2020 closes out with the final total solar eclipse of the decade, as totality crosses the southern tip of South America on December 14th.
Did you happen to catch last Monday’s slight penumbral lunar eclipse? Sure, a penumbral may be the most anti-climatic of all of the varieties of eclipses… but this event also sets us up for the ultimate in astronomical events, as a total solar eclipse crosses South America on December 14th, 2020.
Did comets deliver the elements essential for life on Earth? It’s looking more and more like they could have. At least one comet might have, anyway: 67P/Churyumov–Gerasimenko.
A new study using data from the ESA’s Rosetta mission shows that the comet contains the life-critical element phosphorous.
It’s often said that we haven’t yet detected dark matter particles. That isn’t quite true. We haven’t detected the particles that comprise cold dark matter, but we have detected neutrinos. Neutrinos have mass and don’t interact strongly with light, so they are a form of dark matter. While they don’t solve the mystery of dark matter, they do play a role in the shape and evolution of our universe.
Next time you want to be the life of the party—if you’re hanging out with cool nerds that is—just drop that phrase into the conversation. And when they look at you quizzically, just say that’s the eventual fate of the Solar System.
Then adjust your cravat and take another sip of your absinthe.
Planetary system formation is a process that involves astounding and complex forces. Humans have only just started trying to understand what goes on in this extraordinarily important phase of the development of new worlds. As such, we are continuing to make new discoveries and come up with better models that better fit the observations that our instruments are able to collect.
The most recent of those improved models was announced by a research team at the University of Warwick. A paper in Astrophysical Journal Letters explores possible reasons for why there is a lack of spiral structures in newly formed protoplanetary discs. Their answer is a simple one: massive planets that form on the outside of the disc might be disrupting the spiral formation.
“Science is not only compatible with spirituality; it is a profound source of spirituality. When we recognize our place in an immensity of light years and in the passage of ages, when we grasp the intricacy, beauty and subtlety of life, then that soaring feeling, that sense of elation and humility combined, is surely spiritual.” – Carl Sagan “The Demon-Haunted World.”
Learning about the Universe, I’ve felt spiritual moments, as Sagan describes them, as I better understand my connection to the wider everything. Like when I first learned that I was literally made of the ashes of the stars – the atoms in my body spread into the eternal ether by supernovae. Another spiritual moment was seeing this image for the first time:
Ten billion years ago the young Milky Way survived a titanic merger with a neighboring galaxy, eventually consuming the whole thing. Now, remnants of that fossil galaxy still swim in our galaxy’s core – and astronomers have discovered that almost a third of the Milky Way’s current population came from that dismantled rival.
Astronomers have to be extra clever to map out the invisible dark matter in the universe. Recently, a team of researchers have improved an existing technique, making it up to ten times better at seeing in the dark.
There’s no real reason most of us need to know what the Moon will look like on any particular day at any particular hour next year. No reason other than intellectual curiosity, that is. So if you have a healthy supply of that, then you’ll enjoy NASA’s latest contribution to staring at the internet and wondering where the time went.
Over the last few years, astronomers have observed distant solar systems in their early stages of growth. ALMA (Atacama Large Millimeter/submillimeter Array) has captured images of young stars and their disks of material. And in those disks, they’ve spotted the tell-tale gaps that signal the presence of growing young planets.
As they ramped up their efforts, astronomers were eventually able to spot the young planets themselves. All those observations helped confirm our understanding of how young solar systems form.
But more recent research adds another level of detail to the nebular hypothesis, which guides our understanding of solar system formation.