An Exoplanet So Hot There Are 7 Different Kinds of Gaseous Metals in its Atmosphere

This artist's illustration shows an alien world that is losing magnesium and iron gas from its atmosphere. The observations represent the first time that so-called "heavy metals"—elements more massive than hydrogen and helium—have been detected escaping from a hot Jupiter, a large gaseous exoplanet orbiting very close to its star. The planet, known as WASP-121b, orbits a star brighter and hotter than the Sun. Image Credit: NASA, ESA, and J. Olmsted (STScI)

The search for exoplanets has revealed types of planets that are nothing like the worlds in our own Solar System. One such type is the hot-Jupiter. They’re gas giants like Jupiter that orbit their host star very closely. That proximity raises their temperatures to extreme heights.

Hot-Jupiters can be hot enough to vaporize metals, making their atmospheres un-Earthlike. A team of astronomers examining one exoplanet has found 7 different gaseous metals in its atmosphere.

Continue reading “An Exoplanet So Hot There Are 7 Different Kinds of Gaseous Metals in its Atmosphere”

Comet P1 NEOWISE Makes a Brief Late October Appearance

Comet P1 NEOWISE will make a brief dawn appearance for northern hemisphere observers in late October/early November.

So, how about Comet F3 NEOWISE this summer? 2020 saw the rapid appearance of one of the best northern hemisphere comets in recent memory, and the first good comet for us up north for the 21st century, as F3 NEOWISE graced early morning skies, and transitioned to a fine dusk apparition for an encore performance in the last half of July.

F3 NEOWISE reminded us that all comets are worth keeping tabs on… just in case. But wait, there’s more. The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) caught another intriguing object on August 2, 2020 as part of its extended sky survey mission: Comet C/2020 P1 NEOWISE is set to become a fine binocular object in late October and early November.

Continue reading “Comet P1 NEOWISE Makes a Brief Late October Appearance”

How to See What’s on the Other Side of a Wormhole Without Actually Traveling Through it

Wormholes are incredibly fascinating objects, but also completely hypothetical. We simply don’t know if they can truly exist in our universe. But new theoretical insights are showing how we may be able to detect a wormhole – from a spray of high-energy particles emitted at the moment of its formation.

Continue reading “How to See What’s on the Other Side of a Wormhole Without Actually Traveling Through it”

Black Holes Make Complex Gravitational-Wave Chirps as They Merge

Simulated merger of two black holes. Credit: NASA's Goddard Space Flight Center

Gravitational waves are produced by all moving masses, from the Earth’s wobble around the Sun to your motion as you go about your daily life. But at the moment, those gravitational waves are too small to be observed. Gravitational observatories such as LIGO and VIRGO can only see the strong gravitational waves produced by merging stellar-mass black holes.

The chirp of a gravitational merger is clear. Credit: LIGO/Caltech/MIT/University of Chicago (Ben Farr)
Continue reading “Black Holes Make Complex Gravitational-Wave Chirps as They Merge”

Want the Fastest Solar Sail? Drop it Into the Sun First

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

In the coming decades, multiple space agencies plan to return astronauts to the Moon (or to send them there for the first time) and mount the first crewed missions to Mars. Between that and the explosive growth we are seeing in Low Earth Orbit (LEO), there is no doubt that we live in an era of renewed space exploration. It’s therefore understandable that old and new concepts for interstellar travel are also being considered these days.

Right now, a considerable focus is on light sails that generate their own propulsion by radiation pressure or are accelerated by lasers. These concepts present all kinds of technical and engineering challenges. Luckily, Coryn Bailer-Jones of the Max Planck Institute for Astronomy (MPIA) recently conducted a study where he argues for a “Sun Diver” light sail that will pick up all the speed it needs by diving close to the Sun.

Continue reading “Want the Fastest Solar Sail? Drop it Into the Sun First”

Radio Astronomers are Worried About Mega-Constellations and the Square Kilometer Array

Antennas of CSIRO’s Australian SKA Pathfinder with the Milky Way overhead. Credit: Alex Cherney/CSIRO

In the coming years, a number of next-generation observatories and arrays will become operational. These facilities will make major contributions to multiple fields of astronomy: exploring the mysteries of the early Universe, studying gravitational waves, determining the role of dark matter and dark energy in cosmic evolution, and directly image “Earth-like” exoplanets.

Unfortunately, this revolutionary development in astronomy may be going up against another major project: the creation of mega-constellations. Because of this, the SKA Organization (SKAO) – which oversees the international Square Kilometre Array (SKA) – is insisting that corrective measures be taken so satellites won’t interfere with its radio observations once it’s operational.

Continue reading “Radio Astronomers are Worried About Mega-Constellations and the Square Kilometer Array”

Just How Bad are Superflares to a Planet’s Habitability?

superflare
An artist's conception of a superflare event, on a dwarf star. Image credit: Mark Garlick/University of Warwick

Star’s can be full of surprises; some of them nasty. While our own Sun appears pretty placid, science has shown us that’s not the case. Coronal mass ejections and solar flares are the Sun’s angry side.

And the Sun has only a mild case of the flares, compared to some other stars.

Continue reading “Just How Bad are Superflares to a Planet’s Habitability?”

Matter makes up exactly 31.5±1.3% of the Universe

dark matter shown in blue
This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACS J0416. This is one of six clusters that was studied by the Hubble Frontier Fields programme, which yielded the deepest images of gravitational lensing ever made. Scientists used intracluster light (visible in blue) to study the distribution of dark matter within the cluster.

Weighing the universe is a tricky task, but a team of astronomers have used a clever technique to measure how many galaxy clusters are in the cosmos, and from there come up with a total amount of matter. The answer: 31.5±1.3% of all the energy in the universe.

Continue reading “Matter makes up exactly 31.5±1.3% of the Universe”

An Amazing Sky Mosaic Courtesy of Stellina…and a New Telescope from Vaonis

Stellina Mosaic

Check out this stunning new deep-sky panoramic, and a new light-weight ‘smartscope,’ courtesy of Vaonis.

Smartscopes are coming into their own as a viable and exciting new facet of amateur astronomy. We’ve recently reviewed Unistellar’s evScope, and Vaonis’s Stellina telescope. Both are compact, smartphone-controlled telescopes that put simple deep-sky imaging within the user’s grasp.

Now, Vaonis is upping their game. The company recently released a sneak peek at a new upgrade to Stellina’s capabilities, and a new Kickstarter for a compact, lightweight version of the telescope, known as Vespera.

Continue reading “An Amazing Sky Mosaic Courtesy of Stellina…and a New Telescope from Vaonis”

The Solar System has a second plane where objects orbit the Sun

Artist's impression of the ecliptic plane (yellow), and the recently-discovered "empty" ecliptic (blue) in our solar system. (Credit: NAOJ)

Almost all the objects orbiting the sun live in a particular plane, called the ecliptic plane. But a recent analysis of long-period comets reveals a second home, a so-called “empty ecliptic”. And it may be populated with comets dragged there by none other than the gravity of the Milky Way galaxy.

Continue reading “The Solar System has a second plane where objects orbit the Sun”