Cosmic Rays Erode Away All But the Largest Interstellar Objects

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

So far we know of only two interstellar objects (ISO) to visit our Solar System. They are ‘Oumuamua and 2I/Borisov. There’s a third possible ISO named CNEOS 2014-01-08, and research suggests there should be many more.

But a new research letter shows that cosmic ray erosion limits the lifespan of icy ISOs, and though there may be many more of them, they simply don’t last as long as thought. If it’s true, then ‘Oumuamua was probably substantially larger when it started its journey, wherever that was.

Continue reading “Cosmic Rays Erode Away All But the Largest Interstellar Objects”

A 6-Year Search of the Outer Solar System Turns up 461 new Objects (but no Planet 9)

Artist's concept of the New Horizons spacecraft encountering a Kuiper Belt object, part of an extended mission after the spacecraft’s July 2015 Pluto flyby. Credits: NASA/JHUAPL/SwRI

In the near future, astronomers will benefit from the presence of next-generation telescopes like the James Webb Space Telescope (JWST) and the Nancy Grace Roman Space Telescope (RST). At the same time, improved data mining and machine learning techniques will also allow astronomers to get more out of existing instruments. In the process, they hope to finally answer some of the most burning questions about the cosmos.

For instance, the Dark Energy Survey (DES ), an international, collaborative effort to map the cosmos, recently released the results of their six-year survey of the outer Solar System. In addition to gathering data on hundreds of known objects, this survey revealed 461 previously undetected objects. The results of this study could have significant implications for our understanding of the Solar System’s formation and evolution.

Continue reading “A 6-Year Search of the Outer Solar System Turns up 461 new Objects (but no Planet 9)”

Why is James Webb Traveling to the Launch Site by Boat and not an Airplane?

The James Webb Space Telescope inside a cleanroom at NASA’s Johnson Space Center in Houston. Credit: NASA/JSC

The James Webb Space Telescope has faced a lot of questions during its arduous journey to completion. Some of the questions have been posed by concerned legislators, mindful of the limitations of the public purse as the telescope’s cost ballooned.

But the budget wrangling and the cost overruns are behind us now. The question that needs an answer is, why is it travelling to its launch site by boat and not airplane?

Continue reading “Why is James Webb Traveling to the Launch Site by Boat and not an Airplane?”

Cosmic Dawn Holds the Answers to Many of Astronomy’s Greatest Questions

A billion years after the big bang, hydrogen atoms were mysteriously torn apart into a soup of ions. Credit: NASA/ESA/A. Felid (STScI)).

Thanks to the most advanced telescopes, astronomers today can see what objects looked like 13 billion years ago, roughly 800 million years after the Big Bang. Unfortunately, they are still unable to pierce the veil of the cosmic Dark Ages, a period that lasted from 370,000 to 1 billion years after the Big Bang, where the Universe was shrowded with light-obscuring neutral hydrogen. Because of this, our telescopes cannot see when the first stars and galaxies formed – ca., 100 to 500 million years after the Big Bang.

This period is known as the Cosmic Dawn and represents the “final frontier” of cosmological surveys to astronomers. This November, NASA’s next-generation James Webb Space Telescope (JWST) will finally launch to space. Thanks to its sensitivity and advanced infrared optics, Webb will be the first observatory capable of witnessing the birth of galaxies. According to a new study from the Université de Genève, Switzerland, the ability to see the Cosmic Dawn will provide answers to today’s greatest cosmological mysteries.

Continue reading “Cosmic Dawn Holds the Answers to Many of Astronomy’s Greatest Questions”

Here’s Our Best View Yet of Asteroid Kleopatra

216 Kleopatra
Asteroid Kleopatra from different angles. Credit:

The European Southern Observatory returns intriguing views of enigmatic asteroid 216 Kleopatra.

It’s not every day we get a new look at a distant world, let alone a strange misshapen asteroid. But that just what happened last week, when the European Southern Observatory’s Very Large Telescope in Chile released new images of asteroid 216 Kleopatra.

Continue reading “Here’s Our Best View Yet of Asteroid Kleopatra”

A New Way to Search for Exomoons

Artist's impression of the view from a hypothetical moon around a exoplanet orbiting a triple star system. Credit: NASA

We’d love to find another planet like Earth. Not exactly like Earth; that’s kind of ridiculous and probably a little more science fiction than science. But what if we could find one similar enough to Earth to make us wonder?

How could we find it? We progress from one planet-finding mission to the next, compiling a list of planets that may be “Earth-like” or “potentially habitable.” Soon, we’ll have the James Webb Space Telescope and its ability to study exoplanet atmospheres for signs of life and habitability.

But one new study is focusing on exomoons and the role they play in a planet’s habitability. If we find a Moon-like exomoon in a stable orbit around its planet, could it be evidence that the planet itself is more Earth-like? Maybe, but we’re not there yet.

Continue reading “A New Way to Search for Exomoons”

Researchers Create the Most Powerful Magnet Ever Made on Earth: 20 Teslas

On September 5, 2021, a team of MIT researchers successfully tested a high-temperature superconducting magnet, breaking the world record for the most powerful magnetic field strength ever produced. Reaching 20 Teslas (a measure of field intensity), this magnet could prove to be the key to unlocking nuclear fusion, and providing clean, carbon-free energy to the world.

Continue reading “Researchers Create the Most Powerful Magnet Ever Made on Earth: 20 Teslas”

Researchers Generate an Entire Virtual Universe and Make it Available for Download (if you Have 100 Terabytes of Free Hard Drive Space)

The distribution of dark matter in the Uchuu simulation. Credit: Tomoaki Ishiyama

Astronomy is a bit different from many sciences because you only have a sample size of 1. The cosmos contains everything we can observe, so astronomers can’t study multiple universes to see how our universe ticks. But they can create computer simulations of our universe. By tweaking different aspects of their simulation, astronomers can see how things such as dark matter and dark energy play a role in our universe. Now, if you are willing to spring for a fancy hard drive, you can keep one of these simulations in your pocket.

Continue reading “Researchers Generate an Entire Virtual Universe and Make it Available for Download (if you Have 100 Terabytes of Free Hard Drive Space)”

Protoplanetary Disks Throw Out More Material Than Gets Turned Into Planets

A protosolar disk is the disk of material around a young stellar object that isn't yet a star. It's called a protoplanetary disk once the star has formed and begun fusion. Planetesimals are the building blocks of planets and are present in both stages of a disk's evolution. Image Credit: NASA/JPL

When a young solar system gets going it’s little more than a young star and a rotating disk of debris. Accepted thinking says that the swirling debris is swept up in planet formation. But a new study says that much of the matter in the disk could face a different fate.

It may not have the honour of becoming part of a nice stable planet, orbiting placidly and reliably around its host star. Instead, it’s simply discarded. It’s ejected out of the young, still-forming solar system to spend its existence as interstellar objects or as rogue planets.

Continue reading “Protoplanetary Disks Throw Out More Material Than Gets Turned Into Planets”