Even with nuclear-thermal or nuclear-electric propulsion (NTP/NEP), a one-way transit could take 100 days to reach Mars. However, a team of researchers from Montreal’s McGill University assessed the potential of a laser-thermal propulsion system. According to their study, a spacecraft that relies on a novel propulsion system – where lasers are used to heat hydrogen fuel – could reduce transit times to Mars to just 45 days!

Continue reading “Lasers Could Send Missions to Mars in Only 45 Days”

Planet Found in the Habitable Zone of a White Dwarf

An artist’s impression of the white dwarf star WD1054–226 orbited by clouds of planetary debris and a major planet in the habitable zone. Credit Mark A. Garlick / markgarlick.com Licence type Attribution (CC BY 4.0)

Most stars will end their lives as white dwarfs. White dwarfs are the remnant cores of once-luminous stars like our Sun, but they’ve left their lives of fusion behind and no longer generate heat. They’re destined to glow with only their residual energy for billions of years before they eventually fade to black.

Could life eke out an existence on a planet huddled up to one of these fading spectres?

Continue reading “Planet Found in the Habitable Zone of a White Dwarf”