What are the Odds of Life Emerging on Another Planet?

Artist's impression of the Milky Way Galaxy. Credit: ESO

In 1961, famed astronomer and astrophysicist Frank Drake formulated an equation for estimating the number of extraterrestrial civilizations in our galaxy at any given time. Known as the “Drake Equation“, this formula was a probabilistic argument meant to establish some context for the Search for Extraterrestrial Intelligence (SETI). Of course, the equation was theoretical in nature and most of its variables are still not well-constrained.

For instance, while astronomers today can speak with confidence about the rate at which new stars form, and the likely number of stars that have exoplanets, they can’t begin to say how many of these planets are likely to support life. Luckily, Professor David Kipping of Columbia University recently performed a statistical analysis that indicates that a Universe teeming with life is “the favored bet.”

Continue reading “What are the Odds of Life Emerging on Another Planet?”

Barred Spiral NGC 3895 Captured by Hubble

Far away in the Ursa Major constellation is a swirling galaxy that would not look out of place on a coffee made by a starry-eyed barista. NGC 3895 is a barred spiral galaxy that was first spotted by William Herschel in 1790 and was later observed by the NASA/ESA Hubble Space Telescope. Hubble's orbit high above the Earth's distorting atmosphere allows astronomers to make the very high resolution observations that are essential to opening new windows on planets, stars and galaxies — such as this beautiful view of NGC 3895. The telescope is positioned approximately 570 km above the ground, where it whirls around Earth at 28 000 kilometres per hour and takes 96 minutes to complete one orbit. 

NGC 3895 is a barred spiral galaxy in the Ursa Major constellation. It’s about 145 million light years away from our home, the Milky Way, and its diameter is about 45,000 light years. William Herschel discovered it way back in 1790.

Now the Hubble Space Telescope has given us another gorgeous image of it. Thanks Hubble!

Continue reading “Barred Spiral NGC 3895 Captured by Hubble”

New Simulations Show How Black Holes Grow, Through Mergers and Accretion

Artist's impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS
Artist's impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS

One of the most pressing questions in astronomy concerns black holes. We know that massive stars that explode as supernovae can leave stellar mass black holes as remnants. And astrophysicists understand that process. But what about the supermassive black holes (SMBHs) like Sagittarius A-star (Sgr A*,) at the heart of the Milky Way?

SMBHs can have a billion solar masses. How do they get so big?

Continue reading “New Simulations Show How Black Holes Grow, Through Mergers and Accretion”

How to See This Friday’s Penumbral Lunar Eclipse

Eclipse season resumes on June 5th, with a fine penumbral lunar eclipse.

Are you cursing the June Full Moon as it thwarts your dreams of deep-sky imaging this week? Fear not; said Moon is actually the first astronomical draw for June 2020, as this coming weekend’s Full Moon marks the start of second eclipse season for 2020, with a penumbral lunar eclipse.

Continue reading “How to See This Friday’s Penumbral Lunar Eclipse”

Black Hole Seen Blasting Out Jets at Close to the Speed of Light

MAXI J1820+070 is a binary pair that has one black hole and one star. The black hole is emitting relativistic jets, and Chandra made a movie of it. Image Credit: Chandra X-Ray Observatory

The Chandra X-Ray Observatory has spotted a distant black hole shooting out jets of material, at close to the speed of light. No worries, this beast is about 10,000 light years away from us. It’s more of a spectacle than a danger.

But it’s a spectacle laden with scientific insights.

Continue reading “Black Hole Seen Blasting Out Jets at Close to the Speed of Light”

Huge Stars Can Destroy Nearby Planetary Disks

The brilliant tapestry of young stars flaring to life resembles a glittering fireworks display in this Hubble Space Telescope image. The sparkling centerpiece of this fireworks show is a giant cluster of thousands of stars called Westerlund 2. The cluster resides in a raucous stellar breeding ground known as Gum 29, located 20,000 light-years away from Earth in the constellation Carina. Hubble's Wide Field Camera 3 pierced through the dusty veil shrouding the stellar nursery in near-infrared light, giving astronomers a clear view of the nebula and the dense concentration of stars in the central cluster. The cluster measures between six light-years and 13 light-years across. Credits: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI) and the Westerlund 2 Science Team

Westerlund 2 is a star cluster about 20,000 light years away. It’s young—only about one or two million years old—and its core contains some of the brightest and hottest stars we know of. Also some of the most massive ones.

There’s something unusual going on around the massive hot stars at the heart of Westerlund 2. There should be huge, churning clouds of gas and dust around those stars, and their neighbours, in the form of circumstellar disks.

But in Westerlund 2’s case, some of the stars have no disks.

Continue reading “Huge Stars Can Destroy Nearby Planetary Disks”

Rare “Ring Galaxy” Seen in the Early Universe

Credit: ASTRO 3D

One of the greatest benefits to come from space telescopes and ground-based observatories that take advantage of advanced imaging techniques is their ability to see farther into space (and hence, further back in time). In so doing, they are revealing things about the earliest galaxies, which allows astronomers to refine theories of how the cosmos formed and evolved.

For example, new research conducted by the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) has found a “ring galaxy” that existed 11 billion years ago (about 3 billion years after the Big Bang). This extremely rare structure, which the team describes as a “cosmic ring of fire,” is likely to shake up cosmological theories of how the cosmos has changed over time.

Continue reading “Rare “Ring Galaxy” Seen in the Early Universe”

Mars Doesn’t Have Much of a Magnetosphere, But Here’s a Map

This image is from a scientific visualization of the electric currents around Mars. Electric currents (blue and red arrows) envelop Mars in a nested, double-loop structure that wraps continuously around the planet from its day side to its night side. These current loops distort the solar wind magnetic field (not pictured), which drapes around Mars to create an induced magnetosphere around the planet. In the process, the currents electrically connect Mars’ upper atmosphere and the induced magnetosphere to the solar wind, transferring electric and magnetic energy generated at the boundary of the induced magnetosphere (faint inner paraboloid) and at the solar wind bow shock (faint outer paraboloid). Credits: NASA/Goddard/MAVEN/CU Boulder/SVS/Cindy Starr

Even though Earthling scientists are studying Mars intently, it’s still a mysterious place.

One of the striking things about Mars is all of the evidence, clearly visible on its surface, that it harbored liquid water. Now, all that water is gone, and in fact, liquid water couldn’t survive on the surface of the Red Planet. Not as the planet is now, anyway.

But it could harbour water in the past. What happened?

Continue reading “Mars Doesn’t Have Much of a Magnetosphere, But Here’s a Map”

A New Kind of Supernova Explosion has been Discovered: Fast Blue Optical Transients

Artist's conception illustrates the differences in phenomena resulting from an "ordinary" core-collapse supernova explosion, an explosion creating a gamma-ray burst, and one creating a Fast Blue Optical Transient. Credit: Bill Saxton, NRAO/AUI/NSF

For the child inside all of us space-enthusiasts, there might be nothing better than discovering a new type of explosion. (Except maybe bigger rockets.) And it looks like that’s what’s happened. Three objects discovered separately—one in 2016 and two in 2018—add up to a new type of supernova that astronomers are calling Fast Blue Optical Transients (FBOT).

Continue reading “A New Kind of Supernova Explosion has been Discovered: Fast Blue Optical Transients”

On Mars, mud flows like lava

A composite image showing alternating layers of ice and sand in an area where they are exposed on the surface of Mars. The photograph, taken with the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter, was adjusted to show water ice as light-colored layers and sand as darker layers of blue. The tiny bright white flecks are thin patches of frost. Credit: NASA/JPL/University of Arizona

One of the most striking features on Earth are the curious flows of lava as it cools, forming undulating ropes of rock known by the Hawaiian word pahoehoe. New research simulating conditions on Mars now reveals that the red planet has its own kind of pahoehoe…but made of mud.

Continue reading “On Mars, mud flows like lava”