There are Features on Titan That Really Look Like Volcanic Craters

Doom Mons and Sotra Patera, apparent cryovolcanic features on Titan. Credit: NASA/JPL

On Sept. 15th, 2017, NASA’s Cassini Orbiter concluded its mission by diving into Saturn’s atmosphere. Over the course of the 13 years it spent studying the Saturn system, it revealed a great deal about this gas giant and its largest moon, Titan. In the coming years, scientists are eager to send another mission to Titan to follow up on Cassini and get a better look at its surface features, methane lakes, and other curious properties.

These include the morphological features in the northern polar region that are strikingly similar to volcanic features here on Earth. According to a recent study by the Planetary Science Institute (PSI), these features could be evidence of cryovolcanism that continues to this day. These findings are the latest evidence that Titan has an interior ocean and internal heating mechanisms, which could also mean the planet harbors life in his interior.

Continue reading “There are Features on Titan That Really Look Like Volcanic Craters”

Planets With Large Oceans are Probably Common in the Milky Way

The "ocean worlds" of the Solar System. Credit: NASA/JPL

Within our Solar Systems, there are several moons where astronomers believe life could be found. This includes Ceres, Callisto, Europa, Ganymede, Enceladus, Titan, and maybe Dione, Mimas, Triton, and the dwarf planet Pluto. These “ocean worlds” are believed to have abundant liquid water in their interiors, as well as organic molecules and tidal heating – the basic ingredients for life.

Which raises the all-important question: are similar moons to be found in other star systems? This is the question NASA planetary scientist Dr. Lynnae C. Quick and her team from NASA’s Goddard Space Flight Center sought to address. In a recent study, Quick and her colleagues examined a sample of exoplanet systems and found that ocean worlds are likely to be very common in our galaxy.

Continue reading “Planets With Large Oceans are Probably Common in the Milky Way”

Astronomers Estimate There Are 6 Billion Earth-Like Planets in the Milky Way

Meet Kepler-22b, an exoplanet with an Earth-like radius in the habitable zone of its host star. Unfortunately its mass remains unknown. Image Credit: NASA

Six billion Earth-like planets in the Milky Way? If true, that’s astounding. But the number needs some context.

The Milky Way has up 400 billion stars. So even if there are six billion Earth-like planets, they’re still spread far and wide throughout our vast galaxy.

Continue reading “Astronomers Estimate There Are 6 Billion Earth-Like Planets in the Milky Way”

ExoMars Sees the Martian Atmosphere Glowing Green

Credit: ESA

In the course of studying Mars, scientists have come to identify some key similarities to Earth’s own. One notable example is the way our atmospheres interact with sunlight to produce dazzling displays of energy. On Earth, these include not just the aurorae near the polar regions (Aurora Borealis and Australis), but the constant green glow that is the result of oxygen molecules interacting with sunlight (aka. “airglow”).

On Earth, airglow can be seen “edge-on” from space, as exemplified by the many spectacular images that are taken by astronauts aboard the International Space Station (ISS). This phenomenon was recently observed around Mars for the first time by the ESA’s Trace Gas Orbiter (TGO), which arrived at Mars in 2016 a part of the ExoMars program. Like aurorae, this observation is yet another example of how Mars is “Earth’s Twin.”

Continue reading “ExoMars Sees the Martian Atmosphere Glowing Green”

Searching for the End of the Universe’s “Dark Age”

A ‘radio colour’ view of the sky above the Murchison Widefield Array radio telescope, part of the International Centre for Radio Astronomy Research (ICRAC). Credit: Radio image by Natasha Hurley-Walker (ICRAR/Curtin) and the GLEAM Team. MWA tile and landscape Credit: ICRAR/Dr John Goldsmith/Celestial Visions

According to the most widely accepted cosmological theories, the first stars in the Universe formed a few hundred million years after the Big Bang. Unfortunately, astronomers have been unable to “see” them since their emergence coincided during the cosmological period known as the “Dark Ages.” During this period, which ended about 13 billion years ago, clouds of gas filled the Universe that obscured visible and infrared light.

However, astronomers have learned that light from this era can be detected as faint radio signals. It’s for this reason that radio telescopes like the Murchison Widefield Array (MWA) were built. Using data obtained by this array last year, an international team of researchers is scouring the most precise radio data to date from the early Universe in an attempt to see exactly when the cosmic “Dark Ages” ended.

Continue reading “Searching for the End of the Universe’s “Dark Age””

Why Pulsars Are So Bright

Pulsars are fast-spinning neutron stars that emit narrow, sweeping beams of radio waves. A new study identifies the origin of those radio waves. NASA’s Goddard Space Flight Center
Pulsars are fast-spinning neutron stars that emit narrow, sweeping beams of radio waves. A new study identifies the origin of those radio waves. NASA’s Goddard Space Flight Center

When pulsars were first discovered in 1967, their rhythmic radio-wave pulsations were a mystery. Some thought their radio beams must be of extraterrestrial origin.

We’ve learned a lot since then. We know that pulsars are magnetized, rotating neutrons stars. We know that they rotate very rapidly, with their magnetic poles sending sweeping beams of radio waves out into space. And if they’re aimed the right way, we can “see” them as pulses of radio waves, even though the radio waves are steady. They’re kind of like lighthouses.

But the exact mechanism that creates all of that electromagnetic radiation has remained a mystery.

Continue reading “Why Pulsars Are So Bright”

Book Review: Atlas of Solar Eclipses 2020 to 2045

Love solar eclipses? It’s the main question on everyone’s mind post-totality, once the all-too-brief darkness gives way back to light of day…

When’s the next total solar eclipse?

Anyone who has stood in the shadow of the Moon during totality knows the thrill of a total solar eclipse. Now, there’s great new atlas for planning your next great eclipse-chasing adventure. The Atlas of Solar Eclipses 2020 to 2045 by eclipse-chaser and cartographer Michael Zeiler and Michael E. Bakich is an indispensable astronomical resource.

This guide covers every solar eclipse out to 2045, starting with this weekend’s annular eclipse across southern Asia on June 21, 2020, all the way out to the total solar eclipse of August 12, 2045 crossing North America, the Caribbean and South America.

Continue reading “Book Review: Atlas of Solar Eclipses 2020 to 2045”

Pulsars Confirm One of Einstein’s Best Ideas, That Freefall Really Feels Like You’re Experiencing a Lack of Gravity

This artist’s impression shows the exotic double object that consists of a tiny, but very heavy neutron star that spins 25 times each second, orbited every two and a half hours by a white dwarf star. The neutron star is a pulsar named PSR J0348+0432 that is giving off radio waves that can be picked up on Earth by radio telescopes. Although this unusual pair is very interesting in its own right it is also a unique laboratory for testing the limits of physical theories. This system is radiating gravitational radiation, ripples in spacetime. Although these waves cannot be yet detected directly by astronomers on Earth they can be detected indirectly by measuring the change in the orbit of the system as it loses energy. As the pulsar is so small the relative sizes of the two objects are not drawn to scale.

Six and a half decades after he passed away, famed theoretical physicist Albert Einstein is still being proven right! In addition to General Relativity (GR) being tested under the most extreme conditions, lesser-known aspects of his theories are still being validated as well. For example, GR predicts that gravity and inertia are often indistinguishable, in what is known as the gravitational Strong Equivalence Principle (SEP).

Thanks to an international team of researchers, it has been proven under the strongest conditions to date. By precisely tracking the motion of a pulsar, the team demonstrated that gravity causes neutron stars and white dwarf stars to fall with equal accelerations. This confirms Einstein’s prediction that freefall accurately simulates zero-gravity conditions in all inertial reference frames.

Continue reading “Pulsars Confirm One of Einstein’s Best Ideas, That Freefall Really Feels Like You’re Experiencing a Lack of Gravity”