Planets are Finally Being Discovered Orbiting Farther From Their Stars

An artistic view of the Jovian exoplanet GJ 504b. Credit: NASA's Goddard Space Flight Center/S. Wiessinger

Discovering exoplanets is a difficult job. Given the challenges, it’s amazing that we’ve found any at all. But astronomers are clever, so there are currently more than 4,300 confirmed exoplanets. They range from small Mercury-sized worlds to planets larger than Jupiter, but most of them have one thing in common: they orbit close to their home star.

Continue reading “Planets are Finally Being Discovered Orbiting Farther From Their Stars”

According to the Math, it’s Highly Unlikely That an Intelligent Civilization is Located at Alpha Centauri

The Parkes radio telescope at Parkes Observatory in New South Wales, Australia. Astronomers using the telescope detected what appeared to be a radio signal coming from the direction of Proxima Centauri in April and May 2019. Image via Daniel John Reardon/ Wikimedia Commons.

In December of 2020, the world got a bit of a pre-holiday surprise when it was announced that astronomers at the Parkes radio telescope in Australia had detected a “tantalizing” signal coming from Proxima Centauri (the red dwarf companion of the Alpha Centauri system). Afterward, researchers at Breakthrough Listen consulted the data on the signal – Breakthrough Listen Candidate 1 (BLC1) – and noted the same curious features.

However, the scientific community has since announced that the signal is unlikely to be anything other than the result of natural phenomena. This was also the conclusion reached by Amir Siraj and Prof. Abraham Loeb of Harvard University after they conducted a probability assessment on BLC1. Like the vast majority of candidate radio signals discovered to date, this one appears to be just the forces of nature saying hello.

Continue reading “According to the Math, it’s Highly Unlikely That an Intelligent Civilization is Located at Alpha Centauri”

James Webb Unfolds Sunshield

The sunshield test unit on NASA's James Webb Space Telescope is unfurled for the first time. Credit: NASA

It’s almost time.

Soon the James Webb Space Telescope will be on its way to the Sun/Earth L2 Lagrange point and will begin its at least 5-year science mission. Really, it’s going to happen.

Despite several delays since the program began in 1996 and a budget that has exceeded the original by several billion dollars, the launch of the JWST seems close at hand. That is if you consider almost a year away (the new planned launch date is October 31, 2021) to be close.

Continue reading “James Webb Unfolds Sunshield”

The Roman Space Telescope’s Version of the Hubble Deep Field Will Cover a 100x Larger Area of the Sky

This composite image illustrates the possibility of a Roman Space Telescope “ultra deep field” observation. In a deep field, astronomers collect light from a patch of sky for an extended period of time to reveal the faintest and most distant objects. This view centers on the Hubble Ultra Deep Field (outlined in blue), which represents the deepest portrait of the universe ever achieved by humankind, at visible, ultraviolet and near-infrared wavelengths. Two insets reveal stunning details of the galaxies within the field. Image Credit: NASA, ESA, and A. Koekemoer (STScI) Acknowledgement: Digitized Sky Survey

Remember the Hubble Deep Field? And its successor the Hubble Ultra Deep Field? We sure do here at Universe Today. How could we forget them?

Well, just as the Hubble Space Telescope has successors, so do two of its most famous images. And those successors will come from one of Hubble’s successors, NASA’s Roman Space Telescope.

Continue reading “The Roman Space Telescope’s Version of the Hubble Deep Field Will Cover a 100x Larger Area of the Sky”

Will Solar Cycle 25 Dazzle or Fizzle in 2021?

Solar flare

A new study suggests that Solar Cycle 25 may be more powerful than previously predicted.

It’s the big question in solar astronomy for 2021 and the new decade. Will Solar Cycle 25 wow observers, or be a washout? A new study goes against the consensus, suggesting we may be in for a wild ride… if predictions and analysis of past solar cycle transitions hold true.

Continue reading “Will Solar Cycle 25 Dazzle or Fizzle in 2021?”

The Mystery of Sunquakes is Deep; One Million Meters Deep!

Lead Image: Side-by-side of M-Class solar flare in visible and ultraviolet light. The ‘IP’ in the timeline indicates ‘impulsive flare’, and the following ripples can be seen radiating in the ultraviolet for up to 42 minutes following. Credit: NASA/SDO
Lead Image: Side-by-side of M-Class solar flare in visible and ultraviolet light. The ‘IP’ in the timeline indicates ‘impulsive flare’, and the following ripples can be seen radiating in the ultraviolet for up to 42 minutes following. Credit: NASA/SDO

The Sun, as it turns out, is a pretty big deal. The thermonuclear behemoth at the center of the solar system makes up well over 99% of all the mass in the solar system. Despite being the most well-studied star in the universe, there are still many mysteries about its works. 

One of the Sun’s mysteries is the nature of sunquakes, massive ripples traveling thousands of kilometers across the sun’s surface. Occasionally, when a solar flare erupts, so-called seismic transients can be seen rippling through the solar surface over the next hour. The energy source driving these ripples was thought to be either the transient heating of the solar atmosphere during the flare event or by the powerful flexing of magnetic flux applied directly to the photosphere(the sun’s visible surface) itself, also originating in the flare event above. Using data from the Solar Dynamics Observatory (SDO), scientists have published a paper in the Astrophysical Journal of Letters that, for the first time, describes submerged sources of transient acoustic emission (sunquakes). The source of these mysterious waves seems to be, as it turns out, a thousand kilometers deep below, in the churning, seething hot interior of the star.

Continue reading “The Mystery of Sunquakes is Deep; One Million Meters Deep!”

There Should be a few Supernovae in the Milky Way Every Century, but we’ve Only Seen 5 in the Last 1000 Years. Why?

This image of the supernova remnant SN 1987A was taken by the NASA/ESA Hubble Space Telescope in January 2017 using its Wide Field Camera 3 (WFC3). Since its launch in 1990 Hubble has observed the expanding dust cloud of SN 1987A several times has helped astronomers get a better understanding of these cosmic explosions. Supernova 1987A is located in the centre of the image amidst a backdrop of stars. The bright ring around the central region of the exploded star is material ejected by the star about 20 000 years before the actual explosion took place. The supernova is surrounded by gaseous clouds. The clouds’ red colour represents the glow of hydrogen gas. Image Credit: NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for Astrophysics)
This image of the supernova remnant SN 1987A was taken by the NASA/ESA Hubble Space Telescope in January 2017 using its Wide Field Camera 3 (WFC3). Since its launch in 1990 Hubble has observed the expanding dust cloud of SN 1987A several times has helped astronomers get a better understanding of these cosmic explosions. Supernova 1987A is located in the centre of the image amidst a backdrop of stars. The bright ring around the central region of the exploded star is material ejected by the star about 20 000 years before the actual explosion took place. The supernova is surrounded by gaseous clouds. The clouds’ red colour represents the glow of hydrogen gas. Image Credit: NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for Astrophysics)

Our galaxy hosts supernovae explosions a few times every century, and yet it’s been hundreds of years since the last observable one. New research explains why: it’s a combination of dust, distance, and dumb luck.

Continue reading “There Should be a few Supernovae in the Milky Way Every Century, but we’ve Only Seen 5 in the Last 1000 Years. Why?”

Japan to Launch ‘Wooden Satellite’ in 2023

woodsat

What a proposed wooden satellite could (and could not) accomplish.

A strange satellite proposal made at the end of 2020 by a Japanese company had many space pundits scratching their heads into 2021.

The proposal came out of Kyoto University in partnership with Sumitomo Forestry in Japan, though most of the information on the project comes from a BBC post quoting Japanese Aerospace Exploration Agency (JAXA) astronaut and Kyoto University professor Takao Doi, who flew aboard the U.S. space shuttle on missions STS-87 and STS-123 to the International Space Station. STS-123 delivered and installed JAXA’s Kib? module in 2008.

Continue reading “Japan to Launch ‘Wooden Satellite’ in 2023”