Is There a way to Detect Strange Quark Stars, Even Though They Look Almost Exactly Like White Dwarfs?

A neutron star (~25km across) next to a quark star (~16km across). Original Image Credit: NASA's Goddard Space Flight Center

The world we see around us is built around quarks. They form the nuclei of the atoms and molecules that comprise us and our world. While there are six types of quarks, regular matter contains only two: up quarks and down quarks. Protons contain two ups and a down, while neutrons contain two downs and an up. On Earth, the other four types are only seen when created in particle accelerators. But some of them could also appear naturally in dense objects such as neutron stars.

Continue reading “Is There a way to Detect Strange Quark Stars, Even Though They Look Almost Exactly Like White Dwarfs?”

Comet Records From 1240 Accurately Date When a Byzantine Princess Died

This unprocessed image from NASA’s Parker Solar Probe shows comet NEOWISE on July 5, 2020, shortly after its closest approach to the Sun. Credits: NASA/Johns Hopkins APL/Naval Research Lab/Parker Solar Probe/Brendan Gallagher

Rome was the world’s first mega-empire. At its height it stretched from Western Europe to the Middle East, and over 50 million souls lived within its borders. Some historians think that number could’ve been way higher, up to 100 million.

Rome got its start in the mid-8th century BC. It took centuries for that small city to grow into the Roman Empire, which reached its peak around AD 100. A well-known cliche reminds us how long that took.

But the Roman Empire also took centuries to fracture and dissolve.

Continue reading “Comet Records From 1240 Accurately Date When a Byzantine Princess Died”

Black Holes Gain new Powers When They Spin Fast Enough

Computer simulation of plasma near a black hole. Credit: Hotaka Shiokawa / EHT

General relativity is a profoundly complex mathematical theory, but its description of black holes is amazingly simple. A stable black hole can be described by just three properties: its mass, its electric charge, and its rotation or spin. Since black holes aren’t likely to have much charge, it really takes just two properties. If you know a black hole’s mass and spin, you know all there is to know about the black hole.

Continue reading “Black Holes Gain new Powers When They Spin Fast Enough”

That’s no Asteroid, it’s a Rocket Booster

Earthrise as photographed by the Apollo 10 crew in May 1969. Credit: NASA

Back in September, astronomers using the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1) noticed an object in a distant orbit around Earth. Initially, the object (designed 2020 SO) was thought that be a near-Earth Asteroid (NEA). But based on the curious nature of it’s and the way solar radiation appeared to be pushing it off course, NASA scientists theorized that 2020 SO might be a spent rocket booster.

This was the tentative conclusion reached by staffers at the NASA Center for Near-Earth Object Studies (CNEOS) at NASA JPL. Specifically, they theorized that the object was the spent upper stage booster of the Centaur rocket that launched the Surveyor 2 spacecraft towards the Moon in 1966. This theory has since been confirmed thanks to new information provided by CNEOS and the NASA Infrared Telescope Facility (IRTF).

Continue reading “That’s no Asteroid, it’s a Rocket Booster”

Glycine Can Form In Interstellar Clouds

Author’s note: This article was written in collaboration with Vincent Kofman, a co-author of the paper it discusses and Post Doctoral Researcher at NASA’s Goddard Space Flight Center

Amino acids are one of the most important building blocks of life as we know it. At its core, they contain an amino and an acid group, through which they can link together with other amino acids. That linking process can form long chains, which is how they form proteins. In humans, 20 different amino acids make up all proteins, and the difference between them is in the molecular side chain between the amino and the acid group. The different groups make interconnections in the chain, folding it into highly specific forms, allowing the proteins to perform highly specific tasks, ranging from metabolism, to muscle movement, and cell duplication.

Given that their presence is a necessary, though not necessarily a sufficient, condition for the development of life, scientists have spent many decades exploring where they first formed.  With a paper in Nature Astronomy published last month, they moved one step closer to that understanding, by discovering that it is possible to form glycine, the simplest amino acid, in the star nurseries of interstellar clouds.

Continue reading “Glycine Can Form In Interstellar Clouds”

It Took 50 Nights of Observations to Capture New Data on the Magellanic Clouds

Part of the SMASH dataset showing an unprecedented wide-angle view of the Large Magellanic Cloud. Image Credit: CTIO/NOIRLab/NSF/AURA/SMASH/D. Nidever (Montana State University) Acknowledgment: Image processing: Travis Rector (University of Alaska Anchorage), Mahdi Zamani & Davide de Martin

The Magellanic Clouds are two of our closest neighbours, in galactic terms. The pair of irregular dwarf galaxies were drawn into the Milky Way’s orbit in the distant past, and we’ve been looking up at them since the dawn of humanity. Some of our ancestors even gathered pigments and created images of them in petroglyphs and cave paintings.

Following in the footsteps of those ancient artists, astronomers recently used the Dark Energy Camera (DECam) to capture an in-depth portrait of the pair of galaxies.

Continue reading “It Took 50 Nights of Observations to Capture New Data on the Magellanic Clouds”

This is Not a Photo of the Milky Way. It’s the Map of 1.8 Billion Stars From Gaia’s Major New Data Release

ESA/Gaia/DPAC; CC BY-SA 3.0 IGO. Acknowledgement: A. Moitinho.

In 2013, the European Space Agency (ESA) deployed the Gaia mission to space, a next-generation observatory that will spend the next five years gathering data on the positions, distances, and proper motions of stars. The resulting data will be used to construct the largest 3D space catalog ever, totaling 1 billion stars, planets, comets, asteroids, quasars, and other celestial objects.

Since the mission began, the ESA has issued three early releases of Gaia data, each of which has led to new research findings and more detailed maps of our galaxy. Based on the third release of mission data, known as Early Data Release 3 (Gaia EDR3), astronomers have created a map of the entire sky that includes updated data on celestial objects and manages to capture the total brightness and color of stars in our galaxy.

Continue reading “This is Not a Photo of the Milky Way. It’s the Map of 1.8 Billion Stars From Gaia’s Major New Data Release”

If There’s Subsurface Water Across Mars, Where is it Safe to Land to Avoid Contamination?

Light-toned layered deposits thought to be sandstones in West Candor Chasma, Mars. They may have formed in an ancient wet and potentially habitable environment. Image Credit: NASA/JPL/University of Arizona

If Mars is a potential home for alien life, can we land safely anywhere on the surface without introducing contamination of Earth-born bacteria? A new study has some good news and some bad news. The good news is that Mars is likely completely inhospitable to life. The bad news is that Mars is…likely completely inhospitable to life.

Continue reading “If There’s Subsurface Water Across Mars, Where is it Safe to Land to Avoid Contamination?”