I Can’t Stop Watching This Amazing Animation from Comet 67P

A single frame from the animation created by twitter user landru79. The images were taken by the Rosetta spacecraft of 67P on June 1st, 2016. Credit: Europeans Space Agency -ESAC

The European Space Agency’s Rosetta mission was an ambitious one. As the first-ever space probe to rendezvous with and then orbit a comet, Rosetta and its lander (Philae) revealed a great deal about the comet 67p/Churyumov-Gerasimenko. In addition to the learning things about the comet’s shape, composition and tail, the mission also captured some incredible images of the comet’s surface before it ended.

For instance, Rosetta took a series of images on June 1st, 2016, that showed what looks like a blizzard on the comet’s surface. Using these raw images (which were posted on March 22nd, 2018), twitter user landru79 created an eye-popping video that shows just what it would be like to stand on the comet’s surface. As you can see, its like standing in a blizzard on Earth, though scientists have indicated that it’s a little more complicated than that.

The video, which consists of 25 minutes worth of images taken by Rosetta’s Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS), was posted by landru79 on April 23rd, 2018. It shows the surface of 67p/Churyumov-Gerasimenko on the loop, which lends it the appearance of panning across the surface in the middle of a snowstorm.

However, according to the ESA, the effect is likely caused by three separate phenomena. For instance, the snow-like particles seen in the video are theorized to be a combination of dust from the comet itself as well as high-energy particles striking the camera. Because of OSIRIS’ charge-coupled device (CCD) – a radiation-sensing camera – even invisible particles appear like bright streaks when passing in front of it.

As for the white specks in the background, those are stars belonging to the Canis Major constellation (according to ESA senior advisor Mark McCaughrean). Since originally posting the video, landru79 has posted another GIF on Twitter (see below) that freezes the starfield in place. This makes it clearer that the comet is moving, but the stars are remaining still (at least, relative to the camera’s point of view).

And of course, the entire video has been sped up considerably for dramatic effect. According to a follow-up tweet posted by landru79, the first image was shot on June 1st, 2016 at 3.981 seconds past 17:00 (UTC) while the last one was shot at 170.17 seconds past 17:25.

Still, one cannot deny that it is both captivating and draws attention to what Rosetta the mission accomplished. The mission launched in 2004 and reached 67P/Churyumov-Gerasimenko in 2014. After two years of gathering data, it was deliberately crashed on its surface in 2016. And yet, years later, what it revealed is still captivating people all over the world.

Further Reading: Live Science, Gizmodo

Facial Recognition Deep Learning Software is Surprisingly Good at Identifying Galaxies Too

Evolution diagram of a galaxy. First the galaxy is dominated by the disk component (left) but active star formation occurs in the huge dust and gas cloud at the center of the galaxy (center). Then the galaxy is dominated by the stellar bulge and becomes an elliptical or lenticular galaxy. Credit: NAOJ

A lot of attention has been dedicated to the machine learning technique known as “deep learning”, where computers are capable of discerning patterns in data without being specifically programmed to do so. In recent years, this technique has been applied to a number of applications, which include voice and facial recognition for social media platforms like Facebook.

However, astronomers are also benefiting from deep learning, which is helping them to analyze images of galaxies and understand how they form and evolve. In a new study, a team of international researchers used a deep learning algorithm to analyze images of galaxies from the Hubble Space Telescope. This method proved effective at classifying these galaxies based on what stage they were in their evolution.

The study, titled “Deep Learning Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range“, recently appeared online and has been accepted for publication in the Astrophysical Journal. The study was led by Marc Huertes-Company of the University Paris Diderot and included members from the University of California Santa Cruz (UCSC), the Hebrew University, the Space Telescope Science Institute, the University of Pennsylvania Philadelphia, MINES ParisTech and Shanghai Normal University (SNHU).

A ‘deep learning’ algorithm trained on images from cosmological simulations is surprisingly successful at classifying real galaxies in Hubble images. Credit: HST/CANDELS

In the past, Marc Huertas-Company has already applied deep learning methods to Hubble data for the sake of galaxy classification. In collaboration with David Koo and Joel Primack, both of whom are professor emeritus’ at UC Santa Cruz (and with support from Google), Huertas-Company and the team spent the past two summers developing a neural network that could identify galaxies at different stages in their evolution.

“This project was just one of several ideas we had,” said Koo in a recent USCS press release. “We wanted to pick a process that theorists can define clearly based on the simulations, and that has something to do with how a galaxy looks, then have the deep learning algorithm look for it in the observations. We’re just beginning to explore this new way of doing research. It’s a new way of melding theory and observations.”

For the sake of their study, the researchers used computer simulations to generate mock images of galaxies as they would look in observations by the Hubble Space Telescope. The mock images were used to train the deep learning neural network to recognize three key phases of galaxy evolution that had been previously identified in the simulations. The researchers then used the network to analyze a large set of actual Hubble images.

As with previous images anaylzed by Huertas-Company, these images part of Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) project – the largest project in the history of the Hubble Space Telescope. What they found was that the neural network’s classifications of simulated and real galaxies was remarkably consistent. As Joel Primack explained:

“We were not expecting it to be all that successful. I’m amazed at how powerful this is. We know the simulations have limitations, so we don’t want to make too strong a claim. But we don’t think this is just a lucky fluke.”

A spiral galaxy ablaze in the blue light of young stars from ongoing star formation (left) and an elliptical galaxy bathed in the red light of old stars (right). Credit: SDSS

 

The research team was especially interested in galaxies that have a small, dense, star-forming region known as a “blue nugget”. These regions occur early in the evolution of gas-rich galaxies, when big flows of gas into the center of a galaxy cause the formation of young stars that emit blue light. To simulate these and other types of galaxies, the team relied on state-of-the-art VELA simulations developed by Primack and an international team of collaborators.

In both the simulated and observational data, the computer program found that the “blue nugget” phase occurs only in galaxies with masses within a certain range. This was followed by star formation ending in the central region, leading to the compact “red nugget” phase, where the stars in the central region exit their main sequence phase and become red giants.

The consistency of the mass range was exciting because it indicated that the neural network was identifying a pattern that results from a key physical process in real galaxies – and without having to be specifically told to do so. As Koo indicated, this study as a big step forward for astronomy and AI, but a lot of research still needs to be done:

“The VELA simulations have had a lot of success in terms of helping us understand the CANDELS observations. Nobody has perfect simulations, though. As we continue this work, we will keep developing better simulations.”

Artist’s representation of an active galactic nucleus (AGN) at the center of a galaxy. Credit: NASA/CXC/M.Weiss

For instance, the team’s simulations did not include the role played by Active Galactic Nuclei (AGN). In larger galaxies, gas and dust is accreted onto a central Supermassive Black Hole (SMBH) at the core, which causes gas and radiation to be ejected in huge jets. Some recent studies have indicated how this may have an arresting effect on star formation in galaxies.

However, observations of distant, younger galaxies have shown evidence of the phenomenon observed in the team’s simulations, where gas-rich cores lead to the blue nugget phase. According to Koo, using deep learning to study galactic evolution has the potential to reveal previously undetected aspects of observational data. Instead of observing galaxies as snapshots in time, astronomers will be able to simulate how they evolve over billions of years.

“Deep learning looks for patterns, and the machine can see patterns that are so complex that we humans don’t see them,” he said. “We want to do a lot more testing of this approach, but in this proof-of-concept study, the machine seemed to successfully find in the data the different stages of galaxy evolution identified in the simulations.”

In the future, astronomers will have more observation data to analyze thanks to the deployment of next-generation telescopes like the Large Synoptic Survey Telescope (LSST), the James Webb Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST). These telescopes will provide even more massive datasets, which can then be analyzed by machine learning methods to determine what patterns exist.

Astronomy and artificial intelligence, working together to better our understanding of the Universe. I wonder if we should put it on the task of finding a Theory of Everything (ToE) too!

Further Reading: UCSC, Astrophysical Journal

If We’re Searching for Earth 2.0, Would We Know It When We Find It?

Artist’s impression of how an an Earth-like exoplanet might look. Credit: ESO.

In the past few decades, there has been an explosion in the number of extra-solar planets that have been discovered. As of April 1st, 2018, a total of 3,758 exoplanets have been confirmed in 2,808 systems, with 627 systems having more than one planet. In addition to expanding our knowledge of the Universe, the purpose of this search has been to find evidence of life beyond our Solar System.

In the course of looking for habitable planets, astronomers have used Earth as a guiding example. But would we recognize a truly “Earth-like” planet if we saw one? This question was addressed in a recent paper by two professors, one of whom is an exoplanet-hunter and the other, an Earth science and astrobiology expert. Together, they consider what advances (past and future) will be key to the search for Earth 2.0.

The paper, titled “Earth as an Exoplanet“, recently appeared online. The study was conducted by Tyler D. Robinson, a former NASA Postdoctoral Fellow and an assistant professor from Northern Arizona University, and Christopher T. Reinhard – an assistant professor from the Georgia Institute of Technology’s School of of Earth and Atmospheric Studies.

Thanks to advances in technology and detection methods, astronomers have detected multiple Earth-like planets in our galaxy. Credit: NASA/JPL

For the sake of their study, Robinson and Reinhard focus on how the hunt for habitable and inhabited planets beyond our Solar System commonly focuses on Earth analogs. This is to be expected, since Earth is the only planet that we know of that can support life. As Professor Robinson told Universe Today via email:

“Earth is – currently! – our only example of a habitable and an inhabited world. Thus, when someone asks, “What will a habitable exoplanet look like?” or “What will a life-bearing exoplanet look like?”, our best option is to point to Earth and say, “Maybe it will look a lot like this.” While many studies have hypothesized other habitable planets (e.g., water-covered super-Earths), our leading example of a fully-functioning habitable planet will always be Earth.”

The authors therefore consider how observations made by spacecraft of the Solar System have led to the development of approaches for detecting signatures of habitability and life on other worlds. These include the Pioneer 10 and 11 missions and Voyager 1 and 2 spacecraft, which conducted flybys of many Solar System bodies during the 1970s.

These missions, which conducted studies on the planets and moons of the Solar System using photometry and spectroscopy allowed scientists to learn a great deal about these bodies’ atmospheric chemistry and composition, as well as meteorlogical patterns and chemistry. Subsequent missions have added to this by revealing key details about the surface details and geological evolution of the Solar planets and moons.

The “pale blue dot” of Earth captured by Voyager 1 spacecraft on Feb 14th, 1990. Credit: NASA/JPL

In addition, the Galileo probe conducted flybys of Earth in December of 1990 and 1992, which provided planetary scientists with the first opportunity to analyze our planet using the same tools and techniques that had previously been applied throughout the Solar System. It was also the Voyager 1 probe that took a distant image of Earth, which Carl Sagan referred to as the “Pale Blue Dot” photo.

However, they also note that Earth’s atmosphere and surface environment has evolved considerably over the past 4.5 billion years ago. In fact, according to various atmospheric and geological models, Earth has resembled many environments in the past that would be considered quite “alien” by today’s standards. These include Earth’s many ice ages and the earliest epochs, when Earth’s primordial atmosphere was the product of volcanic outgassing.

As Professor Robinson explained, this presents some complications when it comes to finding other examples of “Pale Blue Dots”:

“The key complication is being careful to not fall into the trap of thinking that Earth has always appeared the way it does today. So, our planet actually presents a huge array of options for what a habitable and/or inhabited planet might look like.”

In other words, our hunt for Earth analogs could reveal a plethora of worlds which are “Earth-like”, in the sense that they resemble a previous (or future) geological period of Earth. These include “Snowball Earth’s”, which would be covered by glacial sheets (but could still be life-bearing), or even what Earth looked like during the Hadean or Archean Eons, when oxygenic photosynthesis had not yet taken place.

Ice ages are characterized by a drop in average global temperatures, resulting in the expansion of ice sheets globally. Credit: NASA

This would also have implications when it comes to what kinds of life would be able to exist there. For instance, if the planet is still young and its atmosphere was still in its primordial state, life could be strictly in microbial form. However, if the planet was billions of years old and in an interglacial period, more complex life forms may have evolved and be roaming the Earth.

Robinson and Reinhard go on to consider what future developments will aid in the spotting of “Pale Blue Dots”. These include next-generation telescopes like the James Webb Space Telescope (JWST) – scheduled for deployment in 2020 – and the Wide-Field Infrared Survey Telescope (WFIRST), which is currently under development.  Other technologies include concepts like Starshade, which is intended to eliminate the glare of stars so that exoplanets can be directly imaged.

“Spotting true Pale Blue Dots – water-covered terrestrial worlds in the habitable zone of Sun-like stars – will require advancements in our ability to “directly image” exoplanets,” said Robinson. “Here, you use either optics inside the telescope or a futuristic-sounding “starshade” flying beyond the telescope to cancel out the light of a bright star thereby enabling you to see a faint planet orbiting that star. A number of different research groups, including some at NASA centers, are working to perfect these technologies.”

Once astronomers are able to image rocky exoplanets directly, they will at last be able to study their atmospheres in detail and place more accurate constraints on their potential habitability. Beyond that, there may come a day when we will be able to image the surfaces of these planets, either through extremely sensitive telescopes or spacecraft missions (such as Project Starshot).

Whether or not we find another “Pale Blue Dot” remains to be seen. But in the coming years, we may finally get a good idea of just how common (or rare) our world truly is.

Further Reading: arXiv

The DARKNESS Instrument Will Block Stars and Reveal Their Planets. 100 Million Times Fainter than the Star

The new DARKNESS camera developed by an international team of researchers will allow astronomers to directly study nearby exoplanets. Credit: Stanford/SRL

The hunt for planets beyond our Solar System has led to the discovery of thousands of candidates in the past few decades. Most of these have been gas giants that range in size from being Super-Jupiters to Neptune-sized planets. However, several have also been determined to be “Earth-like” in nature, meaning that they are rocky and orbit within their stars’ respective habitable zones.

Unfortunately, determining what conditions might be like on their surfaces is difficult, since astronomers are unable to study these planets directly. Luckily, an international team led by UC Santa Barbara physicist Benjamin Mazin has developed a new instrument known as DARKNESS. This superconducting camera, which is the world’s largest and most sophisticated, will allow astronomers to detect planets around nearby stars.

The team’s study which details their instrument, titled “DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy“, recently appeared in the Publications of the Astronomy Society of the Pacific. The team was led by Benjamin Mazin, the Worster Chair in Experimental Physics at UCSB, and also includes members from NASA’s Jet Propulsion Laboratory, the California Institute of Technology, the Fermi National Accelerator Laboratory, and multiple universities.

The DARKNESS instrument is the worlds most advanced camera and will enable the detection of planets around the nearest stars. Credit: UCSB

Essentially, it is extremely difficult for scientists to study exoplanets directly because of the interference caused by their stars. As Mazin explained in a recent UCSB press release, “Taking a picture of an exoplanet is extremely challenging because the star is much brighter than the planet, and the planet is very close to the star.” As such, astronomers are often unable to analyze the light being reflected off of a planet’s atmosphere to determine its composition.

These studies would help place additional constraints on whether or not a planet is potentially habitable. At present, scientists are forced to determine if a planet could support life based on its size, mass, and distance from its star. In addition, studies have been conducted that have determined whether or not water exists on a planet’s surface based on how its atmosphere loses hydrogen to space.

The DARK-speckle Near-infrared Energy-resolved Superconducting Spectrophotometer (aka. DARKNESS), the first 10,000-pixel integral field spectrograph, seeks to correct this. In conjunction with a large telescope and adaptive optics, it uses Microwave Kinetic Inductance Detectors to quickly measure the light coming from a distant star, then sends a signal back to a rubber mirror that can form into a new shape 2,000 times a second.

MKIDs allow astronomers to determine the energy and arrival time of individual photons, which is important when it comes to distinguishing a planet from scattered or refracted light. This process also eliminates read noise and dark current – the primary sources of error in other instruments – and cleans up the atmospheric distortion by suppressing the starlight.

UCSB physicist Ben Mazin, who led the development of the DARKNESS camera. Credit: Sonia Fernandez

Mazin and his colleagues have been exploring MKIDs technology for years through the Mazin Lab, which is part of the UCSB’s Department of Physics. As Mazin explained:

“This technology will lower the contrast floor so that we can detect fainter planets. We hope to approach the photon noise limit, which will give us contrast ratios close to 10-8, allowing us to see planets 100 million times fainter than the star. At those contrast levels, we can see some planets in reflected light, which opens up a whole new domain of planets to explore. The really exciting thing is that this is a technology pathfinder for the next generation of telescopes.”

DARKNESS is now operational on the 200-inch Hale Telescope at the Palomar Observatory near San Diego, California, where it is part of the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph. During the past year and a half, the team has conducted four runs with the DARKNESS camera to test its contrast ratio and make sure it is working properly.

In May, the team will return to gather more data on nearby planets and demonstrate their progress. If all goes well, DARKNESS will become the first of many cameras designed to image planets around nearby M-type (red dwarf) stars, where many rocky planets have been discovered in recent years. The most notable example is Proxima b, which orbits the nearest star system to our own (Proxima Centauri, roughly 4.25 light years away).

The Palomar Observatory, where the DARKNESS camera is currently installed. Credit: IPTF/Palomar Observatory

“Our hope is that one day we will be able to build an instrument for the Thirty Meter Telescope planned for Mauna Kea on the island of Hawaii or La Palma,” Mazin said. “With that, we’ll be able to take pictures of planets in the habitable zones of nearby low mass stars and look for life in their atmospheres. That’s the long-term goal and this is an important step toward that.”

In addition to the study of nearby rocky planets, this technology will also allow astronomers to study pulsars in greater detail and determine the redshift of billions of galaxies, allowing for more accurate measurements of how fast the Universe is expanding. This, in turn, will allow for more detailed studies of how our Universe has evolved over time and the role played by Dark Energy.

These and other technologies, such as NASA’s proposed Starshade spacecraft and Stanford’s mDot occulter, will revolutionize exoplanet studies in the coming years. Paired with next-generation telescopes – such as the James Webb Space Telescope and the Transiting Exoplanet Survey Satellite (TESS), which recently launched – astronomers will not only be able to discover more in the way exoplanets, but will be able to characterize them like never before.

Further Reading: UC Santa BarbaraPublications of the Astronomy Society of the Pacific

The NewSpace Revolution is About to Bring us Tiny Space Telescopes we can all Control

Space Fab's Waypoint Space Telescope will be the first space telescope available to the general public. Credit: SpaceFab.US

One of the defining characteristics of the modern era of space exploration is the way the public and private aerospace companies (colloquially referred to as the NewSpace industry) and are taking part like never before. Thanks to cheaper launch services and the development of small satellites that can be built using off-the-shelf electronics (aka. CubeSats and microsats), universities and research institutions are also able to conduct research in space.

Looking to the future, there are those who want to take public involvement in space exploration to a whole new level. This includes the California-based aerospace company Space Fab that wants to make space accessible to everyone through the development the Waypoint Space Telescope – the first space telescope that people will be able to access through their smartphones to take pictures of Earth and space.

The company was founded in 2016 by Randy Chung and Sean League with the vision of creating a future where anything could be manufactured in space. Chung began his career developing communications satellites and has a background in integrated circuit design, digital signal processing, CMOS imager design, and software development. He holds sixteen patents in the fields of computer peripherals, imagers, and digital communications.

League, meanwhile, is an astrophysicist who has spent the past few decades developing optics, building and designing remote telescopes, solid state lasers, and has lots of experience with startups, fundraising, computer-aided design (CAD) and machining. Between the two of them, they are ideally suited to creating a new generation of publicly-accessible telescopes. As League told Universe Today via email:

“We have studied over 200 papers on the design of small satellite structures, electronics, navigation, and attitude control. We are rethinking satellite design, not tied down by legacy approaches. That fresh approach leads us to use a Corrected Dall Kirkham telescope design, rather than the standard Richey-Chretien design, an extending secondary mirror, rather than a fixed telescope structure, and a multi-purpose and multi-directional telescope, not a single purpose telescope just for Earth observation or just for astronomy.”

Together, League and Chung launched Space Fab in the hopes of spurring the development of the space industry, where asteroid mining and space manufacturing will provide cheap and abundant resources for all and allow for further exploration of our Solar System. The first step in this long-term plan is to build a profitable space telescope business by creating the first commercial, multipurpose space telescope industry.

“SpaceFab’s primary long term objective is to accelerate man’s access to space and to make the human race a multi-planet species,” said League. “This not only safeguards the human race, but all life that is brought along. We intend to make space resources readily available and dramatically less expensive than today, without environmental impact on Earth.”

What makes the Waypoint Space Telescope especially unique is the way it combines off-the-shelf components with revolutionary instruments. The design is based on a standard 12U CubeSat satellite, which contains the Waypoint telescope. This telescope has extendable optics that consist of a 21 cm silicon carbide primary mirror, a deployable secondary mirror, a 48 Megapixel imager for visible and near-infrared wavelengths, an 8 Megapixel image intensified camera for ultraviolet and visible wavelengths and a 150 band hyper-spectral imager.

“Waypoint’s astronomical capabilities are impressive,” says League. “Without the distorting effects of Earth’s atmosphere, our 48 megapixel imager can take perfect high resolution images every time. We can reach the maximum theoretical resolution for our main mirror at .6 arc seconds per pixel on a single image, and higher resolution is possible through multiple exposures. Contrast will be fantastic, with the blackness of background space not being washed out by Earth’s atmosphere, clouds, moisture, city lights, or the day/night cycle. The Waypoint satellite also includes a complete set of astronomical and earth observations filters.”

The Waypoint Space Telescope will be ready to launch as a secondary payload by the end of 2019 on a rocket like the SpaceX Falcon 9. The company has also completed its first seed round of investment  and is currently crowdfunding through a Kickstarter campaign.

Those who pledge their money will have the honor of getting a “space selfie”, where a favorite photo will be paired with a backdrop of Earth, pictured from orbit. In addition, Space Fab is building its own custom laser communications systems for the telescope optimized for low power, small size, and high speed.

Once deployed, this communication system will allow the telescope to download data back to Earth twice a day using optical ground stations. These images will then be available for upload via smartphone, tablet, computer or other devices. Chung and League’s efforts to create the first accessible telescope is already drawing its share of acolytes. One such person is Dustin Gibson, one of the owners of OPT Telescopes. As he told Universe Today via email:

“So far, the company is on the fast track to success with its first round of investing completed and over target, and the second round just getting started. It looks like this thing is going to fly in 2019! For an astrophotography lover like myself, I can’t think of anything more ground breaking than a consumer controlled space telescope.

“What Space Fab is doing is rewriting not just how we think about ways in which to do land surveys or deep space imaging, but actually redefining the way we are able interact with satellites by giving the common user a level of control over the movements and functionality of the unit itself with something as simple as a cell phone.”

Looking ahead, Space Fab is also busy developing the technology that will allow them to mine asteroids and tap the abundant resources of the Solar System. The company recently filed a patent for their ion accelerator, which is designed to augment the thrust from existing cubesat-sized ion engines.

The company is also focused on creating advanced robotic arms that will be able to wrestle with space debris and repair themselves in the event of mechanical failure or damage. In the meantime, the Waypoint is the first of several space telescopes that Space Fab hopes to deploy in order to generate revenue for these ventures.

“Our space telescopes will be open to everyone, so that is the beginning,” said League. “The revenue these satellites will generate provides us with the funds and knowledge base to conduct metal asteroid mining and manufacturing on a large scale. This will allow the manufacture of large structures, spacecraft, tools or anything thing else that is needed in space. With these available resources, our hope is to accelerate the space economy and colonization.”

In this respect, Space Fab is in good company when it comes to the age of NewSpace. Alongside big-names like SpaceX, Blue Origin, Planetary Resources, and Deep Space Industries, they are part of a constellation of companies that are looking to make space accessible and usher in an age of post-scarcity. And with the help of the general public, they just might succeed!

Further Reading: SpaceFab,

Look at This Fascinating Variety of Planet-Forming Disks Around Other Stars

This is just one of the spectacular images of dusky discs from the SPHERE instrument on ESO's Very Large Telescope. It shows the disc around the young star IM Lupi in finer detail than ever before. The collection of images shows the fascinating variety of shapes and sizes of discs. Image: ESO/H. Avenhaus et al./DARTT-S collaboration

The European Southern Observatory (ESO) has released a stunning collection of images of the circumstellar discs that surround young stars. The images were captured with the SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) instrument on the ESO’s Very Large Telescope (VLT) in Chile. We’ve been looking at images of circumstellar disks for quite some time, but this collection reveals the fascinating variety of shapes an sizes that these disks can take.

New images from the SPHERE instrument on ESO’s Very Large Telescope are revealing the dusty discs surrounding nearby young stars in greater detail than previously achieved. They show a bizarre variety of shapes, sizes and structures, including the likely effects of planets still in the process of forming. Image: ESO/H. Avenhaus et al./E. Sissa et al./DARTT-S and SHINE collaborations

We have a widely-accepted model of star formation supported by ample evidence, including images like these ones from the ESO. The model starts with a cloud of gas and dust called a giant molecular cloud. Within that cloud, a pocket of gas and dust begins to coalesce. Eventually, as gravity causes material to fall inward, the pocket becomes more massive, and exerts even more gravitational pull. More gas and dust continues to be drawn in.

The material that falls in also gives some angular momentum to the pocket, which causes rotation. Once enough material is accumulated, fusion ignites and a star is born. At that point, there is a proto-star inside the cloud, with unused gas and dust remaining in a rotating ring around the proto-star. That left over rotating ring is called a circumstellar disc, out of which planets eventually form.

There are other images of circumstellar discs, but they’ve been challenging to capture. To image any amount of detail in the disks requires blocking out the light of the star at the center of the disk. That’s where SPHERE comes in.

A detailed view of the SPHERE instrument and its main subsystems. SPHERE is installed on the ESO’s VLT and saw first light in 2014. Image: ESO

SPHERE was added to the ESO’s Very Large Telescope in 2014. It’s primary job is to directly image exoplanets, but it also has the ability to capture images of circumstellar discs. To do that, it separates two types of light: polarized, and non-polarized.

Light coming directly from a star—in these images, a young star still surrounded by a circumstellar disc—is non-polarized. But once that starlight is scattered by the material in the disk itself, the light becomes polarized. SPHERE, as its name suggests, is able to separate the two types of light and isolate just the light from the disk. That is how the instrument captures such fascinating images of the disks.

An edge-on view of the disc surrounding the star GSC 07396-00759. The disc extends from the lower-left to the upper-right and the central grey region shows where the star was masked out. Credit:
ESO/E. Sissa et al.

Ever since it became clear that exoplanets are not rare, and that most stars—maybe all stars—have planets orbiting them, understanding solar system formation has become a hot topic. The problem has been that we can’t really see it happening in real time. We can look at our own Solar System, and other fully formed ones, and make guesses about how they formed. But planet formation is hidden inside those circumstellar disss. Seeing into those disks is crucial to understanding the link between the properties of the disk itself and the planets that form in the system.

The discs imaged in this collection are mostly from a study called the DARTTS-S (Discs ARound T Tauri Stars with SPHERE) survey. T Tauri stars are young stars less than 10 million years old. At that age, planets are still in the process of forming. The stars range from 230 to 550 light-years away from Earth. In astronomical terms, that’s pretty close. But the blinding bright light of the stars still makes it very difficult to capture the faint light of the discs.

One of the images is not a T Tauri star and is not from the DARTTS-S study. The disc around the star GSC 07396-00759, in the image above, is actually from the SHINE (SpHere INfrared survey for Exoplanets) survey, though the images itself was captured with SPHERE. GSC 07396-00759 is a red star that’s part of a multiple star system that was part of the DARTTS-S study. The puzzling thing is that red star is the same age as the T TAURI star in the same system, but the ring around the red star is much more evolved. Why the two discs around two stars the same age are so different from each other in terms of time-scale and evolution is a puzzle, and is one of the reasons why astronomers want to study these discs much more closely.

We can study our own Solar System, and look at the positions and characteristics of the planets and the asteroid belt and Kuiper Belt. From that we can try to guess how it all formed, but our only chance to understand how it all came together is to look at other younger solar systems as they form.

The SPHERE instrument, and other future instruments like the James Webb Space Telescope, will allow us to look into the circumstellar discs around other stars, and to tease out the details of planetary formation. These new images from SPHERE are a tantalizing taste of the detail and variety we can expect to see.

Pluto’s Charon Gets Mountains Named After Sci-Fi Authors Octavia Butler and Arthur C. Clarke, as Well as Many Others From History and Legend. I Approve!

Map projection of Charon, the largest of Pluto’s five moons, annotated with its first set of official feature names. With a diameter of about 1215 km, the France-sized moon is one of largest known objects in the Kuiper Belt, the region of icy, rocky bodies beyond Neptune. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

In 2015, the New Horizons mission made history by being the first spacecraft to conduct a flyby of Pluto. In addition to revealing things about the planet’s atmosphere, its geology and system of moons, the probe also provided the first clear images of the surface of Pluto and its largest moon, Charon. Because of this, scientists are now able to study Pluto and Charon’s many curious surface features and learn more about their evolution.

Another interesting thing that has resulted from this surface imaging has been the ability to name these features. Recently, the IAU Working Group for Planetary System Nomenclature officially approved of a dozen names that had been proposed by NASA’s New Horizons team. These names honor legendary explorers and visionaries, both real and fictitious, and include science fiction authors Octavia Butler and Arthur C. Clarke.

Aside from being Pluto’s largest moon, Charon is also one of the larger bodies in the Kuiper Belt. Because of its immense size, Charon does not orbit Pluto in the strictest sense. In truth, the barycenter of the Pluto-Charon system is outside Pluto, meaning the two bodies almost orbit each other. The moon also has a wealth of features, which include valleys, crevices, and craters similar to what have been seen on other moons.

Artist’s impression of New Horizons’ close encounter with the Pluto–Charon system. Credit: NASA/JHU APL/SwRI/Steve Gribben

For some time, the New Horizons team has been using a series of informal names to describe Charon’s many features. The team gathered most of them during the online public naming campaign they hosted in 2015. Known as  “Our Pluto“, this campaign consisted of people from all over the world contributed their suggestions for naming features on Pluto and Charon.

The New Horizons team also contributed their own suggestions and (according to the IAU) was instrumental in moving the new names through approval. As Dr. Alan Stern, the New Horizon team leader, told Universe Today via email: “We conduced a public feature name bank process in 2015 before flyby. Once flyby was complete our science team created a naming proposal for specific features and sent it to IAU.”

A similar process took place last year, where the IAU officially adopted 14 place names that were suggested by the New Horizons team – many of which were the result of the online naming campaign. Here too, the names were those that the team had been using informally to describe the many regions, mountain ranges, plains, valleys and craters that were discovered during the spacecraft’s flyby.

The names that were ultimately selected honored the spirit of epic exploration, which the New Horizons mission demonstrated by being the first probe to reach Pluto. As such, the names that were adopted honored travelers, explorers, scientists, pioneering journeys, and mysterious destinations. For example, Butler Mons honors Octavia E. Butler, a celebrated author and the first science fiction writer to win a MacArthur fellowship.

Global map of Pluto’s moon Charon pieced together from images taken at different resolutions. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Similarly, Clarke Montes honors Sir Arthur C. Clarke, the prolific writer and futurist who co-wrote the screenplay for 2001: A Space Odyssey (which he later turned into a series of novels). Stanley Kubrik, who produced and directed 2001: A Space Odyssey, was also honored with the feature Kubrik Mons. Meanwhile, several craters were named in honor of fictional characters from famous stories and folklore.

The Revati Crater is named after the main character in the Hindu epic narrative Mahabharata while the Nasreddin Crater is named for the protagonist in thousands of folktales told throughout the Middle East, southern Europe and parts of Asia. Nemo Crater honors the captain of the Nautilus in Jule’s Verne’s novels Twenty Thousand Leagues Under the Sea (1870) and The Mysterious Island (1874).

The Pirx Crater is name after the main character in a series of short stories by Polish sci-fi author Stanislaw Lem, while the Dorothy Crater takes its name from the protagonist in The Wizard of Oz, one of several children’s stories by L. Frank Baum that was set in this magical land.

As Rita Schulz, chair of the IAU Working Group for Planetary System Nomenclature, commented, “I am pleased that the features on Charon have been named with international spirit.” Dr. Alan Stern expressed similar sentiments. When asked if he was happy with the new names that have been approved, he said simply, “Very.”

Artist’s impression of NASA’s New Horizons spacecraft encountering 2014 MU69 (Ultima Thule), a Kuiper Belt object that orbits 1.6 billion km (1 billion mi) beyond Pluto, on Jan. 1st, 2019. Credits: NASA/JHUAPL/SwRI/Steve Gribben

Even though the encounter with the Pluto system happened almost three years ago, scientists are still busy studying all the information gathered during the historic flyby. In addition, the New Horizons spacecraft will be making history again in the not-too-distant future. At present, the spacecraft is making its way farther into the outer Solar System with the intention of rendezvousing with two Kuiper Belt Objects.

On Jan. 1st, 2019, it will rendezvous with its first destination, the KBO known as 2014 MU69 (aka. “Ultima Thule“). This object will be the most primitive object ever observed by a spacecraft, and the encounter will the farthest ever achieved in space exploration. Before this intrepid exploration mission is complete, we can expect that a lot more of the outer Solar System will be mapped and named.

Further Reading: IAU

See The Finest Sights Before You Die With “Wonders of the Night Sky”

Credit: Bob King
Framed by stars reflected by water, a kayaker leans back to take in the grandeur of the night sky. The photo appears in my new book in the chapter titled “Stars on Water.” Credit: Bob King

After months parked in front of a computer, I’m thrilled to announce the publication of my new book. The full title is — get ready for this — Wonders of the Night Sky You Must See Before You Die: The Guide to Extraordinary Curiosities of Our Universe. In a nutshell, it’s a bucket list of cosmic things I think everyone should see sometime in their life. 

I couldn’t live without the sky. The concerns of Earth absorb so much of our lives that the sky provides an essential relief valve. It’s a cosmos-sized wilderness that invites both deep exploration and reflection. Galileo would kill to come back for one more clear night if he could.

Cover of Wonders of the Night Sky. 57 different sights are featured.

To me, the stars are irresistible, but my sense is that many people don’t look up as much as they’d like. We forget. Get busy. Bad weather intervenes. So I thought hard about the essential “must-sees” for any watcher of the skies. Some are obvious, like a total solar eclipse or Saturn through a telescope, but others are just as interesting — if sometimes off the beaten path.

For instance, we always hear about asteroids in the news. What does a real one look like from your own backyard? I give directions and a map for seeing the brightest of them, Vesta. And if you’ve ever looked up at the Big Dipper and wondered how to find the rest of the Great Bear, I’ll get you there. I love red stars, so you’re going to find out where the reddest one resides and how to see it yourself. There’s also a lunar Top 10 for small telescope users and chapters on the awesome Cygnus Star Cloud and how to see a supernova.

You can see most of the sky wonders described in the book from the northern hemisphere, but I included several essential southern sights like the Southern Cross.

The 57 different sights are a mix of naked-eye objects plus ones you’ll need an ordinary pair of binoculars or small telescope to see. At the end of each chapter, I provide directions on how and when to find each wonder. Because we live in an online world with so many wonderful tools available for skywatchers, I make extensive use of mobile phone apps that allow anyone to stay in touch with nearly every aspect of the night sky.

For the things that need a telescope, the resources section has suggestions and websites where you can purchase a nice but inexpensive instrument. Of course, you may not want to buy a telescope. That’s OK. I’m certain you’ll still enjoy reading about each of these amazing sights to learn more about what’s been up there all your life.

Northern spectacles like the Perseus Double Cluster can’t be missed.

While most of the nighttime sights are visible from your home or a suitable dark sky site, you’ll have to travel to see others. Who doesn’t like to get out of the house once in a while? If you travel north or south, new places mean new stars and constellations. I included chapters on choice southern treats like Alpha Centauri, the Southern Cross and the Magellanic Clouds, the closest and brightest galaxies to our own Milky Way.

One of my favorite parts of the book is the epilogue, where I share a lesson my dog taught me about the present moment and cosmic time. I like to joke that if nothing else, the ending’s worth the price of the book.

The author with his 10-inch Dobsonian reflector. Credit: Linda Hanson

The staff at Page Street Publishing did a wonderful job with the layout and design, so “Wonders” is beautiful to look at. Everyone who’s flipped through it likes the feel, and several people have even commented on how good it smells!  And for those who understandably complained that the typeface in my first book, Night Sky with the Naked Eye, made it difficult to read, I’ve got good news for you. The new book’s type is bigger and easy on the eyes.

“Wonders” is 224 pages long, printed in full color and the same size as my previous book. Unlike the few but longer chapters of the first book, the new one has many shorter chapters, and you can dip in anywhere. I think you’ll love it.

The publication date is April 24, but you can pre-order it right now at Amazon, BN and Indiebound. I want to thank Fraser Cain here at Universe Today for letting me tell you a little about my book, and I look forward to the opportunity to share my night-sky favorites with all of you.

Dense Star Clusters Could be the Places Where Black Hole Mergers are Common

A snapshot of a simulation showing a binary black hole formed in the center of a dense star cluster. Credit: Northwestern Visualization/Carl Rodriguez

In February of 2016, scientists working for the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history when they announced the first-ever detection of gravitational waves. Not only did this discovery confirm a century-old prediction made by Einstein’s Theory of General Relativity, it also confirmed the existence of stellar binary black holes – which merged to produce the signal in the first place.

And now, an international team led by MIT astrophysicist Carl Rodriguez has produced a study that suggests that  black holes may merge multiple times. According to their study, these “second-generation mergers” likely occur within globular clusters, the large and compact star clusters that typically orbit at the edges of galaxies – and which are densely-packed with hundreds of thousands to millions of stars.

The study, titled “Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers“, recently appeared in the Physical Review Letters. The study was led by Carl Rodriguez, a Pappalardo fellow in MIT’s Department of Physics and the Kavli Institute for Astrophysics and Space Research, and included members from the Institute of Space Sciences and the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

As Carl Rodriguez explained in a recent MIT press release:

“We think these clusters formed with hundreds to thousands of black holes that rapidly sank down in the center. These kinds of clusters are essentially factories for black hole binaries, where you’ve got so many black holes hanging out in a small region of space that two black holes could merge and produce a more massive black hole. Then that new black hole can find another companion and merge again.”

Globular clusters have been a source of fascination ever since astronomers first observed them in the 17th century. These spherical collections of stars are among the oldest known stars in the Universe, and can be found in most galaxies. Depending on the size and type of galaxy they orbit, the number of clusters varies, with elliptical galaxies hosting tens of thousands while galaxies like the Milky Way have over 150.

For years, Rodriguez has been investigating the behavior of black holes within globular clusters to see if they interact with their stars differently from black holes that occupy less densely-populated regions in space. To test this hypothesis, Rodriguez and his colleagues used the Quest supercomputer at Northwestern University to conduct simulations on 24 stellar clusters.

These clusters ranged in size from 200,000 to 2 million stars and covered a range of different densities and metallic compositions. The simulations modeled the evolution of individual stars within these clusters over the course of 12 billion years. This span of time was enough to follow these stars as they interacted with each other, and eventually formed black holes.

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist’s impression of merging binary black holes. Credit: LIGO/A. Simonnet.

The simulations also modeled the evolution and trajectories of black holes once they formed. As Rodriguez explained:

“The neat thing is, because black holes are the most massive objects in these clusters, they sink to the center, where you get a high enough density of black holes to form binaries. Binary black holes are basically like giant targets hanging out in the cluster, and as you throw other black holes or stars at them, they undergo these crazy chaotic encounters.”

Whereas previous simulations were based on Newton’s physics, the team decided to add Einstein’s relativistic effects into their simulations of globular clusters. This was due to the fact that gravitational waves were not predicted by Newton’s theories, but by Einstein’s Theory of General Relativity. As Rodriguez indicated, this allowed for them to see how gravitational waves played a role:

“What people had done in the past was to treat this as a purely Newtonian problem. Newton’s theory of gravity works in 99.9 percent of all cases. The few cases in which it doesn’t work might be when you have two black holes whizzing by each other very closely, which normally doesn’t happen in most galaxies… In Einstein’s theory of general relativity, where I can emit gravitational waves, then when one black hole passes near another, it can actually emit a tiny pulse of gravitational waves. This can subtract enough energy from the system that the two black holes actually become bound, and then they will rapidly merge.”

Artist’s conception shows two merging black holes similar to those detected by LIGO on January 4th, 2017. Credit: LIGO/Caltech

What they observed was that inside the stellar clusters, black holes merge with each other to create new black holes. In previous simulations, Newtonian gravity predicted that most binary black holes would be kicked out of the cluster before they could merge. But by taking relativistic effects into account, Rodriguez and his team found that nearly half of the binary black holes merged to form more massive ones.

As Rodriguez explained, the difference between those that merged and those that were kicked out came down to spin:

“If the two black holes are spinning when they merge, the black hole they create will emit gravitational waves in a single preferred direction, like a rocket, creating a new black hole that can shoot out as fast as 5,000 kilometers per second — so, insanely fast. It only takes a kick of maybe a few tens to a hundred kilometers per second to escape one of these clusters.”

This raised another interesting fact about previous simulations, where astronomers believed that the product of any black hole merger would be kicked out of the cluster since most black holes are assumed to be rapidly spinning. However, the gravity wave measurements recently obtained from LIGO appear to contradict this, which has only detected the mergers of binary black holes with low spins.

Artist’s impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS

This assumption, however, seems to contradict the measurements from LIGO, which has so far only detected binary black holes with low spins. To test the implications of this, Rodriguez and his colleagues reduced the spin rates of the black holes in their simulations. What they found was that nearly 20% of the binary black holes from clusters had at least one black hole that ranged from being 50 to 130 solar masses.

Essentially, this indicated that these were “second generation” black holes, since scientists believe that this mass cannot be achieved by a black hole that formed from a single star. Looking ahead, Rodriguez and his team anticipate that if LIGO detects an object with a mass within this range, it is likely the result of black holes merging within dense stellar cluster, rather than from a single star.

“If we wait long enough, then eventually LIGO will see something that could only have come from these star clusters, because it would be bigger than anything you could get from a single star,” Rodriguez says. “My co-authors and I have a bet against a couple people studying binary star formation that within the first 100 LIGO detections, LIGO will detect something within this upper mass gap. I get a nice bottle of wine if that happens to be true.”

The detection of gravitational waves was a historic accomplishment, and one that has enabled astronomers to conduct new and exciting research. Already, scientists are gaining new insight into black holes by studying the byproduct of their mergers. In the coming years, we can expect to learn a great deal more thanks to improve methods and increased cooperation between observatories.

Further Reading: MIT, Physical Review Letters

New Saturn Storm Emerging?

Saturn Storm
The tell-tale white notch of a new storm system emerging on Saturn on April 1st. Image credit and copyright: Damian Peach.
Saturn Storm
The tell-tale white notch of a new storm system emerging on Saturn on April 1st. Image credit and copyright: Damian Peach.

Are you following the planets this season? The planetary action is about to heat up, as Jupiter, Saturn and Mars all head towards fine oppositions over the next few months.

Spying the Storms of Saturn

Astrophotographer Damian Peach raised the alarm on Twitter this past week of a possible bright storm emerging of the planet Saturn. The spot was noticeable even with the naked eye and in the raw video Peach captured, a sure sign that the storm was a biggie.

Though outbursts of clusters of white spots on the surface of Saturn aren’t uncommon, it’s rare to see one emerge at such a high latitude. The storm had faded considerably the next observing session Peach performed on April 5th, though observers should remain vigilant.

Saturn Storm 2
A storm subsiding? The followup view a few days later on April 5th. Image credit and copyright: Damian Peach.

It’s sad to think: Cassini and our eyes in the outer solar system are no more… and the situation will probably remain this way for some years to come. Juno also wraps up its mission at Jupiter (pending extension) this year, and New Horizons visits its final destination Ultima Thule (neé 2014 MU69) on New Year’s Day 2019, though it’ll likely continue to chronicle its journey through the outer realms of the solar system, much like the Voyager 1, 2 and Pioneer 10, 11 missions, also bound to orbit the galaxy, mute testaments to human civilization. But even though proposals for Europa Clipper, a nuclear-powered quad-copter for Saturn’s moon Titan, and a Uranus and/or Neptune Orbiter are all on the drawing board, the “gap decade” of outer solar system exploration will indeed come to pass and soon.

saturn storm
Catching a storm on Saturn, Cassini style. Credit: NASA/JPL-Caltech/SSI

But dedicated amateur astronomers continue to monitor the outer solar system for changes. This month sees Saturn rising around 1:30 AM local and transiting highest to the south for northern hemisphere observers at 6:00 AM local, just before sunrise. Saturn crosses the constellation Sagittarius in 2018, bottoming out at its most southerly point this year for its 29 year path around the Sun. Saturn currently shines at +0.4 magnitude, extending 40” across (including rings) as it heads towards a fine opposition on June 27th. After opposition, Saturn formally crosses into the dusk sky. The amazing rings are an automatic draw, but last week’s storm admonishes us not to forget to check out the saffron-colored disk of Saturn itself as well. For example, I’ve always wondered: why didn’t we see the hexagon before? It’s right there festooning the northern hemisphere cap, plain as day in modern amateur images… to be sure, we’re in a modern renaissance of planetary astrophotography today, what with image stacking and processing, but surely eagle-eyed observers of yore could’ve easily picked this feature out.

And the view is changing as well, as Saturn’s rings reached a maximum tilt in respect to our line of sight of 27 degrees in 2017, and now head back towards edge-on again in 2025. And be sure to check out Saturn’s retinue of moons, half a dozen of which are easily visible in a telescope at even low power.

Finally, here’s another elemental mystery poised by Saturn related to the current storm, one that Cassini sought to solve in its final days: how fast does Saturn rotate, exactly? The usual rough guesstimate quoted is usually around 10.5 hours, but we’ve yet to pin down this fundamental value with any degree of precession.

One thing’s definitely for sure: we need to go back. In the meantime, we can enjoy the early morning views of the most glorious of the planets in our Solar System.