China’s Mars Rover, Seen From Orbit … and From the Surface!

A wireless camera took this 'group photo' of China's Tianwen-1 lander and rover on Mars' surface. Credit: Chinese Space Agency

The Chinese Tianwen-1 lander and Zhurong rover are being watched, both from Mars’ orbit and from the surface! The Chinese Space Agency today released a series of photos, including a family portrait of the rover and lander taken by a wireless remote camera. And just look at that cute rover face!

Continue reading “China’s Mars Rover, Seen From Orbit … and From the Surface!”

Sending a Spacecraft to Another Star Will Require a Million Lasers Working Together

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. The leakage from such beams as they sweep across the sky would appear as Fast Radio Bursts (FRBs), similar to the new population of sources that was discovered recently at cosmological distances. Credit: M. Weiss/CfA

In 2016, Russian-American billionaire Yuri Milner founded Breakthrough Initiatives, a non-profit organization dedicated to investigating some of the most enduring mysteries of the Universe. Chief among their scientific efforts is Breakthrough Starshot, a proof-of-concept prototype that combines a lightsail, a nanocraft, and directed energy (aka. laser) propulsion to create a spacecraft capable of reaching the nearest star (Alpha Centauri) in our lifetimes.

Naturally, this presents all sorts of technical and engineering challenges, not the least of which is the amount of power needed to accelerate the spacecraft to relativistic speeds (a fraction of the speed of light). Luckily, scientists from the Australian National University (ANU) recently came up with a design for a directed-energy array made up of millions of individual lasers positioned across the Earth’s surface.

Continue reading “Sending a Spacecraft to Another Star Will Require a Million Lasers Working Together”

Time to Update Your Desktop Wallpaper With This Perfect Spiral Galaxy: NGC 691

This image features the spiral galaxy NGC 691, imaged in fantastic detail by Hubble’s Wide Field Camera 3 (WFC3). This galaxy is the eponymous member of the NGC 691 galaxy group, a group of gravitationally bound galaxies that lie about 120 million light-years from Earth.  Objects such as NGC 691 are observed by Hubble using a range of filters. Each filter only allows certain wavelengths of light to reach Hubble’s WFC3. The images collected using different filters are then coloured by specialised visual artists who can make informed choices about which colour best corresponds to which filter. By combining the coloured images from individual filters, a full-colour image of the astronomical object can be recreated. In this way, we can get remarkably good insight into the nature and appearance of these objects. Links Video of the Eponymous NGC 691

In 1990, the field of astronomy was forever changed with the launch of the Hubble Space Telescope. While it was not the first space observatory, its unprecedented resolution and versatility allowed for the deepest and most detailed images of the Universe ever taken. The latest image to be released by the mission features the spiral galaxy NGC 691, which was captured in amazing detail by Hubble’s Wide Field Camera 3 (WFC3).

Continue reading “Time to Update Your Desktop Wallpaper With This Perfect Spiral Galaxy: NGC 691”

Next up, Juno has Ganymede in its Sights

NASA’s Juno mission is set for a close encounter with the Solar System’s largest moon, Ganymede, on Monday. This will be the first flyby of the icy world since the Galileo and Cassini spacecraft jointly observed the moon in 2000. New Horizons also got a quick snap of Ganymede as it slingshotted around Jupiter on its way out to Pluto in 2007, but from a distance of 3.5 million kilometers away. Juno’s pass on Monday will get much closer, approaching within 1038 kilometers of the surface.

Continue reading “Next up, Juno has Ganymede in its Sights”

What Would It Take To See Artificial Lights at Proxima Centauri B?

Feature Image Description: Ecumenopolis Planet orbiting Proxima Centauri-like Red Dwarf Star - Graphics from the video game Stellaris, developed and published by Paradox Interactive. - used with permission

Is there an alien civilization next door? It’s…possible(ish). In late 2020, we discovered a signal from the direction of Proxima Centauri (not necessarily from Proxima Centauri), our closest neighbour star. Named BLC- 1 by project Break Through Listen, the signal is still being analyzed to ensure it isn’t simply an echo of our own civilization – typically what they turn out to be. But why not just directly look at planets in Proxima Centauri and see if a civilization is there?

From space, the most obvious sign somebody lives on Earth is the glow from the nightside of our planet. Our cities emit light that’s shed into the Cosmos. Problem is that our current generation of telescopes are not powerful enough to see lights on distant worlds. But several researchers are testing the capabilities of the next generation of telescopes already on the drawing board. The finding? Yes! if advanced enough…or glowy enough…we would be able to see if another civilization has the lights on at Proxima Centauri.

8k compilation of footage taken from the International Space Station orbiting above Earth’s City Lights
Continue reading “What Would It Take To See Artificial Lights at Proxima Centauri B?”

New Mosaic Shows the Galactic Core From Opposite Sides of the Electromagnetic Spectrum

Credit: X-ray: NASA/CXC/UMass/Q.D. Wang; Radio: NRF/SARAO/MeerKAT)

The core of the Milky Way Galaxy (aka. Galactic Center), the region around which the rest of the galaxy revolves, is a strange and mysterious place. It is here that the Supermassive Black Hole (SMBH) that powers the compact radio source known as Sagittarius A* is located. It is also the most compact region in the galaxy, with an estimated 10 million stars within 3.26 light-years of the Galactic Center.

Using data from Chandra X-ray Observatory and the MeerKAT radio telescope, NASA and the National Research Foundation (NSF) of South Africa created a mosaic of the center of the Milky Way. Combining images taken in the x-ray and radio wavelengths, the resulting panoramic image manages to capture the filaments of super-heated gas and magnetic fields that (when visualized) shows the complex web of energy at the center of our galaxy.

Continue reading “New Mosaic Shows the Galactic Core From Opposite Sides of the Electromagnetic Spectrum”

Solar Horns at Sunrise: Our Guide to the June 10th Annular Solar Eclipse

annular eclipse

The only annular eclipse of 2021 will produce a fine spectacle across most of North America and Europe.

Got those solar glasses handy from 2017? If skies are clear on the morning of Thursday June 10th, you may once again find good use for them, as an annular ‘ring-of-fire’ eclipse crosses northeastern Canada into the Arctic.

Continue reading “Solar Horns at Sunrise: Our Guide to the June 10th Annular Solar Eclipse”

NASA Orders Up a Double Shot of Venus Missions Amid Questions About Life

Venus
Venus' surface features are revealed in an image based on data from NASA's Magellan spacecraft and Pioneer Venus Orbiter. (NASA / JPL-Caltech)

NASA’s planetary science program is making a big bet on Venus, after decades of putting its chips on Mars in the search for hints of past or present life out there in the solar system.

The bet comes in the form of a double dose of development funding for Discovery Program missions, amounting to as much as $1 billion. Both DAVINCI+ and VERITAS were selected from a field of four finalists in a competitive process — leaving behind missions aimed at studying Jupiter’s moon Io and Neptune’s moon Triton.

“These two sister missions are both aimed to understand how Venus became an inferno-like world capable of melting lead at the surface,” NASA Administrator Bill Nelson said June 2 in his first “State of NASA” address. “They will offer the entire science community the chance to investigate a planet we haven’t been to in more than 30 years.”

Lessons from Venus, which underwent a runaway greenhouse effect early in its existence, could improve scientists’ understanding of our own planet’s changing climate. The missions could also address one of the biggest questions about the second rock from the Sun: whether life could exist in the upper reaches of its cloud layer.

Continue reading “NASA Orders Up a Double Shot of Venus Missions Amid Questions About Life”

Is the Hubble constant not…Constant?

Image of the large-scale structure of the Universe, showing filaments and voids within the cosmic structure. Credit: Millennium Simulation Project. Now, the latest FLAMINGO simulation provide more detail about the evolution of the Universe within these structures.
Image of the large-scale structure of the Universe, showing filaments and voids within the cosmic structure. Who knows how many other civilizations might be out there? Credit: Millennium Simulation Project

Cosmologists have been struggling to understand an apparent tension in their measurements of the present-day expansion rate of the universe, known as the Hubble constant. Observations of the early cosmos – mostly the cosmic microwave background – point to a significantly lower Hubble constant than the value obtained through observations of the late universe, primarily from supernovae. A team of astronomers have dug into the data to find that one possible way to relieve this tension is to allow for the Hubble constant to paradoxically evolve with time. This result could point to either new physics…or just a misunderstanding of the data.

“The point is that there seems to be a tension between the larger values for late universe observations and lower values for early universe observation,” said Enrico Rinaldi, a research fellow in the University of Michigan Department of Physics and coauthor on the study. “The question we asked in this paper is: What if the Hubble constant is not constant? What if it actually changes?”

Continue reading “Is the Hubble constant not…Constant?”

A Dark Matter map of our Local Cosmic Neighborhood

Simulation of dark matter and gas. Credit: Illustris Collaboration (CC BY-SA 4.0)

Since it was first theorized in the 1970s, astrophysicists and cosmologists have done their best to resolve the mystery that is Dark Matter. This invisible mass is believed to make up 85% of the matter in the Universe and accounts for 27% of its mass-energy density. But more than that, it also provides the large-scale skeletal structure of the Universe (the cosmic web), which dictates the motions of galaxies and material because of its gravitational influence.

Unfortunately, the mysterious nature of Dark Matter means that astronomers cannot study it directly, thus prevented them from measuring its distribution. However, it is possible to infer its distribution based on the observable influence its gravity has on local galaxies and other celestial objects. Using cutting-edge machine-learning techniques, a team of Korean-American astrophysicists was able to produce the most detailed map yet of the local Universe that shows what the “cosmic web” looks like.

Continue reading “A Dark Matter map of our Local Cosmic Neighborhood”