Entrepreneurs and Engineers Come Together to Design a Peaceful Lunar Settlement

An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018
An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018

With all the plans for sending robotic missions to the Moon in the coming years, and NASA’s plan to send the first astronauts of the post-Apollo Era there, one thing is clear: We are going back to the Moon! But unlike the Apollo Era, we intend to do more than mount “footprints and flags” missions this time. This time, we intend to create the infrastructure that would allow for a long-term, sustainable human presence on the Moon.

This is the vision behind the Open Lunar Foundation, a San Fransisco-based nonprofit organization made up of tech industry executives and engineers (some of whom worked for NASA) that is dedicated to the creation of an international lunar settlement. Intrinsic to this vision is the reliance on private enterprise and the development of open-source technology that would humanity to establish a permanent presence on the Moon.

Continue reading “Entrepreneurs and Engineers Come Together to Design a Peaceful Lunar Settlement”

China’s FAST Telescope, the World’s Largest Single Radio Dish Telescope, is Now Fully Operational

The Five-hundred-metre Aperture Spherical Telescope (FAST) has just finished construction in the southwestern province of Guizhou. Credit: FAST

After years of construction, China’s new radio telescope is in action. The telescope, called FAST (Five-hundred-meter Aperture Spherical Radio Telescope) has double the collecting power of the Arecibo Observatory in Puerto Rico, which has a 305 meter dish. Until now, Arecibo was the world’s largest radio dish of its type.

Continue reading “China’s FAST Telescope, the World’s Largest Single Radio Dish Telescope, is Now Fully Operational”

Time and Space: The Strange Reality of Reality

Image of the Andromeda Galaxy, showing Messier 32 to the lower left, which is currently merging with Andromeda. Credit: Wikipedia Commons/Torben Hansen
Credit: Unknown artist, Public Domain

“Are the dilation calculations correct” the jump coordinator asks you as he approaches your desk. You look over some papers in front of you that contain various equations scribbled down with certain values circled. The equations are more for your own sense of security, as the computer console in front of you displays the same values you’ve circled. You look back up at the jump coordinator and reply,

“The numbers are solid and the contraction values are set for the trip. Helios II has a copy on board for their astrophysics department to review. Their cryo-engineers have already begun checking the nap-tubes to make sure they have the appropriate wake time in their reference frame.” The jump coordinator nods and walks over to the launch director of Lunar Launch Base Bravo (LLB Bravo). He leans over to relay this information to her and she nods while tapping the screen of her console.

Continue reading “Time and Space: The Strange Reality of Reality”

This is Why Saturn’s Rotation is So Hard to Measure

Like all gas giants, Saturn does not have a "surface" per se, but it does have many layers with different compositions. Credit: NASA/JPL-Caltech/Space Science Institute.

For a rocky planet, finding the length of a day can be simple. Just pick a reference point and watch how long it takes to rotate out of view, then back into view. But for planets like Saturn, it’s not so simple. There are no surface features to track.

Continue reading “This is Why Saturn’s Rotation is So Hard to Measure”

This Star Has Reached the End of its Life

This Picture of the Week from the NASA/ESA Hubble Space Telescope shows NGC 5307, a planetary nebula which lies about 10000 light years from Earth. It can be seen in the constellation Centaurus (The Centaur), which can be seen primarily in the southern hemisphere.  A planetary nebula is the final stage of a Sun-like star. As such, planetary nebulae allow us a glimpse into the future of our own Solar System. A star like our Sun will, at the end of its life, transform into a red giant. Stars are sustained by the nuclear fusion that occurs in their core, which creates energy. The nuclear fusion processes constantly try to rip the star apart. Only the gravity of the star prevents this from happening.  At the end of the red giant phase of a star, these forces become unbalanced. Without enough energy created by fusion, the core of the star collapses in on itself, while the surface layers are ejected outward. After that, all that remains of the star is what we see here: glowing outer layers surrounding a white dwarf star, the remnants of the red giant star’s core.  This isn’t the end of this star’s evolution though — those outer layers are still moving and cooling. In just a few thousand years they will have dissipated, and all that will be left to see is the dimly glowing white dwarf.

About 10,000 light years away, in the constellation Centaurus, is a planetary nebula called NGC 5307. A planetary nebula is the remnant of a star like our Sun, when it has reached what can be described as the end of its life. This Hubble image of NGC 5307 not only makes you wonder about the star’s past, it makes you ponder the future of our very own Sun.

Continue reading “This Star Has Reached the End of its Life”

Europe and US are Going to Try and Deflect an Asteroid

Credit: ESA

Next week, asteroid researchers and spacecraft engineers from all around the world will gather in Rome to discuss the latest in asteroid defense. The three-day International AIDA Workshop, which will run from Sept. 11th to 13th, will focus on the development of the joint NASA-ESA Asteroid Impact Deflection Assessment (AIDA) mission.

The purpose of this two-spacecraft system is to deflect the orbit of one of the bodies that make up the binary asteroid Didymos, which orbits between Earth and Mars. While one spacecraft will collide with a binary Near-Earth Asteroid (NEA), the other will observe the impact and survey the crash site in order to gather as much data as possible about this method of asteroid defense.

Continue reading “Europe and US are Going to Try and Deflect an Asteroid”

By Continuously Watching the Moon, we Could Detect Interstellar Meteorites

Credit: NASA

When ‘Oumuamua crossed Earth’s orbit on October 19th, 2017, it became the first interstellar object to ever be observed by humans. These and subsequent observations – rather than dispelling the mystery of ‘Oumuamua’s true nature – only deepened it. While the debate raged about whether it was an asteroid or a comet, with some even suggesting it could be an extra-terrestrial solar sail.

In the end, all that could be said definitively was that ‘Oumuamua was an interstellar object the likes of which astronomers had never before seen. In their most recent study on the subject, Harvard astronomers Amir Siraj and Abraham Loeb argue that such objects may have impacted on the lunar surface over the course of billions of years, which could provide an opportunity to study these objects more closely.

Continue reading “By Continuously Watching the Moon, we Could Detect Interstellar Meteorites”

Asteroid Ryugu is a “Fragile Rubble Pile”

The MASCam team behind the MASCOT rover's camera identified two types of rock on Ryugu: Type 1 are dark, irregularly-shaped boulders with crumpled, cauliflower-like surfaces. Type 2 are brighter, with sharp edges, and smooth, fractured surfaces. Image Credit: MASCOT/DLR/JAXA

When Japan’s Hayabusa 2 spacecraft arrived at asteroid Ryugu in June 2018, it carried four small rovers with it. Hayabusa 2 is primarily a sample-return mission, but JAXA (Japan Aerospace Exploration Agency) sent rovers along to explore the asteroid’s surface and learn as much as they could from their visit. There’s also no guarantee that the sample return will be successful.

They chose Ryugu because the asteroid is classified as a primitive carbonaceous asteroid. This type of asteroid is a desirable target because it represents the primordial matter that formed the bodies in our Solar System. It’s also pretty close to Earth.

The sample from Ryugu, which will make it to Earth in December 2020, is the big science prize from this mission. Analyzing it in Earth-based laboratories will tell us a lot more than spacecraft instruments can. But the rovers that landed on Ryugu’s surface have already revealed a lot about Ryugu.

Continue reading “Asteroid Ryugu is a “Fragile Rubble Pile””

There Could be Planets Out There Which are Even More Habitable than Earth

Artist’s impression of a Super-Earth planet orbiting a Sun-like star. Credit: ESO/M. Kornmesser

When searching for potentially habitable exoplanets, scientists are forced to take the low-hanging fruit approach. Since Earth is the only planet we know of that is capable of supporting life, this search basically comes down to looking for planets that are “Earth-like”. But what if Earth is not the meter stick for habitability that we all tend to think it is?

That was the subject of a keynote lecture that was recently made at the Goldschmidt Geochemistry Congress, which took place from Aug. 18th to 23rd, in Barcelona, Spain. Here, a team of NASA-supported researchers explained how an examination of what goes into defining habitable zones (HZs) shows that some exoplanets may have better conditions for life to thrive than Earth itself has.

Continue reading “There Could be Planets Out There Which are Even More Habitable than Earth”