Astronomers are Starting to Find Planets in Much Longer Orbits. Cooler, More Habitable Planets

This artist’s view shows the planet orbiting the young star Beta Pictoris. This exoplanet is the first to have its rotation rate measured. Its eight-hour day corresponds to an equatorial rotation speed of 100 000 kilometres/hour — much faster than any planet in the Solar System.

We’re getting better and better at detecting exoplanets. Using the transit method of detection, the Kepler Space Telescope examined over 530,000 stars and discovered over 2,600 explanets in nine years. TESS, the successor to Kepler, is still active, and has so far identified over 1800 candidate exoplanets, with 46 confirmed.

But what if, hidden in all that data, there were even more planets? Astronomers at Warwick University said they’ve found one of these “lost” planets, and that they think they’ll find even more.

Continue reading “Astronomers are Starting to Find Planets in Much Longer Orbits. Cooler, More Habitable Planets”

Organic Matter Could Have Delivered Earth’s Water

This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. A new study suggests that Earth's water didn't all come from comets, but likely also came from water-rich planetesimals. Credit: NASA
This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. A new study suggests that Earth's water didn't all come from comets, but likely also came from water-rich planetesimals. Credit: NASA

The origin of Earth’s water is a big piece of the puzzle in Earth’s history. Did it come from comets and asteroids? From water-bearing space dust? The scientific debate is not settled.

Now a new study shows that water could have been delivered to Earth by organic matter.

Continue reading “Organic Matter Could Have Delivered Earth’s Water”

A ring of high-energy particles surrounding a black hole suddenly disappeared

If we could see the blazar 3C 354.3 up close it would look something like this. A bright accretion disk surrounds a black hole. Twin jets of radiation beam from the center. Credit: Cosmovision

In March 2018 astronomers watched a massive black hole surge in brightness. Then over the following year, its ring of light dimmed to near-invisibility before regaining its former strength. The potential culprit? The black hole swallowing an entire star.

Continue reading “A ring of high-energy particles surrounding a black hole suddenly disappeared”

Supercomputer Simulation Shows a Supernova 300 Days After it Explodes

A 2-D snapshot of a pair-instability supernovae as the explosion waves are about to break through the star's surface. The tiny disturbances represent fluid instability - in a region where different elements interact and mix. Image Credit: ASIAA/Ken Chen

The answers to many questions in astronomy are hidden behind the veil of deep time. One of those questions is around the role that supernovae played in the early Universe. It was the job of early supernovae to forge the heavier elements that were not forged in the Big Bang. How did that process play out? How did those early stellar explosions play out?

A trio of researchers turned to a supercomputer simulation to find some answers.

Continue reading “Supercomputer Simulation Shows a Supernova 300 Days After it Explodes”

A Neptune-class exoplanet has been found with its atmosphere stripped away

Voyager 2 captured this image of Neptune in 1982, when it was over 7 million km (4.4 million miles) away from the planet. The Great Dark Spot in the middle of the image was the first storm ever seen on Neptune. Image: By NASA (JPL image) [Public domain], via Wikimedia Commons

What happens when a giant planet gets stripped of its atmosphere? It leaves behind a giant core, rich in iron and other metals. A team using NASA’s TESS mission recently found such a remnant core, orbiting a star just 730 light-years away.

Continue reading “A Neptune-class exoplanet has been found with its atmosphere stripped away”

A Star had a Partial Supernova and Kicked Itself Into a High-Speed Journey Across the Milky Way

The material ejected by the supernova will initially expand very rapidly, but then gradually slow down, forming an intricate giant bubble of hot glowing gas. Eventually, the charred remains of the white dwarf that exploded will overtake these gaseous layers, and speed out onto its journey across the Galaxy. Credit: University of Warwick/Mark Garlick

Supernovae are some of the most powerful events in the Universe. They’re extremely energetic, luminous explosions that can light up the sky. Astrophysicists have a pretty good idea how they work, and they’ve organized supernovae into two broad categories: they’re the end state for massive stars that explode near the end of their lives, or they’re white dwarfs that draw gas from a companion which triggers runaway fusion.

Now there might be a third type.

Continue reading “A Star had a Partial Supernova and Kicked Itself Into a High-Speed Journey Across the Milky Way”

Astronomers Do the Math to Figure Out Exactly When Johannes Vermeer Painted this, More than 350 Years Ago

View of Delft is a famous oil painting by the Dutch Master Johannes Vermeer, painted ca. 1660–1661. Image Credit: By Johannes Vermeer - www.mauritshuis.nl : Home : Info : : Image, Public Domain, https://commons.wikimedia.org/w/index.php?curid=50398

Most of us will be forgotten only a generation or two after we pass. But some few of us will be remembered: great scientists, leaders, or generals, for example. But we can add history’s great artists to that list, and one in particular: Johannes Vermeer.

Vermeer was largely ignored during the two centures that followed his death, and died as other painters often did: penniless. But as more time has passed, the Dutch Baroque painter has grown in reputation, as historians increasingly recognize him as a master.

Continue reading “Astronomers Do the Math to Figure Out Exactly When Johannes Vermeer Painted this, More than 350 Years Ago”

The Moon Might Have Formed a Little Later than Originally Believed

Credit: DLR

According to the Giant Impact Hypothesis, the Moon formed when a Mars-sized object (named Theia) collided with Earth billion years ago, at a time when the Earth was still a ball of magma. This event not only led to the Earth-Moon system we recognize today, it is also beleived to have led to the differentiation of the Earth’s core region into an molten Outer Core and a solid Inner Core.

However, there has been an ongoing debate as to the timing of this impact and how long the subsequent formation of the Moon took place. According to a new study by a team of German researchers, the Moon formed from a magma ocean that took up to 200 million years to solidify. This means that the Moon finished forming about 4.425 billion years ago, or 100 million years later than previously thought.

Continue reading “The Moon Might Have Formed a Little Later than Originally Believed”

Supernovae shockwaves aren’t spherical

Artist’s impression of gamma-ray burst with orbiting binary star. Credit: University of Warwick/Mark Garlick

When stars blow up, they tend to release their energy in a roughly spherical shape. But much after the initial blast, the resulting shock waves can sometimes be elongated in one direction. A team of theorists used laboratory lasers to identify the potential culprit: magnetic fields.

Continue reading “Supernovae shockwaves aren’t spherical”