WFIRST Will be Named After Nancy Grace Roman, NASA’s First Chief Astronomer

Artist's impression of the Nancy Grace Roman space telescope (formerly WFIRST). It could open a window on the early Universe by observing light from the first stars. Credit: NASA/GSFC
Artist's impression of the Nancy Grace Roman space telescope (formerly WFIRST). Credit: NASA/GSFC

In the mid-2020s, NASA’s next-generation Wide Field Infrared Survey Telescope (WFIRST) will take to space. With unprecedented resolution and advanced instruments, it will build on the foundation established by the venerable Hubble Space Telescope – which celebrated its 30th anniversary this year! In anticipation of all it will accomplish, NASA decided that the WFIRST needs a proper name, one that honors its connection to Hubble.

This week, NASA announced that henceforth, the WFIRST mission will be known as the Nancy Grace Roman Space Telescope (or Roman Space Telescope for short) in honor of Dr. Nancy Grace Roman (who passed away in 2018). In addition to being NASA’s first Chief Astronomer, she was also a tireless educator and advocate for women in STEMs whose work paved the way for space telescopes – leading to her nickname “the mother of Hubble.”

Continue reading “WFIRST Will be Named After Nancy Grace Roman, NASA’s First Chief Astronomer”

Magnetic north is migrating towards Siberia. Here’s why

This visualization depicts what a coronal mass ejection might look like like as it interacts with the interplanetary medium and magnetic forces. Credit: NASA / Steele Hill

The North Pole ain’t what it used to be. Well, the geographic North Pole stays fixed over time (mostly because we define it to stay fixed over time) but the magnetic north pole constantly moves. And over the past decade it’s been moving out of Canada towards Siberia four times faster than it has in the past couple centuries. Armed with data from the ESA’s Swarm satellite, scientists might finally know why: the shifting of our magnetic field north pole is caused by a titanic struggle between two competing massive magnetic plumes.

Continue reading “Magnetic north is migrating towards Siberia. Here’s why”

Astronomers Are Sure These Are Two Newborn Planets Orbiting a Distant Star

An artist's illustration of the PDS 70 system, not to scale. The two planets are clearing a gap in the circumstellar disk as they form. As they accrete in-falling material, the heat makes them glow. Image Credit: W. M. Keck Observatory/Adam Makarenko

Planet formation is a notoriously difficult thing to observe. Nascent planets are ensconced inside dusty wombs that resist our best observation efforts. But recently, astronomers have made progress in imaging these planetary newborns.

A new study presents the first-ever direct images of twin baby planets forming around their star.

Continue reading “Astronomers Are Sure These Are Two Newborn Planets Orbiting a Distant Star”

Jupiter is so Big that our Solar System almost had two Suns

Europa and Io move across the face of Jupiter, with the Great Red Spot behind them. Image: NASA/JPL/Cassini, Kevin M. Gill
Europa and Io move across the face of Jupiter, with the Great Red Spot behind them. Image: NASA/JPL/Cassini, Kevin M. Gill

About half of all the star systems in the galaxy are made of pairs or triplets of stars. Our solar system features just one star, the Sun, and a host of (relatively) small planets. But it was almost not the case, and Jupiter got right on the edge of becoming the Sun’s smaller sibling.

Jupiter, the biggest planet in the solar system, is by far the largest. If you added up the masses of all the other planets, it wouldn’t even come to half of the mass of Jupiter. You could eliminate every single planet in the solar system except Jupiter, and you would basically still have…the solar system.

Continue reading “Jupiter is so Big that our Solar System almost had two Suns”

TESS is Also Helping Astronomers Study Bizarre Pulsating Stars

A conceptual image of the Transiting Exoplanet Survey Satellite. Image Credit: MIT
A conceptual image of the Transiting Exoplanet Survey Satellite. Image Credit: MIT

NASA’s TESS, or Transiting Exoplanet Survey Satellite has one main job: finding exoplanets. But it’s also helping astronomers study a strange type of star that has so far defied thorough explanation. Those stars are Delta Scuti stars, named after their prototype.

Continue reading “TESS is Also Helping Astronomers Study Bizarre Pulsating Stars”

Take a Peek Inside a Giant Star Right Before it Dies

Artist's impression of a supernova. Supernovae bombarded Earth with radiation that has implications for the development of life on Earth. Image Credit: NASA

The biggest stars in our universe are some of the most fascinatingly complex objects to inhabit the cosmos. Indeed,giant stars have defied full explanation for decades. Especially when they’re near the end of their lives.

Stars power themselves through nuclear fusion, from the smashing together of lighter elements into heavier ones. This process leaves behind a little bit of extra energy. It’s not much, but when those fusion reactions occur at millions or billions of times every single second, it’s enough to keep a star powered for…millions or billions of years.

Continue reading “Take a Peek Inside a Giant Star Right Before it Dies”

Was Betelgeuse Formed by Merging Stars?

Betelgeuse was the first star directly imaged -- besides our own Sun, of course. Image obtained by the Hubble Space Telescope. Credit: Andrea Dupree (Harvard-Smithsonian CfA), Ronald Gilliland (STScI), NASA and ESA

Modern humans—or Homo Sapiens—have only been around for about 250,000 years. That’s only the blink of an eye in cosmological terms. As it turns out, the star Betelgeuse may only be about the same age.

A new study explores the idea that Betelgeuse formed from a merger of two stars only a few hundred thousand years ago.

Continue reading “Was Betelgeuse Formed by Merging Stars?”

High Energy Neutrinos Are Coming From Supermassive Black Holes

ANITA being prepared for launch. Credit: NASA Goddard

Neutrinos are mysterious and elusive particles. They have a tiny mass, no electric charge, and they interact with other matter only rarely. They are also extremely common. At any moment, about 100 billion neutrinos are streaming through every square centimeter of your body. Neutrinos were produced by the big bang, and are still being produced by everything from stars to supernovae.

Continue reading “High Energy Neutrinos Are Coming From Supermassive Black Holes”

Astronomers Continue to Analyze Pluto’s Atmosphere

This image of Pluto taken by the New Horizons spacecraft shows the blue color of Pluto's high-altitude haze. Image: NASA/New Horizons.
This image of Pluto taken by the New Horizons spacecraft shows the blue color of Pluto's high-altitude haze. Image: NASA/New Horizons.

When NASA’s New Horizons spacecraft flew past Pluto, studying the atmosphere was a key scientific objective. Most of what we know about the ice dwarf came from that flyby. That happened in July 2015, but it took over 15 months to send all the data home, and it’s taking even longer to analyze it.

Continue reading “Astronomers Continue to Analyze Pluto’s Atmosphere”