Yesterday, we posted some incredible photos from the Juno Probe’s 29th flyby of Jupiter. Juno is in a highly elliptical orbit. It buzzes the planet at an altitude of 4,200km and then sweeps out to 8.1 million. Completing this circuit every 53 days, Juno only spends 2 hours within close proximity to Jupiter reducing the probe’s exposure to harmful radiation of high energy particles accelerated by Jupiter’s magnetic field.
Continue reading “See a 360 Degree Juno-Eye View of Jupiter During an Io Eclipse”The Shadow from M87’s Supermassive Black Hole has Been Observed Wobbling Around the Galaxy for Years
In April 2019, the Event Horizon Telescope (EHT) released the first direct image of a black hole. It was a radio image of the supermassive black hole in the galaxy M87. Much of the image resulted from radio light gravitationally focused toward us, but there was also some light emitted by gas and dust near the black hole. By itself, the image is a somewhat unimpressive blurry ring, but the data behind the image tells a more detailed story.
Continue reading “The Shadow from M87’s Supermassive Black Hole has Been Observed Wobbling Around the Galaxy for Years”Here’s Jupiter from Juno’s Latest Flyby
Jupiter.
Most massive planet in the solar system – twice that of all the other planets combined. This giant world formed from the same cloud of dust and gas that became our Sun and the rest of the planets. But Jupiter was the first-born of our planetary family. As the first planet, Jupiter’s massive gravitational field likely shaped the rest of the entire solar system. Jupiter could’ve played a role in where all the planets aligned in their orbits around the Sun…or didn’t as the asteroid belt is a vast region which could’ve been occupied by another planet were it not for Jupiter’s gravity. Gas giants like Jupiter can also hurl entire planets out of their solar systems, or themselves spiral into their stars. Saturn’s formation several million years later probably spared Jupiter this fate. Jupiter may also act as a “comet catcher.” Comets and asteroids which could otherwise fall toward the inner solar system and strike the rocky worlds like Earth are captured by Jupiter’s gravitational field instead and ultimately plunge into Jupiter’s clouds. But at other times in Earth’s history, Jupiter may have had the opposite effect, hurling asteroids in our direction – typically a bad thing but may have also resulted in water-rich rocks coming to Earth that led to the blue planet we know of today.
Continue reading “Here’s Jupiter from Juno’s Latest Flyby”What’s the Best Way to Communicate With an Interstellar Probe When it’s Light-Years Away From Earth?
It’s no secret that humanity is poised to embark on a renewed era of space exploration. In addition to new frontiers in astronomical and cosmological research, crewed missions are also planned for the coming decades that will send astronauts back to the Moon and to Mars for the first time. Looking even further, there are also ideas for interstellar missions like Breakthrough Starshot and Project Dragonfly and NASA’s Starlight.
These mission concepts entail pairing a nanocraft with a lightsail, which would then accelerated by a directed-energy array (lasers) to achieve a fraction of the speed of light (aka. relativistic velocity). Naturally, this raises a number of technical and engineering challenges, not the least of which is communications. In a recent study, a team of scientists sought to address that very issue and considered various methods that might be used.
Continue reading “What’s the Best Way to Communicate With an Interstellar Probe When it’s Light-Years Away From Earth?”There Could Be Carbon-Rich Exoplanets Made Of Diamonds
Scientists are getting better at understanding exoplanets. We now know that they’re plentiful, and that they can even orbit dead white dwarf stars. Researchers are also getting better at understanding how they form, and what they’re made of.
A new study says that some carbon-rich exoplanets could be made of silica, and even diamonds, under the right circumstances.
Continue reading “There Could Be Carbon-Rich Exoplanets Made Of Diamonds”Our Complete Guide to Mars Opposition Season 2020
Grab your telescope: when it comes to astronomy, 2020 saved the best for last, with a fine opposition season for the planet Mars. In 2020, the Red Planet reaches opposition next month on October 13th.
Continue reading “Our Complete Guide to Mars Opposition Season 2020”A History of the Magellanic Clouds and How They Got Their Names
The Magellanic Clouds are a pair of dwarf galaxies that are bound to the Milky Way. The Milky Way is slowly consuming them in Borg-like fashion, starting with the gas halo that surrounds both Clouds. They’re visible in the southern sky, and for centuries people have gazed up at them. They’re named after the Portuguese explorer Ferdinand Magellan, in our current times.
But they weren’t always called that.
Continue reading “A History of the Magellanic Clouds and How They Got Their Names”The Destruction of Dark Matter isn’t Causing Extra Radiation at the Core of the Milky Way
There are times when it feels like dark matter is just toying with us. Just as we gather evidence that hints at one of its properties, new evidence suggests otherwise. So it is with a recent work looking at how dark matter might behave in the center of our galaxy.
Continue reading “The Destruction of Dark Matter isn’t Causing Extra Radiation at the Core of the Milky Way”How Much Life Would Be Required to Create the Phosphine Signal on Venus?
A Biosignature
Last week, an incredible announcement was made about the search for extraterrestrial life: Phosphine gas detected in the clouds of Venus – a potential indicator of life or “biosignature.” Now some gases might be a false positive for biosignatures because they can be created by other chemical processes on a planet like photochemical processes in the atmosphere or geological processes beneath the surface that create a given gas. For example, methane can also be a biosignature, and we’ve been hunting it down on Mars, but we know that methane can also be created geologically. Finding phosphine in Venusian clouds is truly remarkable because we don’t presently know of any way to create phosphine abiotically or without life being a part of the equation. Question is – how much life??
Continue reading “How Much Life Would Be Required to Create the Phosphine Signal on Venus?”Searching for Phosphorus in Other Stars
The Search for Life can be a lot messier than it sounds. The three words make a nice, tidy title, but what it entails is extraordinarily difficult. How, in this vast galaxy, can we find life and the planets or moons that might host it? We’re barely at the point of either discovering or ruling out other life in our own Solar System.
Finding it somewhere else in the galaxy, even in our own interstellar neighbourhood, is a task so daunting it can be hard to comprehend.
So any time scientists think they’ve found something that can give them an edge in their near-impossible task, it deserves to be talked about.
Continue reading “Searching for Phosphorus in Other Stars”