New Research Raises Hopes for Finding Life on Mars, Pluto and Icy Moons

Artist's impression of a water vapor plume on Europa. Credit: NASA/ESA/K. Retherford/SWRI

Since the 1970s, when the Voyager probes captured images of Europa’s icy surface, scientists have suspected that life could exist in interior oceans of moons in the outer Solar System. Since then, other evidence has emerged that has bolstered this theory, ranging from icy plumes on Europa and Enceladus, interior models of hydrothermal activity, and even the groundbreaking discovery of complex organic molecules in Enceladus’ plumes.

However, in some locations in the outer Solar System, conditions are very cold and water is only able to exist in liquid form because of the presence of toxic antifreeze chemicals. However, according to a new study by an international team of researchers, it is possible that bacteria could survive in these briny environments. This is good news for those hoping to find evidence of life in extreme environments of the Solar System.

The study which details their findings, titled “Enhanced Microbial Survivability in Subzero Brines“, recently appeared in the scientific journal Astrobiology. The study was conducted by Jacob Heinz from the Center of Astronomy and Astrophysics at the Technical University of Berlin (TUB), and included members from Tufts University, Imperial College London, and Washington State University.

Based on new evidence from Jupiter’s moon Europa, astronomers hypothesize that chloride salts bubble up from the icy moon’s global liquid ocean and reach the frozen surface. Credit: NASA/JPL-Caltech

Basically, on bodies like Ceres, Callisto, Triton, and Pluto – which are either far from the Sun or do not have interior heating mechanisms – interior oceans are believed to exist because of the presence of certain chemicals and salts (such as ammonia). These “antifreeze” compounds ensure that their oceans have lower freezing points, but create an environment that would be too cold and toxic to life as we know it.

For the sake of their study, the team sought to determine if microbes could indeed survive in these environments by conducting tests with Planococcus halocryophilus, a bacteria found in the Arctic permafrost. They then subjected this bacteria to solutions of sodium, magnesium and calcium chloride as well as perchlorate, a chemical compound that was found by the Phoenix lander on Mars.

They then subjected the solutions to temperatures ranging from +25°C to -30°C through multiple freeze and thaw cycles. What they found was that the bacteria’s survival rates depended on the solution and temperatures involved. For instance, bacteria suspended in chloride-containing (saline) samples had better chances of survival compared to those in perchlorate-containing samples – though survival rates increased the more the temperatures were lowered.

For instance, the team found that bacteria in a sodium chloride (NaCl) solution died within two weeks at room temperature. But when temperatures were lowered to 4 °C (39 °F), survivability began to increase and almost all the bacteria survived by the time temperatures reached -15 °C (5 °F). Meanwhile, bacteria in the magnesium and calcium-chloride solutions had high survival rates at –30 °C (-22 °F).

Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

The results also varied for the three saline solvents depending on the temperature. Bacteria in calcium chloride (CaCl2) had significantly lower survival rates than those in sodium chloride (NaCl) and magnesium chloride (MgCl2)between 4 and 25 °C (39 and 77 °F), but lower temperatures boosted survival in all three.  The survival rates in perchlorate solution were far lower than in other solutions.

However, this was generally in solutions where perchlorate constituted 50% of the mass of the total solution (which was necessary for the water to remain liquid at lower temperatures), which would be significantly toxic. At concentrations of 10%, bacteria was still able to grow. This is semi-good news for Mars, where the soil contains less than one weight percent of perchlorate.

However, Heinz also pointed out that salt concentrations in soil are different than those in a solution. Still, this could be still be good news where Mars is concerned, since temperatures and precipitation levels there are very similar to parts of Earth – the Atacama Desert and parts of Antarctica. The fact that bacteria have can survive such environments on Earth indicates they could survive on Mars too.

In general, the research indicated that colder temperatures boost microbial survivability, but this depends on the type of microbe and the composition of the chemical solution. As Heinz told Astrobiology Magazine:

“[A]ll reactions, including those that kill cells, are slower at lower temperatures, but bacterial survivability didn’t increase much at lower temperatures in the perchlorate solution, whereas lower temperatures in calcium chloride solutions yielded a marked increase in survivability.”

This full-circle view from the panoramic camera (Pancam) on NASA’s Mars Exploration Rover Spirit shows the terrain surrounding the location called “Troy,” where Spirit became embedded in soft soil during the spring of 2009. Credit: NASA/JPL

The team also found that bacteria did better in saltier solutions when it came to freezing and thawing cycles. In the end, the results indicate that survivability all comes down to a careful balance. Whereas lower concentrations of chemical salts meant that bacteria could survive and even grow, the temperatures at which water would remain in a liquid state would be reduced. It also indicated that salty solutions improve bacteria survival rates when it comes to freezing and thawing cycles.

Of course, the team emphasized that just because bacteria can subsist in certain conditions doesn’t mean they will thrive there. As Theresa Fisher, a PhD student at Arizona State University’s School of Earth and Space Exploration and a co-author on the study, explained:

“Survival versus growth is a really important distinction, but life still manages to surprise us. Some bacteria can not only survive in low temperatures, but require them to metabolize and thrive. We should try to be unbiased in assuming what’s necessary for an organism to thrive, not just survive.”  

As such, Heinz and his colleagues are currently working on another study to determine how different concentrations of salts across different temperatures affect bacterial propagation. In the meantime, this study and other like it are able to provide some unique insight into the possibilities for extraterrestrial life by placing constraints on the kinds of conditions that they can survive and grow in.

These studies also allow help when it comes to the search for extraterrestrial life, since knowing where life can exist allows us to focus our search efforts. In the coming years, missions to Europa, Enceladus, Titan and other locations in the Solar System will be looking for biosignatures that indicate the presence of life on or within these bodies. Knowing that life can survive in cold, briny environments opens up additional possibilities.

Further Reading: Astrobiology Magazine, Astrobiology

Kepler Mission Placed in Hibernation to Download Data Before its Last Campaign

Artist's concept of the Kepler mission with Earth in the background. Credit: NASA/JPL-Caltech
Artist's concept of the Kepler mission with Earth in the background. Credit: NASA/JPL-Caltech

The Kepler space telescope has had a relatively brief but distinguished career of service with NASA. Having launched in 2009, the space telescope has spent the past nine years observing distant stars for signs of planetary transits (i.e. the Transit Method). In that time, it has been responsible for the detection of 2,650 confirmed exoplanets, which constitutes the majority of the more than 38oo planets discovered so far.

Earlier this week, the Kepler team was notified that the space telescope’s fuel tank is running very low. NASA responded by placing the spacecraft in hibernation in preparation for a download of its scientific data, which it collected during its latest observation campaign. Once the data is downloaded, the team expects to start its last observation campaign using whatever fuel it has left.

Since 2013, Kepler has been conducting its “Second Light” (aka. K2) campaign, where the telescope has continued conducting observations despite the loss of two of its reaction wheels. Since May 12th, 2018, Kepler has been on its 18th observation campaign, which has consisted of it studying a patch of sky in the vicinity of the Cancer constellation – which it previously studied in 2015.

NASA’s Kepler spacecraft has been on an extended mission called K2 after two of its four reaction wheels failed in 2013. Credit: NASA

In order to send the data back home, the spacecraft will point is large antenna back towards Earth and transmit it via the Deep Space Network. However, the DSN is responsible for transmitting data from multiple missions and time needs to be allotted in advance. Kepler is scheduled to send data from its 18th campaign back in August, and will remain in a stable orbit and safe mode in order to conserve fuel until then.

On August 2nd, the Kepler team will command the spacecraft to awaken and will maneuver the craft to the correct orientation to transmit the data. If all goes well, they will begin Kepler’s 19th observation campaign on August 6th with what fuel the spacecraft still has. At present, NASA expects that the spacecraft will run out of fuel in the next few months.

However, even after the Kepler mission ends, scientists and engineers will continue to mine the data that has already been sent back for discoveries. According to a recent study by an international team of scientists, 24 new exoplanets were discovered using data from the 10th observation campaign, which has brought the total number of Kepler discoveries to 2,650 confirmed exoplanets.

An artist’s conception of how common exoplanets are throughout the Milky Way Galaxy. Image Credit: Wikipedia

In the coming years, many more exoplanet discoveries are anticipated as the next-generation of space telescopes begin collecting their first light or are deployed to space. These include the Transiting Exoplanet Survey Satellite (TESS), which launched this past April, and the James Webb Space Telescope (JWST) – which is currently scheduled to launch sometime in 2021.

However, it will be many years before any mission can rival the accomplishments and contributions made by Kepler! Long after she is retired, her legacy will live on in the form of her discoveries.

Further Reading: NASA

A Partial Solar Eclipse Down Under

partial solar eclipse
A partial solar eclipse as seen from New York City on November 3rd, 2013. Image credit and copyright: Valentin Lyakhovich
partial solar eclipse
A partial solar eclipse as seen from New York City on November 3rd, 2013. Image credit and copyright: Valentin Lyakhovich

Eclipse season in nigh… though most of us won’t notice the start this week. The second eclipse season for 2018 commences with the arrival of New Moon and Brown Lunation number 1182 at 3:01 Universal Time on (triskaidekaphobics take note) Friday July 13th, 2018. This eclipse is a shallow partial, just skimming the southern hemisphere of the Earth between the Australian and Antarctic continents.

The Eclipse

We doubt many eclipse chasers will make the pilgrimage to Tasmania to see such a slim partial, though we know of at least one, veteran eclipse chaser Jay Pasachoff who has expressed intent on the Yahoo! Solar Eclipse Message List (SEML) message board to head southward this week.

partial eclipse
The course of the July 13th, 2018 partial solar eclipse. NASA/A.T. Sinclair/GSFC

Tasmania gets the best view, with a maximum 9.5% obscuration of Sol as seen from the capital Hobart around 3:25 UT. The upper limit of the eclipse path just skims the southern coast of Australia across the Great Australian Bight and the southern Indian Ocean, and nicks the very southern tip of the south island of New Zealand and Steward Island at 3:48 UT with a barely discernible 1% eclipse before the lunar penumbra departs the Earth. If skies are clear, the very best view just might come along the coast of Antarctica, as the 33% eclipsed Sun rolls along the northern horizon.

Antarctic view
Looking northward along the Antarctic coast on July 13th. Credit: Stellarium

Perhaps a few lone penguins will notice, if they bother to look at the Sun filtered through the murk of the atmosphere along the horizon. France does have one permanently occupied research station in Antarctica named Dumont D’urville along the coast that will see a 30% eclipsed Sun on the horizon right around 3:00-3:15 UT.

We say that this heralds the start of eclipse season, as the ascending node where the Moon’s orbit intersects the ecliptic plane is very near the current position of the Sun. In fact, node crossing occurs at 18:50 UT on July 13th, just 24 hours after New Moon. Eclipses always occur in at least pairs, and the Full Moon two weeks later is close enough to the descending node for a nearly central total lunar eclipse on July 27th (more on that in a bit). This season, however, is special, with a third eclipse ending the cycle on August 11th, 2018, this time gracing the Arctic pole of the Earth along with Scandinavia and Russia.

We’re already seeing some hype surrounding this event as a “Supermoon eclipse,” as the Moon reaches perigee 5 hours 27 minutes past maximum eclipse. Note that this also sets us up for a Minimoon total lunar eclipse two weeks later, as the Moon is near apogee on July 27th.

The Moon’s orbit is tilted 5.145 degrees relative to the plane of the ecliptic, and the nodes make one full revolution around the Earth relative to the equinoctial points once every 18.6 years in what’s known as the precession of the line of apsides.

Viewing a Partial

A partial solar eclipse means that all safety precautions must be taken throughout all phases of the eclipse. This means using approved solar filters that fit snugly over the aperture of a telescope, and solar glasses with the approved ISO 12312-2 rating for solar viewing. We built a safe binocular filter out of a set of spare eclipse safety glasses for the August 21st, 2017 total solar eclipse last year.

Eclipse Safety
Practicing eclipse safety at the Pisgah Astronomical Research Institute in North Carolina during the August 21st, 2017 Great American Eclipse. Image credit: Myscha Theriault

Unfortunately as of writing this, the disk of Sol is blank in terms of Earthward facing sunspots, and may be so on eclipse day. We’re currently headed towards a profound solar minimum and the Sun has already been spotless for more than half of 2018 thus far.

Don’t own a solar filter, safety glasses or a telescope? You can always use our tried and true method of projecting the eclipse using a spaghetti strainer.

It’s all in the gamma. This eclipse is partial only, because the dark inner shadow or umbra misses the Earth by 35.4% of the radius of the planet or about 1,400 miles. The gamma for an eclipse states how many Earth radii an eclipse deviates from central (where the Moon’s umbra is aimed straight at the center of the Earth) and Friday’s eclipse has a gamma value of 1.3541.

Tales of the Saros

Friday’s eclipse is part of an older saros series, member 69 of 71 eclipses for saros series 117. This saros started waaaaaay back on June 24th, 792 AD, and produced its last total solar eclipse on May 9th, 1910. This was also the last total solar eclipse for Tasmania until June 25th, 2131. This series only has two more eclipses to go, with its last event occurring briefly over the Antarctic on August 3rd, 2054. Perhaps, Friday’s event will be the very last one witnessed by human eyes for saros 117.

Tasmania eclipse
Mr. E. Carns Driffield’s drawing of Total Solar Eclipse of the Sun on 9 May 1910. Image credit: Joy Olney.

This also sets us up for the best of the three eclipses this season, the total lunar eclipse at the end of the month on July 27th. This eclipse will be widely visible across Africa, Europe, Asia and Australia—only the Americas miss out.

A Possible Views… “From Spaaaaaaace…”

The International Space Station also threads its way through the outer shadow of the Moon towards the end of the event Friday at ~3:50 UT. ESA’s solar observing Proba-2 spacecraft might just get a very brief view as well from its vantage point in low Earth orbit, around 3:09 UT.

proba-2
Proba-2’s brief view of the eclipse on July 13th at 3:08 UT. Credit: Starry Night.

And although most of us miss out on Friday’s eclipse, you can still try and spot the slender crescent Moon on the evening of Friday, July 13th. The U.S. East Coast is particularly well placed to try and spy the slim Moon low to the west, only 22 hours after New. After that, the Moon tours all of the naked eye planets, passing Mercury and Venus this weekend and passing Jupiter, Saturn and Mars en route to the July 27th total lunar eclipse.

Will anyone webcast the eclipse live? So far, no webcasts (not even from the venerable Slooh site) have surfaced… if anyone else is planning on featuring the July 13th partial solar eclipse, let us know!

It’s the biggest question when it comes to solar eclipses. When’s the next total? Well, just under a year from now, the next total solar eclipse crosses Chile and Argentina on July 2nd, 2019. Note that this event crosses over several major astronomical observatories at La Silla. How many newly minted eclipse chasers fresh off last year’s Great American Eclipse experience can’t wait until totality next visits the United States on April 8th , 2024 and plan to head to South America next summer?

partial eclipse
Partial eclipse rising over the Vehicle Assembly Building at the Kennedy Space Center on the morning of November 3rd, 2013. Image credit: Dave Dickinson.

A partial eclipse may not inspire many eclipse chasers to hop on a plane, but we can still marvel at the celestial ticks of a clockwork Universe carry on, right on schedule.

-Got the eclipse chasing bug? Read all about eclipse chasing, observing and photography in our new book, the Universe Today Guide to Viewing the Cosmos: Everything You Need to know to Become and Amateur Astronomer out on October 23rd.

New Insights Into What Might Have Smashed Uranus Over Onto its Side

Uranus
A new study indicates that a massive impact may be why Uranus orbits on its side. Credit: NASA/JPL/Voyager mission

The gas/ice giant Uranus has long been a source of mystery to astronomers. In addition to presenting some thermal anomalies and a magnetic field that is off-center, the planet is also unique in that it is the only one in the Solar System to rotate on its side. With an axial tilt of 98°, the planet experiences radical seasons and a day-night cycle at the poles where a single day and night last 42 years each.

Thanks to a new study led by researchers from Durham University, the reason for these mysteries may finally have been found. With the help of NASA researchers and multiple scientific organizations, the team conducted simulations that indicated how Uranus may have suffered a massive impact in its past. Not only would this account for the planet’s extreme tilt and magnetic field, it would also explain why the planet’s outer atmosphere is so cold.

Continue reading “New Insights Into What Might Have Smashed Uranus Over Onto its Side”

Instead of Building Single Monster Scopes like James Webb, What About Swarms of Space Telescopes Working Together?

In the future, telescopes may consist of distributed arrays rather than single instruments - like NASA's Terrestrial Planet Finder (TPF), a system of space telescopes for detecting extrasolar terrestrial planets. Credit: NASA

In the coming decade, a number of next-generation instruments will take to space and begin observing the Universe. These will include the James Webb Space Telescope (JWST), which is likely to be followed by concepts like the Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR), the Origins Space Telescope (OST), the Habitable Exoplanet Imager (HabEx) and the Lynx X-ray Surveyor.

These missions will look farther into the cosmos than ever before and help astronomers address questions like how the Universe evolved and if there is life in other star systems. Unfortunately, all these missions have two things in common: in addition to being very large and complex, they are also very expensive. Hence why some scientists are proposing that we rely on more cost-effective ideas like swarm telescopes.

Two such scientists are Jayce Dowell and Gregory B. Taylor, a research assistant professor and professor (respectively) with the Department of Physics and Astronomy at the University of New Mexico. Together, the pair outlined their idea in a study titled “The Swarm Telescope Concept“, which recently appeared online and was accepted for publication by the Journal of Astronomical Instrumentation.

Illustration of NASA’s James Webb Space Telescope. Credits: NASA

As they state in their study, traditional astronomy has focused on the construction, maintenance and operation of single telescopes. The one exception to this is radio astronomy, where facilities have been spread over an extensive geographic area in order to obtain high angular resolution. Examples of this include the Very Long Baseline Array (VLBA), and the proposed Square Kilometer Array (SKA).

In addition, there’s also the problem of how telescopes are becoming increasingly reliant on computing and digital signal processing. As they explain in their study, telescopes commonly carry out multiple simultaneous observation campaigns, which increases the operational complexity of the facility due to conflicting configuration requirements and scheduling considerations.

A possible solution, according to Dowell and Taylor, is to rethink telescopes. Instead of a single instrument, the telescope would consist of a distributed array where many autonomous elements come together through a data transport system to function as a single facility. This approach, they claim, would be especially useful when it comes to the Next Generation Very Large Array (NGVLA) – a future interferometer that will build on the legacy of the Karl G. ansky Very Large Array and Atacama  Large Millimeter/submillimeter Array (ALMA). As they state in their study:

“At the core of the swarm telescope is a shift away from thinking about an observatory as a monolithic entity. Rather, an observatory is viewed as many independent parts that work together to accomplish scientific observations. This shift requires moving part of the decision making about the facility away from the human schedulers and operators and transitioning it to “software defined operators” that run on each part of the facility. These software agents then communicate with each other and build dynamic arrays to accomplish the goals of multiple observers, while also adjusting for varying observing conditions and array element states across the facility.”

This idea for a distributed telescope is inspired by the concept of swarm intelligence, where large swarms of robots  are programmed to interact with each other and their environment to perform complex tasks. As they explain, the facility comes down to three major components: autonomous element control, a method of inter-element communication, and data transport management.

Of these components, the most critical is the autonomous element control which governs the actions of each element of the facility. While similar to traditional monitoring and control systems used to control individual robotic telescopes, this system would be different in that it would be responsible for far more. Overall, the element control would be responsible for ensuring the safety of the telescope and maximizing the utilization of the element.

“The first, safety of the element, requires multiple monitoring points and preventative actions in order to identify and prevent problems,” they explain. “The second direction requires methods of relating the goals of an observation to the performance of an element in order to maximize the quantity and quality of the observations, and automated methods of recovering from problems when they occur.”

The second component, inter-element communication, is what allows the individual elements to come together to form the interferometer. This can take the form of a leaderless system (where there is no single point of control), or an organizer system, where all of the communication between the elements and with the observation queue is done through a single point of control (i.e. the organizer).

Long Wavelength Array, operated by the University of New Mexico. Credit: phys.unm.edu

Lastly, their is the issue of data transport management, which can take one of two forms based on existing telescopes. These include fully 0ff-line systems, where correlation is done post-observation – used by the Very Long Baseline Array (VLBA) – to fully-connected systems, where correlation is done in real-time (as with the VLA).  For the sake of their array, the team emphasized how connectivity and correlation are a must.

After considering all these components and how they are used by existing arrays, Dowell and Taylor conclude that the swarm concept is a natural extension of the advances being made in robotic and thinking telescopes, as well as interferometry. The advantages of this are spelled out in their conclusions:

“It allows for more efficient operations of facilities by moving much of the daily operational work done by humans to autonomous control systems. This, in turn, frees up personnel to focus on the scientific output of the telescope. The swarm concept can also combine the unused resources of the different elements together to form an ad hoc array.”

In addition, swarm telescopes will offer new opportunities and funding since they will consist of small elements that can be owned and operated by different entities. In this way, different organizations would be able to conduct science with their own elements while also being able to benefit from large-scale interferometric observations.

Graphic depiction of Modular Active Self-Assembling Space Telescope Swarms
Credit: D. Savransky

This concept is similar to the Modular Active Self-Assembling Space Telescope Swarms, which calls for a swarm of robots that would assemble in space to form a 30 meter (~100 ft) telescope. The concept was proposed by a team of American astronomers led by Dmitri Savransky, an assistant professor of mechanical and aerospace engineering at Cornell University.

This proposals was part of the 2020 Decadal Survey for Astrophysics and was recently selected for Phase I development as part of the 2018 NASA Innovative Advanced Concepts (NIAC) program. So while many large-scale telescopes will be entering service in the near future, the next-next-generation of telescopes could include a few arrays made up of swarms of robots directed by artificial intelligence.

Such arrays would be capable of achieving high-resolution astronomy and interferometry at lower costs, and could free up large, complex arrays for other observations.

Further Reading: arXiv

What Would a Camera on a Breakthrough Starshot Spacecraft See if it’s Going at High Velocity?

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity's first interstellar voyage. Credit: breakthroughinitiatives.org

In April of 2016, Russian billionaire Yuri Milner announced the creation of Breakthrough Starshot. As part of his non-profit scientific organization (known as Breakthrough Initiatives), the purpose of Starshot was to design a lightsail nanocraft that would be capable of achieving speeds of up to 20% the speed of light and reaching the nearest star system – Alpha Centauri (aka. Rigel Kentaurus) – within our lifetimes.

At this speed – roughly 60,000 km/s (37,282 mps) – the probe would be able to reach Alpha Centauri in 20 years, where it could then capture images of the star and any planets orbiting it. But according to a recent article by Professor Bing Zhang, an astrophysicist from the University of Nevada, researchers could get all kinds of valuable data from Starshot and similar concepts long before they ever reached their destination.

The article appeared in The Conversation under the title “Observing the universe with a camera traveling near the speed of light“. The article was a follow-up to a study conducted by Prof. Zhang and Kunyang Li – a graduate student from the Center for Relativistic Astrophysics at the Georgia Institute of Technology – that appeared in The Astrophysical Journal (titled “Relativistic Astronomy“).

Prof. Albert Einstein at the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in 1934. Credit: AP Photo

To recap, Breakthrough Starshot seeks to leverage recent technological developments to mount an interstellar mission that will reach another star within a single generation. The spacecraft would consist of an ultra-light nanocraft and a lightsail, the latter of which would accelerated by a ground-based laser array up to speeds of hundreds of kilometers per second.

Such a system would allow the tiny spacecraft to conduct a flyby mission of Alpha Centauri in about 20 years after it is launched, which could then beam home images of possible planets and other scientific data (such as analysis of magnetic fields). Recently, Breakthrough Starshot held an “industry day” where they submitted a Request For Proposals (RFP) to potential bidders to build the laser sail.

According to Zhang, a lightsail-driven nanocraft traveling at a portion of the speed of light would also be a good way to test Einstein’s theory of Special Relativity.  Simply put, this law states that the speed of light in a vacuum is constant, regardless of the inertial reference frame or motion of the source. In short, such a spacecraft would be able to take advantage of the features of Special Relativity and provide a new mode to study astronomy.

Based on Einstein’s theory, different objects in different “rest frames” would have different measures of the lengths of space and time. In this sense, an object moving at relativistic speeds would view distant astronomical objects differently as light emissions from these objects would be distorted. Whereas objects in front of the spacecraft would have the wavelength of their light shortened, objects behind it would have them lengthened.

This diagram shows the difference between unshifted, redshifted and blueshifted targets. Credit: NASA

This phenomenon, known as the “Doppler Effect”, results in light being shifted towards the blue end (“blueshift”) or the red end (“redshift”) of the spectrum for approaching and retreating objects, respectively. In 1929, astronomer Edwin Hubble used redshift measurements to determine that distant galaxies were moving away from our own, thus demonstrating that the Universe was in a state of expansion.

Because of this expansion (known as the Hubble Expansion), much of the light in the Universe is redshifted and only measurable in difficult-to-observe infrared wavelengths. But for a camera moving at relativistic speeds, according to Prof. Zhang, this redshifted light would become bluer since the motion of the camera would counteract the effects of cosmic expansion.

This effect, known as “Doppler boosting”, would cause the faint light from the early Universe to be amplified and allow distant objects to be studied in more detail. In this respect, astronomers would be able to study some of the earliest objects in the known Universe, which would offer more clues as to how it evolved over time. As Prof. Zhang explained to Universe Today via email, this would allow for some unique opportunities to test Special Relativity:

“In the rest frame of the camera, the emission of the objects in the hemisphere of the camera motion is blue-shifted. For bright objects with detailed spectral observations from the ground, one can observe them in flight. By comparing their blue-shifted flux at a specific blue-shifted frequency with the flux of the corresponding (de-blueshifted) frequency on the ground, one can precisely test the Doppler boosting prediction in Special Relativity.”

Observed image of nearby galaxy M51 (left) and how the image would look through a camera moving at half the speed of light (right). Credit: Zhang & Li, 2018, The Astrophysical Journal, 854, 123, CC BY-ND

In addition, the frequency and intensity of light – and also the size of distant objects – would also change as far as the observer was concerned. In this respect, the camera would act as a lens and a wide-field camera, magnifying the amount of light it collects and letting astronomers observe more objects within the same field of view. By comparing the observations collected by the camera to those collected by a camera from the ground, astronomers could also test the probe’s Lorentz Factor.

This factor indicates how time, length, and relativistic mass change for an object while that object is moving, which is another prediction of Special Relativity. Last, but not least, Prof. Zhang indicates that probes traveling at relativistic speeds would not need to be sent to any specific destination in order to conduct these tests. As he explained:

“The concept of “relativistic astronomy” is that one does not really need to send the cameras to specific star systems. No need to aim (e.g. to Alpha Centauri system), no need to decelerate. As long as the signal can be transferred back to earth, one can learn a lot of things. Interesting targets include high-redshift galaxies, active galactic nuclei, gamma-ray bursts, and even electromagnetic counterparts of gravitational waves.”

However, there are some drawbacks to this proposal. For starters, the technology behind Starshot is all about accomplishing the dream of countless generations – i.e. reaching another star system (in this case, Alpha Centauri) – within a single generation.

And as Professor Abraham Loeb – the Frank B. Baird Jr. Professor of Science at Harvard University and the Chair and the Breakthrough Starshot Committee – told Universe Today via email, what Prof. Zhang is proposing can be accomplished by other means:

>“Indeed, there are benefits to having a camera move near the speed of light toward faint sources, such as the most distant dwarf galaxies in the early universe. But the cost of launching a camera to the required speed would be far greater than building the next generation of large telescopes which will provide us with a similar sensitivity. Similarly, the goal of testing special relativity can be accomplished at a much lower cost.”

Of course, it will be many years before a project like Starshot can be mounted, and many challenges need to be addressed in the meantime. But it is exciting to know that in meantime, scientific applications can be found for such a mission that go beyond exploration. In a few decades, when the mission begins to make the journey to Alpha Centauri, perhaps it will also be able to conduct tests on Special Relativity and other physical laws while in transit.

Further Reading: The Conversation, The Astrophysical Journal

A Spectacular Grazing Occultation for Aldebaran at Dawn

aldebaran moon
Aldebaran versus the crescent Moon from April 2017. Image credit and copyright: frankastro

aldebaran moon
Aldebaran versus the crescent Moon from April 2017, post grazing occultation. Image credit and copyright: frankastro.

An unusual celestial spectacle unfolds for observers around the Great Lakes region next Tuesday at dawn. The Moon has been faithfully occulting (passing in front of) the bright star Aldebaran for every lunation now since January 29th, 2015. These split-second events have touched on nearly every farflung corner of the Earth. Now the United States and Canada get to see the penultimate event, as the waning crescent Moon occults Aldebaran one last time for North America.

Many news outlets are advertising this as the “last occultation of Aldebaran until 2033” which isn’t entirely true: the Moon will occult Aldebaran twice more worldwide, once on August 6th and September 3rd. Both of these events, however, involve a thin crescent Moon and occur over high Arctic climes, so I wouldn’t be surprised if they go unwitnessed by human eyes. The next cycle of Aldebaran occultations then resumes on August 18th, 2033.

July 10th occultation
The footprint for the July 10th occultation of Aldebaran by the Moon. Note that this is a daytime event across the Arctic, except for the tiny lower left corner of the footprint falling over the Great Lakes region at dawn. Credit: Occult 4.2.

Four stars brighter than +1st magnitude lie along the Moon’s celestial path in our current epoch: Antares in Scorpius, Regulus in Leo, Spica in Virgo, and Aldebaran in the eye of Taurus the Bull. Fun fact: this celestial situation is also slowly changing, partly because of the slow 26,000 year-plus long top-like wobble of the Earth’s axis known as the Precession of the Equinoxes, but also because of stellar proper motion, which is slowly bringing stars into and out of the Moon’s path over millennia. For example, until 117 BC, the Moon could also occult Pollux in the constellation of Gemini the Twins.

The circumstances for the July 10 event: The morning of July 10th sees the 11% illuminated, waning crescent Moon meet the +0.9 magnitude star Aldebaran under pre-dawn skies. When the Moon is waning, the bright limb leads the way, covering up the star during ingress and revealing once again during egress. The Moon moves its own half a degree (30 arcminute) diameter once every hour, and how long you’ll see Aldebaran covered up depends on your location. The geographic “sweet spot” for the occultation is eastern Minnesota, northeastern Iowa, northern Wisconsin, Lake Superior, the Upper Peninsula of Michigan, Ontario and northern Quebec… though the farther east you are, the brighter the skies will be, until the occultation begins under dark to twilight dawn skies and ends after sunrise.

Tales from the Graze Line

Folks based along a narrow path running for Iowa, across Wisconsin and Michigan into Ontario and Quebec are in for a very special treat, as Aldebaran just grazes in southern limb of the Moon. Instead of one single wink out, Aldebaran will flash multiple times, as it shines down through the jagged valleys along the limb of the Moon, an amazing sight to witness and catch on video.

Graze line
A close study of the southern graze line for the July 10th event. Credit: IOTA/Google Maps

Here are some times and circumstances for selected cities in the path of the occultation:

Location Ingress Egress Moon altitude Sun altitude Duration
Minneapolis 8:30 8:47 1deg/3deg -16deg/-14deg 17 minutes
Green Bay 8:39 8:40 5deg/5 deg -13deg <1 minute
Thunder Bay 8:32 8:54 5deg/8 deg -12deg/-9 deg 22 minutes
Fort Dodge, Iowa N/A 8:37 0.1 deg -18 deg <1 minute

Notes: all locations listed are in the Central (CDT) time zone (UT-5 for summer time). All times listed are in Universal Time (UT), with the Moon and Sun altitude listed for the beginning and end of the event, rounded to the nearest minute.

Not on the graze line? Well, the rest of us will see a very photogenic near miss on the morning of July 10th… and you might just be able to track Aldebaran up into the daytime sky (make sure you physically block the Sun out of view) if you’ve got clear blue, high contrast skies.

The Moon also occults several fainter stars across the V-shaped Hyades open star cluster around the same time worldwide, as well. One such notable event is the occultation of the +3.7 magnitude star Gamma Tauri for the United Kingdom:

Gamma tauri
The footprint for the July 10th Gamma Tauri event. Credit: Occult 4.2

You can follow the July 10th occultation using nothing more than a Mk-1 eyeball, as you can see both the star and the Moon… though binoculars or a telescope will definitely help, as Aldebaran will be tough to pick out against the bright limb of the Moon. Occultations—especially grazing events—really lend themselves to video astrophotography and are simple to capture through a telescope. Just be sure to balance the exposure setting so you can follow the star all the way up to the bright limb of the Moon.

moon graze
The grazing occultation of Aldebaran on July 10th. The direction of motion for the Moon spans one hour. Credit: Stellarium.

Occultations have inspired those who witnessed them back through pre-telescopic times. A Greek coin from 120 BC may depict an occultation of Jupiter by the Moon. Sultan Alp Arslan was said to have been inspired by a close pairing of Venus and the crescent Moon after the Battle of Manzikert in 1071 AD, adopting the celestial spectacle of the star and crescent which adorns several national flags today.

Also, keep an eye out for an optical illusion described in The Rime of the Ancient Mariner (the poem, not the song by Iron Maiden inspired by the epic tale of the same name), where the protagonist witnesses:

“While clome above the Eastern Bar,

The horned Moon, with one bright Star,

Almost atween the tips.”

This illusion is often referred to as the Coleridge Effect.

Don’t miss this fine occultation of Aldebaran… it’ll be awhile before we see the Moon meet the star again.

-Extra credit: if anyone is planning a live stream of the occultation next Tuesday, let us know.

-The International Occultation Timing Association (IOTA) welcomes observations of any occultations worldwide… in the case of a lunar graze, observations can be used to map out the profile of mountains and valleys along the edge of the Moon.

Stunning First Ever Photograph of a Newly Forming Planet

This spectacular image from the SPHERE instrument on ESO's Very Large Telescope is the first clear image of a planet caught in the very act of formation around the dwarf star PDS 70. Credit: ESO/A. Müller et al.

For decades, the most widely-accepted view of how our Solar System formed has been the Nebular Hypothesis. According to this theory, the Sun, the planets, and all other objects in the Solar System formed from nebulous material billions of years ago. This dust experienced a gravitational collapse at the center, forming our Sun, while the rest of the material formed a circumstellar debris ring that coalesced to form the planets.

Thanks to the development of modern telescopes, astronomers have been able to probe other star systems to test this hypothesis. Unfortunately, in most cases, astronomers have only been able to observe debris rings around stars with hints of planets in formation. It was only recently that a team of European astronomers were able to capture an image of a newborn planet, thus demonstrating that debris rings are indeed the birthplace of planets.

The team’s research appeared in two papers that were recently published in Astronomy & Astrophysics, titled “Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70” and “Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk.” The team behind both studies included member from the Max Planck Institute for Astronomy (MPIA) as well as multiple observatories and universities.

Near infrared image of the PDS70 disk obtained with the SPHERE instrument. Credit: ESO/A. Müller, MPIA

For the sake of their studies, the teams selected PDS 70b, a planet that was discovered at a distance of 22 Astronomical Units (AUs) from its host star and which was believed to be a newly-formed body. In the first study – which was led by Miriam Keppler of the Max Planck Institute for Astronomy – the team indicated how they studied the protoplanetary disk around the star PDS 70.

PDS 70 is a low-mass T Tauri star located in the constellation Centaurus, approximately 370 light-years from Earth. This study was performed using archival images in the near-infrared band taken by the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument (SPHERE) instrument on the ESO’s Very Large Telescope (VLT) and the Near-Infrared Coronagraphic Imager on the Gemini South Telescope.

Using these instruments, the team made the first robust detection of a young planet (PDS 70b) orbiting within a gap in its star’s protoplanetary disc and located roughly three billion km (1.86 billion mi) from its central star – roughly the same distance between Uranus and the Sun. In the second study, led by Andre Muller (also from the MPIA) the team describes how they used the SPHERE instrument to measure the brightness of the planet at different wavelengths.

From this, they were able to determine that PDS 70b is a gas giant that has about nine Jupiter masses and a surface temperature of about 1000 °C (1832 °F), making it a particularly “Hot Super-Jupiter”. The planet must be younger than its host star, and is probably still growing. The data also indicated that the planet is surrounded by clouds that alter the radiation emitted by the planetary core and its atmosphere.

Thanks to the advanced instruments used, the team was also able to acquire an image of the planet and its system. As you can see from the image (posted at top) and the video below, the planet is visible as a bright point to the right of the blackened center of the image. This dark region is due to a corongraph, which blocks the light from the star so the team could detect the much-fainter companion.

As Miriam Keppler, a postdoctoral student at the MPIA, explained in a recent ESO press statement:

“These discs around young stars are the birthplaces of planets, but so far only a handful of observations have detected hints of baby planets in them. The problem is that until now, most of these planet candidates could just have been features in the disc.”

In addition to spotting the young planet, the research teams also noted that it has sculpted the protoplanetary disc orbiting the star. Essentially, the planet’s orbit has traced a giant hole in the center of the disc after accumulating material from it. This means that PDS 70 b is still located in the vicinity of its birth place, is likely to still be accumulating material and will continue to grow and change.

For decades, astronomers have been aware of these gaps in the protoplanetary disc and speculated that they were produced by a planet. Now, they finally have the evidence to support this theory. As André Müller explained:

Keppler’s results give us a new window onto the complex and poorly-understood early stages of planetary evolution. We needed to observe a planet in a young star’s disc to really understand the processes behind planet formation.

These studies will be a boon to astronomers, especially when it comes to theoretical models of planet formation and evolution. By determining the planet’s atmospheric and physical properties, the astronomers have been able to test key aspects of the Nebular Hypothesis. The discovery of this young, dust-shrouded planet would not have been were if not for the capabilities of ESO’s SPHERE instrument.

This instrument studies exoplanets and discs around nearby stars using a technique known as high-contrast imaging, but also relies on advanced strategies and data processing techniques. In addition to blocking the light from a star with a coronagraph, SPHERE is able to filter out the signals of faint planetary companions around bright young stars at multiple wavelengths and epochs.

As Prof. Thomas Henning – the director at MPIA, the German co-investigator of the SPHERE instrument, and a senior author on the two studies – stated in a recent MPIA press release:

“After ten years of developing new powerful astronomical instruments such as SPHERE, this discovery shows us that we are finally able to find and study planets at the time of their formation. That is the fulfillment of a long-cherished dream.”

Future observations of this system will also allow astronomers to test other aspects of planet formation models and to learn about the early history of planetary systems. This data will also go a long way towards determining how our own Solar System formed and evolved during its early history.

Further Reading: ESO, MPIA, Astronomy & Astrophysics, Astronomy & Astrophysics (2)

Astronomers Have Found Grease in Space

An illustration of the structure of a greasy carbon molecule, set against an image of the galactic centre, where this material has been detected. Carbon is represented as grey spheres and hydrogen as white spheres. Credit: D. Young (2011), The Galactic Center. Flickr – CreativeCommons

Over the course of many centuries, scientists learned a great deal about the types of conditions and elements that make life possible here on Earth. Thanks to the advent of modern astronomy, scientists have since learned that these elements are not only abundant in other star systems and parts of the galaxy, but also in the medium known as interstellar space.

Consider carbon, the element that is essential to all organic matter and life as we know it. This life-bearing element is also present in interstellar dust, though astronomers are not sure how abundant it is. According to new research by a team of astronomers from Australia and Turkey, much of the carbon in our galaxy exists in the form of grease-like molecules.

Their study, “Aliphatic Hydrocarbon Content of Interstellar Dust“, recently appeared in the Monthly Notices of the Royal Astronomical Society. The study was led by Gunay Banihan, a professor from the Department of Astronomy and Space Sciences of Erge University in Turkey, and included members from multiple departments from the University of New South Wales in Sydney (UNSW).

A new study by a team of Turkish and Australian astronomers has found evidence of grease-like molecules in interstellar dust. Credit: ESO/R. Fosbury (ST-ECF)

For the sake of their study, the team sought to determine exactly how much of our galaxy’s carbon is bound up in grease-like molecules. At present, it is believed that half of the interstellar carbon exists in pure form, whereas the rest in bound up in either grease-like aliphatic molecules (carbon atoms that form open chains) and mothball-like aromatic molecules (carbon atoms that form planar unsaturated rings).

To determine how plentiful grease-like molecules are compared to aromatic ones, the team created material with the same properties as interstellar dust in a laboratory. This consisted of recreating the process where aliphatic compounds are synthesized in the outflows of carbon stars. They then followed up on this by expanding the carbon-containing plasma into a vacuum at low temperatures to simulate interstellar space.

As Prof. Tim Schmidt, from the Australian Research Council Centre of Excellence in Exciton Science in the School of Chemistry at UNSW Sydney and a co-author on the paper, explained:

“Combining our lab results with observations from astronomical observatories allows us to measure the amount of aliphatic carbon between us and the stars.”

Using magnetic resonance and spectroscopy, they were then able to determine how strongly the material absorbed light with a certain infrared wavelength. From this, the team found that there are about 100 greasy carbon atoms for every million hydrogen atoms, which works out to about half of the available carbon between stars. Expanding that to include all of the Milky Way, they determined that about 10 billion trillion trillion tonnes of greasy matter exists.

Artist’s impression of the Milky Way Galaxy. Credit: NASA/JPL-Caltech/R. Hurt (SSC-Caltech)

To put that in perspective, that’s enough grease to fill about 40 trillion trillion trillion packs of butter. But as Schmidt indicated, this grease is far from being edible.

“This space grease is not the kind of thing you’d want to spread on a slice of toast! It’s dirty, likely toxic and only forms in the environment of interstellar space (and our laboratory). It’s also intriguing that organic material of this kind – material that gets incorporated into planetary systems – is so abundant.”

Looking ahead, the team now wants to determine the abundance of the other type of non-pure carbon, which is the mothball-like aromatic molecules. Here too, the team will be recreating the molecules in a laboratory environment using simulations. By establishing the amount of each type of carbon in interstellar dust, they will be able to place constraints on how much of this elements is available in our galaxy.

This in turn will allow astronomers to determine exactly how much of this life-giving element is available, and could also help shed light on how and where life can take hold!

Further Reading: RAS, MNRAS

Good News, James Webb is Still a Go. Bad News, Launching in 2021

Illustration of NASA's James Webb Space Telescope. Credits: NASA
Illustration of NASA's James Webb Space Telescope. Credits: NASA

When it is deployed to space, the James Webb Space Telescope (JWST) will be the most powerful and advanced telescope ever deployed. As the spiritual and scientific successor to the Hubble, Spitzer, and Kepler Space Telescopes, this space observatory will use its advanced suite of infrared instruments to look back at the early Universe, study the Solar System, and help characterize extra-solar planets.

Unfortunately, after many delays, there’s some good news and bad news about this mission. The good news is that recently, the Independent Review Board (IRB) established by NASA to assess the progress on the JWST unanimously decided that work on the space telescope should continue. The bad news is that NASA has decided to push the launch date back again – this time to March 30th, 2021.

As part of their assessment, the IRB was established in April of 2018 to address a range of factors influencing Webb’s schedule and performance. These included the technical challenges and tasks that need to be tackled by its primary contractor (Northrop Grumman) before the mission can launch. A summary of the report’s recommendations, and NASA’s response, can be read here.

The Hubble Space Telescope on the left has a 2.4 meter mirror and the James Webb Space Telescope has a 6.5 meter mirror. LUVOIR, not shown, will dwarf them both with a massive 15 meter mirror. Image: NASA
The Hubble Space Telescope on the left has a 2.4 meter mirror and the James Webb Space Telescope has a 6.5 meter mirror. LUVOIR, not shown, will dwarf them both with a massive 15 meter mirror. Credit: NASA

In the report, the IRB identified technical issues, which including human errors, that they claim have greatly impacted the development schedule. As they stated in their Overview:

“The observation that there are no small JWST integration and test problems was not initially recognized by the Webb IRB, and this also may be true of others involved with JWST. It is a most important observation that will be apparent in subsequent Findings and Recommendations. It is caused by the complexity and highly integrated nature of the observatory. Specifically, it implies, as an example, that a very small human error or test anomaly can impact the schedule by months and the cost by tens of millions of dollars.”

The anomaly mentioned in the report refers to the “anomalous readings” that were detected from the telescope during vibration testing back in December 2016. NASA responded to this by giving the project up to 4 months of schedule reserve by extending the launch window. However, in 2017, NASA delayed the launch window again by 5 months, from October 2018 to a between March and June 2019.

This delay was requested by the project team, who indicated that they needed to address lessons learned from the initial folding and deployment of the observatory’s sun shield. In February of 2018, the Government Accountability Office (GAO) issued a report that expressed concerns over further delays and cost overruns. Shortly thereafter, the JWST’s Standing Review Board (SRB) made an independent assessment of the remaining tasks.

The James Webb Space Telescope being placed in the Johnson Space Center’s historic Chamber A on June 20th, 2017. Credit: NASA/JSC

In May of 2018, NASA issued a statement indicating that they now estimated that the launch window would be some time in May 2020. However, they chose to await the findings of the IRB and consider the data from the JWST’s Standing Review Board before making the final determination. The new launch date was set to accommodate environmental testing and work performances challenges on the sunshield and propulsion system.

According to the IRB report, this latest delay will also result in a budget overrun. “As a result of the delay, Webb’s total lifecycle cost to support the March 2021 launch date is estimated at $9.66 billion,” they concluded. “The development cost estimate to support the new launch date is $8.8B (up from the $8B development cost estimate established in 2011).”

As Jim Bridenstine, the NASA Administrator, indicated in a message to the NASA workforce on Wednesday about the report:

“Webb is vital to the next generation of research beyond NASA’s Hubble Space Telescope. It’s going to do amazing things – things we’ve never been able to do before – as we peer into other galaxies and see light from the very dawn of time. Despite major challenges, the board and NASA unanimously agree that Webb will achieve mission success with the implementation of the board’s recommendations, many of which already are underway.”

In the end, the IRB, SRB and NASA are all in total agreement that the James Webb Space Telescope is a crucial mission that must be seen through. In addition to shedding light on a number of mysteries of the Universe – ranging from the earliest stars and galaxies in the Universe to exoplanet habitability – the JWST will also complement and enhance the discoveries made by other missions.

The combined optics and science instruments of NASA’s James Webb Space Telescope being removed from the Space Telescope Transporter for Air, Road and Sea (STTARS) at the Northrop Grumman company headquarters on March 8th, 2018. Credits: NASA/Chris Gunn

These include not only Hubble and Spitzer, but also missions like the Transiting Exoplanet Survey Satellite (TESS), which launched this past April. Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate, also issued a statement on the recent report:

“The more we learn more about our universe, the more we realize that Webb is critical to answering questions we didn’t even know how to ask when the spacecraft was first designed. Webb is poised to answer those questions, and is worth the wait. The valuable recommendations of the IRB support our efforts towards mission success; we expect spectacular scientific advances from NASA’s highest science priority.”

The JWST will also be the first telescope of its kind, being larger and more complex than any previous space telescope – so challenges were anticipated from its very inception. In addition, the final phase consists of some of the most challenging work, where the 6.5-meter telescope and science payload element are being joined with the spacecraft element to complete the observatory.

The science team also needs to ensure that the observatory can be folded up to fit inside the Ariane 5 rocket that will launch it into space. They also need to ensure that it will unfold again once it reaches space, deploy its sunshield, mirrors and primary mirror. Beyond that, there are also the technical challenges of building a complex observatory that was created here on Earth, but designed to operate in space.

As a collaborative project between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), the JWST is also representative of the new era of international cooperation. As such, no one wishes to see the mission abandoned so close to completion. In the meantime, any delays that allow for extra testing will only ensure success in the long run.

Good luck JWST, we look forward to hearing about your first discoveries!

Further Reading: NASA