Astronomers Have Detected the Brightest Fast Radio Burst Ever Seen. Still No Idea What’s Causing Them

The Parkes Telescope in New South Wales, Australia. Credit: Roger Ressmeyer/Corbis

Fast Radio Bursts (FRBs) have been one of the more puzzling and fascinating areas of astronomical study ever since the first was detected in 2007 (known as the Lorimer Burst). Much like gravitational waves, the study of these short-lived radio pulses (which last only a few milliseconds) is still in its infancy, and only a 33 events have been detected. What’s more, scientists are still not sure what accounts for them.

While some believe that they are entirely natural in origin, others have speculated that they could be evidence of extra-terrestrial activity. Regardless of their cause, according to a recent study, three FRBs were detected this month in Australia by the Parkes Observatory radio telescope in remote Australia. Of these three, one happened to be the most powerful FRB recorded to date.

The signals were detected on March 1st, March 9th, and March 11th, and were designated as FRB 180301, FRB 180309 and FRB 180311. Of these, the one recorded on March 9th (FRB 180309) was the brightest ever recorded, having a signal-to-noise ratio that was four times higher than the previous brightest FRB. This event, known as FRB 170827, was detected on August 27th, 2017, by the UTMOST array in Australia.

The Parkes radio telescope, one of the telescopes comprising CSIRO’s Australia Telescope National Facility. Credit: CSIRO

All three of these events were detected by the Parkes radio telescope, which is located in New South Wales about 380 kilometers (236 mi) from Sydney. As one of three telescopes that makes up the Australia Telescope National Facility, this telescope has been studying pulsars, rapidly spinning neutron stars, and conducting large-scale surveys of the sky since 1961. In recent years, it has been dedicated to the detection of FRBs in our Universe.

Considering how rare and short-lived FRBs are, recording three in the space of one month is quite the achievement. What’s more, the fact that the detections happened in real-time, rather than being discovered in archival data, is also impressive. Shortly after the event, Stefan Oslowski (of the Swinburne University of Technology) tweeted about this rather fortunate discovery (see below).

At present, none of the three events are believed to be “repeaters” – aka. Repeating Fast Radio Bursts. So far, only one FRB has been found to be repeating. This was none other than FRB 121102, which was first detected by the Arecibo radio telescope in Puerto Rico on November 2nd, 2012. In 2015, several more bursts were detected from this some source which had properties that were consistent with the original signal.

As noted, and in spite of all the events that have been detected, scientists are still not sure what causes these strange bursts. But with three more events detected, and the possibility that they could repeat in the near-future, scientists now have more events to pore over and base their theories on. And with next-generation arrays being constructed, a great many more events (and repeaters) are likely to be detected in the coming years.

These include the the Square Kilometer Array currently being built across Australia, New Zealand and South Africa, and the Five hundred meter Aperture Spherical Telescope (FAST) being build in China. With these telescopes  joining observatories like the Very Large Telescope (VLT), the Atacama Large Millimeter/submillimeter Array (ALMA) and venerated observatories like Arecibo, FRBs may not be mysterious for much longer!

Further Reading: The Astronomer’s Telegram, Science Alert

New Horizons Team Has a New Nickname for the Spacecraft’s Next Target

Artist’s impression of NASA’s New Horizons spacecraft encountering 2014 MU69, a Kuiper Belt object that orbits one billion miles (1.6 billion kilometers) beyond Pluto, on Jan. 1, 2019. With public input, the team has selected the nickname “Ultima Thule” for the object, which will be the most primitive and most distant world ever explored by spacecraft. Credits: NASA/JHUAPL/SwRI/Steve Gribben

In July of 2015, NASA’s New Horizons mission made history when it became the first spacecraft to conduct a flyby of Pluto. Since that time, the spacecraft’s mission was extended so it could make its way farther into the outer Solar System and explore some Kuiper Belt Objects (KBOs). Another historic first, the spacecraft will study these ancient objects in the hopes of learning more about the formation and evolution of the Solar System.

By Jan. 1st, 2019, it will have arrived at its first destination, the KBO known as 2014 MU69. And with the help of the public, this object recently received the nickname “Ultima Thule” (“ultima thoo-lee”). This object, which orbits our Sun at a distance of about 1.6 billion km (1 billion miles) beyond Pluto, will be the most primitive object ever observed by a spacecraft. It will also be the farthest encounter ever achieved in the history of space exploration.

Artist’s concept of Kuiper Belt object 2014 MU69, the next flyby target for NASA’s New Horizons missionCredits: NASA/JHUAPL/SwRI/Alex Parker

In 2015, MU69 was identified as one of two potential destinations for the New Horizons mission and was recommended to NASA by the mission science team. It was selected because of the immense opportunities for research it presented. As Alan Stern, the Principle Investigator (PI) for the New Horizons mission at the Southwest Research Institute (SwRI), indicated at the time:

“2014 MU69 is a great choice because it is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by. Moreover, this KBO costs less fuel to reach [than other candidate targets], leaving more fuel for the flyby, for ancillary science, and greater fuel reserves to protect against the unforeseen.”

Originally, the KBO was thought to be a spherical chunk of ice and rock. However, in August of 2017, new occultation observations made by telescopes in Argentina led the team to conclude that MU69 could actually be a large object with a chunk taken out of it (an “extreme prolate spheroid”). Alternately, they suspected that it might be two objects orbiting very closely together or touching – aka. a close or contact binary.

Given the significance of New Horizons‘ impending encounter with this object, its only proper that it receive a an actual name. In medieval literature and cartography, Thule was a mythical, far-northern island. Ultima Thule means “beyond Thule”, which essentially means that which lies beyond the borders of the known world. This name is highly appropriate, since the exploration of a KBO is something that has never been done before.

This artist's impression shows the New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Steve Gribben)
This artist’s impression shows the New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Steve Gribben)

As Alan Stern, the principal investigator of the New Horizons mission at the Southwest Research Institute, said in a recent NASA press release:

“MU69 is humanity’s next Ultima Thule. Our spacecraft is heading beyond the limits of the known worlds, to what will be this mission’s next achievement. Since this will be the farthest exploration of any object in space in history, I like to call our flyby target Ultima, for short, symbolizing this ultimate exploration by NASA and our team.”

The campaign to name this object was launched by NASA and the New Horizons team in early November, and was hosted by the SETI Institute and led by Mark Showalter – an institute fellow and member of the New Horizons science team. The campaign involved 115,000 participants from around the world who nominated 34,000 names – 37 of which were selected for a final ballot based on their popularity.

These included eight names suggested by the New Horizons team and 29 nominated by the public. The team then narrowed its selection to the 29 publicly-nominated names and gave preference to names near the top of the polls. Along with Ultima Thule, other names that were considered included Abeona, Pharos, Pangu, Rubicon, Olympus, Pinnacle and Tiramisu.

This chart shows the path of NASA’s New Horizons spacecraft toward its next potential target, the Kuiper Belt object 2014 MU69, (aka. Ultima Thule). Credit: Alex Parker/NASA/JHUAPL/SwRI

After a five-day extension was granted to accommodate more voting, the campaign wrapped up on Dec. 6th, 2017. Ultima Thule received about 40 nominations from the public and was among those that got the most votes. “We are grateful to those who proposed such an interesting and inspirational nickname,” Showalter said. “They deserve credit for capturing the true spirit of exploration that New Horizons embodies.”

This name, however, is not a permanent one, but a working one which reflects the fact that MU69 is beyond Pluto – once held to be the most distant planet of the Solar System. Once the flyby is complete, NASA and the New Horizons team will submit a formal name to the International Astronomical Union (IAU). The name will depend on whether or not MU69 is a single body, a binary pair, or multiple objects.

You can check out the he final tallies on all the highest-voted names at http://frontierworlds.seti.org/.

Further Reading: NASA

Kepler’s Almost Out of Fuel. It’ll Make its Last Observation in a Few Months

Artist's concept of the Kepler mission with Earth in the background. Credit: NASA/JPL-Caltech
Artist's concept of the Kepler mission with Earth in the background. Credit: NASA/JPL-Caltech

Since its deployment in March of 2009, the Kepler space telescope has been a boon for exoplanet-hunters. As of March 8th, 2018, a total of 3,743 exoplanets have been confirmed, 2,649 of which were discovered by Kepler alone. At the same time, the telescope has suffered its share of technical challenges. These include the failure of two reaction wheels, which severely hampered the telescope’s ability to conduct its original mission.

Nevertheless, the Kepler team was able to return the telescope to a stable configuration by using small amounts of thruster fuel to compensate for the failed reaction wheels. Unfortunately, after almost four years conducting its K2 observation campaign, the Kepler telescope is now running out fuel. Based on its remaining fuel and rate of consumption, NASA estimates that the telescope’s mission will end in a few months.

For years, the Kepler space telescope has been locating planets around distant stars using the Transit Method (aka. Transit Photometry). This consists of monitors stars for periodic dips in brightness, which are caused by a planet passing in front of the star (i.e. transiting). Of all the methods used to hunt for exoplanets, the Transit Method is considered the most reliable, accounting for a total of 2900 discoveries.

Naturally, this news comes as a disappointment to astronomers and exoplanet enthusiasts. But before anyone starts lamenting the situation, they should keep some things in mind. For one, the Kepler mission has managed to last longer than anyone expected. Ever since the K2 campaign began, the telescope has been required to shift its field of view about every three months to conduct a new observation campaign.

Based on their original estimates, the Kepler team believed they had enough fuel to conduct 10 more campaigns. However, the mission has already completed 16 campaigns and the team just began their 17th. As Charlie Sobeck, a system engineer for the Kepler space telescope mission, explained in a recent NASA press statement:

“Our current estimates are that Kepler’s tank will run dry within several months – but we’ve been surprised by its performance before! So, while we anticipate flight operations ending soon, we are prepared to continue as long as the fuel allows. The Kepler team is planning to collect as much science data as possible in its remaining time and beam it back to Earth before the loss of the fuel-powered thrusters means that we can’t aim the spacecraft for data transfer. We even have plans to take some final calibration data with the last bit of fuel, if the opportunity presents itself.”

So while the mission is due to end soon, the science team hopes to gather as much scientific data as possible and beam it back to Earth before then. They also hope to gather some final calibration data using the telescope’s last bit of fuel, should the opportunity present itself. And since they cannot refuel the spacecraft, they hope to stop collecting data so they can use their last bit of fuel to point the spacecraft back towards Earth and bring it home.

NASA’s Kepler spacecraft has been on an extended mission called K2 after two of its four reaction wheels failed in 2013. Credit: NASA

“Without a gas gauge, we have been monitoring the spacecraft for warning signs of low fuel— such as a drop in the fuel tank’s pressure and changes in the performance of the thrusters,” said Sobeck. “But in the end, we only have an estimate – not precise knowledge. Taking these measurements helps us decide how long we can comfortably keep collecting scientific data.”

This has been standard practice for many NASA missions, where enough fuel has been reserved to conduct one last maneuver. For example, the Cassini mission had to reserve fuel in order to descend into Saturn’s atmosphere so it would avoid colliding with one of its moons and contaminating a potentially life-bearing environment. Satellites also regularly conduct final maneuvers to ensure they don’t crash into other satellites or fall to Earth.

While deep-space missions like Kepler are in no danger of crashing to Earth or contaminating a sensitive environment, this final maneuver is designed to ensure that the science team can squeeze every last drop of data from the spacecraft. So before the mission wraps up, we can expect that this venerated planet-hunter will have some final surprises for us!

Artist’s rendition of TESS in space. (Credit: MIT Kavli Institute for Astrophysics Research).

In the coming years, next-generation telescopes will be taking to space to pick up where Kepler and other space telescopes left off. These include the Transiting Exoplanet Survey Satellite (TESS), which will be conducting Transit surveys shortly after it launches in April of 2018. By 2019, the James Webb Space Telescope (JWST) will also take to space and use its powerful infrared instruments to aid in the hunt for exoplanets.

So while we will soon be saying goodbye to the Kepler mission, its legacy will live on. In truth, the days of exoplanet discovery are just getting started!

Stay tuned for updates from the Kepler and K2 Science Center.

Further Reading: NASA

James Webb is Enduring its Final Stage of Testing Before it Ships off for Kourou, French Guiana

The combined optics and science instruments of NASA’s James Webb Space Telescope being removed from the Space Telescope Transporter for Air, Road and Sea (STTARS) at the Northrop Grumman company headquarters on March 8th, 2018. Credits: NASA/Chris Gunn

Once deployed, the James Webb Space Telescope (JWST) will be the most powerful telescope ever built. As the spiritual and scientific successor to the Hubble, Spitzer, and Kepler space telescopes, this space observatory will use its advanced suite of infrared instruments to the look back at the earliest stars and galaxies, study the Solar System in depth, and help characterize extra-solar planets (among other things).

Unfortunately, the launch of the JWST has been subject to multiple delays, with the launch date now set for some time in 2019. Luckily, on Thursday, March 8th, engineers at the Northrop Grumman company headquarters began the final step in the observatory’s integration and testing. Once complete, the JWST will be ready to ship to French Guiana, where it will be launched into space.

This final phase consisted of removing the combined optics and science instruments from their shipping containers – known as the Space Telescope Transporter for Air, Road and Sea (STTARS) – which recently arrived after being testing at NASA’s Johnson Space Center in Houston. This constitutes half the observatory, and includes the telescope’s 6.5 meter (21.3 foot) golden primary mirror.

The Space Telescope Transporter for Air, Road and Sea (STTARS) being opened at Northrop Grumman on March 8th, 2018, to reveal the combined optics and science instruments of NASA’s James Webb Space Telescope. Credits: NASA/Chris Gunn

The science payload was also tested at NASA’s Goddard Space Flight Center last year to ensure it could handle the vibrations associated with space launches and the temperatures and vacuum conditions of space. The other half of the observatory consists of the integrated spacecraft and sunshield, which is in the final phase of assembly at the Northrop Grumman company headquarters.

These will soon undergo a launch environment test to prove that they are ready to be combined with the science payload. Once both halves are finished being integrated, addition testing will be performed to guarantee the  fully assembled observatory can operate at the L2 Earth-Sun Lagrange Point. As Eric Smith, the program director for the JWST at NASA Headquarters, said in a recent NASA press statement:

“Extensive and rigorous testing prior to launch has proven effective in ensuring that NASA’s missions achieve their goals in space. Webb is far along into its testing phase and has seen great success with the telescope and science instruments, which will deliver the spectacular results we anticipate.”

These final tests are crucial to ensuring that that the observatory deploys properly and can operate once it is in space. This is largely because of the telescope’s complicated design, which needs to be folded in order to fit inside the Ariane 5 rocket that it will carry it into space. Once it reaches its destination, the telescope will have to unfold again, deploying its sunshield, mirrors and primary mirror.

The James Webb Space Telescope’s sunshield being deployed inside a cleanroom at Northrop Grumman’s company headquarter’s, in October 2017. Credits: Northrop Grumman

Not only does all of this represented a very technically-challenging feet, it is the first time that any space telescope has had to perform it. Beyond that, there are also the technical challenges of building a complex observatory that is designed to operate in space. While the JWST’s optics and science instruments were all built at room temperature here on Earth, they had to be designed to operate at cryogenic temperatures.

As such, its mirrors had to be precisely polished and formed that they would achieve the correct shape once they cool in space. Similarly, its sunshield will be operating in a zero gravity environment, but was built and tested here on Earth where the gravity is a hefty 9.8 m/s² (1 g). In short, the James Webb Space Telescope is the largest and most complex space telescope ever built, and is one of NASA’s highest priority science projects.

It is little wonder then why NASA has had to put the JWST through such a highly-rigorous testing process. As Smith put it:

“At NASA, we do the seemingly impossible every day, and it’s our job to do the hardest things humankind can think of for space exploration. The way we achieve success is to test, test and retest, so we understand the complex systems and verify they will work.”

The James Webb Space Telescope (which is scheduled to launch in 2019) will be the most powerful telescope ever deployed. Credit: NASA/JPL

Knowing that the JWST is now embarking on the final phase of its development – and that its engineers are confident it will perform up to task – is certainly good news. Especially in light of a recent report from the US Government Accountability Office (GAO), which stated that more delays were likely and that the project would probably exceed its original budget cap of $8 billion.

As the report indicated, it is the final phase of integration and testing where problems are most likely to be found and schedules revised. However, the report also stated that “Considering the investment NASA has made, and the good performance to date, we want to proceed very systematically through these tests to be ready for a Spring 2019 launch.”

In other words, there is no indication whatsoever that Congress is considering cancelling the project, regardless of further delays or cost overruns. And when the JWST is deployed, it will use its 6.5 meter (21-foot) infrared-optimized telescopes will search to a distance of over 13 billion light years, allow astronomers to study the atmospheres of Solar Planets, exoplanets, and other objects within our Solar System.

So while the JWST may not make its launch window in 2019, we can still expect that it will be taking to space in the near future. And when it does, we can also expect that what it reveals about our Universe will be mind-blowing!

Further Reading: NASA

Scientists Propose An Asteroid Nuke Mission To Save Earth From Potential Destruction

Mining asteroids might be necessary for humanity to expand into the Solar System. But what effect would asteroid mining have on the world's economy? Credit: ESA.

Some might say it’s paranoid to think about an asteroid hitting Earth and wiping us out. But the history of life on Earth shows at least 5 major extinctions. And at least one of them, about 65 million years ago, was caused by an asteroid.

Preparing for an asteroid strike, or rather preparing to prevent one, is rational thinking at its finest. Especially now that we can see all the Near Earth Asteroids (NEAs) out there. The chances of any single asteroid striking Earth may be small, but collectively, with over 15,000 NEAs catalogued by NASA, it may be only a matter of time until one comes for us. In fact, space rocks strike Earth every day, but they’re too small to cause any harm. It’s the ones large enough to do serious damage that concern NASA.

NASA has been thinking about the potential for an asteroid strike on Earth for a long time. They even have an office dedicated to it, called the Office of Planetary Defense, and minds there have been putting a lot of thought into detecting hazardous asteroids, and deflecting or destroying any that pose a threat to Earth.

Computer generated simulation of an asteroid strike on the Earth. Credit: Don Davis/AFP/Getty Images

One of NASA’s proposals for dealing with an incoming asteroid is getting a lot of attention right now. It’s called the Hyper-velocity Asteroid Mitigation Mission for Emergency Response, or HAMMER. HAMMER is just a concept right now, but it’s worth talking about. It involves the use of a nuclear weapon to destroy any asteroid heading our way.

The use of a nuclear weapon to destroy or deflect an asteroid seems a little risky at first glance. They’re really a weapon of last resort here on Earth, because of their potential to wreck the biosphere. But out in space, there is no biosphere. If scientists sound a little glib when talking about HAMMER, the reality is they’re not. It makes perfect sense. In fact, it may be the only sensible use for a nuclear weapon.

The idea behind HAMMER is pretty simple; it’s a spacecraft with an 8.8 ton tip. The tip is either a nuclear weapon, or an 8.8 ton kinetic impactor. Once we detect an asteroid on a collision course with Earth, we use space-based and ground-based systems to ascertain its size. If its small enough, then HAMMER will not require the nuclear option. Just striking a small asteroid with sufficient mass will divert it away from Earth.

If the incoming asteroid is larger, or if we don’t detect it early enough, then the nuclear option is chosen. HAMMER would be launched with an atomic warhead on it, and the incoming offender would be destroyed. It sounds like a pretty tidy solution, but it’s a little more complicated than that.

A lot depends on the size of the object and when it’s detected. If we’re threatened by an object we’ve been aware of for a long time, then we might have a pretty good idea of its size, and of its trajectory. In that case, we can likely divert it with a kinetic impactor.

Artist’s impression of the first interstellar asteroid, “Oumuamua”. This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

But for larger objects, we might require a fleet of impactors already in space, ready to be sent on a collision course. Or we might use the nuclear option. The ER in HAMMER stands for Emergency Response for a reason. If we don’t have enough time to plan or respond, then a system like HAMMER could be built and launched relatively quickly. (In this scenario, relatively quickly means years, not months.)

One of the problems is with the asteroids themselves. They have different orbits and trajectories, and the time to travel to different NEO‘s can vary widely. And things in space aren’t static. We share a region of space with a lot of moving rocks, and their trajectories can change as a result of gravitational interactions with other bodies. Also, as we learned from the arrival of Oumuamua last year, not all threats will be from our own Solar System. Some will take us by surprise. How will we deal with those? Could we deploy HAMMER quickly enough?

Another cautionary factor around using nukes to destroy asteroids is the risk of fracturing them into multiple pieces without destroying them. If an object larger than 1 km in diameter threatened Earth, and we aimed a nuclear warhead at it but didn’t destroy it, what would we do? How would we deal with one or more fragments heading towards Earth?

HAMMER and the whole issue of dealing with threatening asteroids is a complicated business. We’ll have to prepare somehow, and have a plan and systems in place for preventing collisions. But our best bet might lie in better detection.

We’ve gotten a lot better at detecting Near Earth Objects,(NEOs), Potentially Hazardous Objects (PHOs), and Near Earth Asteroids (NEAs) lately. We have telescopes and projects dedicated to cataloguing them, like Pan-STARRS, which discovered Oumuamua. And in the next few years, the Large Synoptic Survey Telescope (LSST) will come online, boosting our detection capabilities even further.

It’s not just extinctions that we need to worry about. Asteroids also have the potential to cause massive climate change, disrupt our geopolitical order, and generally de-stabilize everything going on down here on Earth. At some point in time, an object capable of causing massive damage will speed toward us, and we’ll either need HAMMER, or another system like it, to protect ourselves and the planet.

Messier 67 – the King Cobra Open Star Cluster

The location of the King Cobra open star cluster (aka. Messier 67). Credit: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the big snake – the King Cobra Cluster (aka. Messier 67).

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects he initially mistook for comets. In time, he would come to compile a list of approximately 100 of these objects, hoping to prevent other astronomers from making the same mistake. This list – known as the Messier Catalog – would go on to become one of the most influential catalogs of Deep Sky Objects.

One of these objects is the open star cluster known as Messier 67, aka. the King Cobra Cluster. Located in the Cancer Constellation, and with age estimates ranging from 3.2 and 5 billion years, this cluster is one of the oldest clusters known. And at a distance of roughly 2610 and 2930 (800 – 900 pc) from Earth, it is the closest of any of the older open star clusters. Continue reading “Messier 67 – the King Cobra Open Star Cluster”

Jupiter’s Atmospheric Bands Go Surprisingly Deep

Jupiter's colorful stripes are cloud belts that extend thousand of kilometers deep. NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

For centuries, astronomers have been observing Jupiter swirling surface and been awed and mystified by its appearance. The mystery only deepened when, in 1995, the Galileo spacecraft reached Jupiter and began studying its atmosphere in depth. Since that time, astronomers have puzzled over its colored bands and wondered if they are just surface phenomenon, or something that goes deeper.

Thanks to the Juno spacecraft, which has been orbiting Jupiter since July of 2016, scientists are now much closer to answering that question. This past week, three new studies were published based on Juno data that presented new findings on Jupiter’s magnetic field, its interior rotation, and how deep its belts extend. All of these findings are revising what scientists think of Jupiter’s atmosphere and its inner layers.

The studies were titled “Measurement of Jupiter’s asymmetric gravity field“, “Jupiter’s atmospheric jet streams extend thousands of kilometres deep” and “A suppression of differential rotation in Jupiter’s deep interior“, all of which were published in Nature on March 7th, 2018. The studies were led by Prof. Luciano Iess of Sapienza University of Rome, the second by Prof. Yohai Kaspi and Dr. Eli Galanti of the Weizmann Institute of Science, and the third by Prof. Tristan Guillot of the Observatoire de la Cote d’Azur.

Jupiter’s South Pole, taken during a Juno flyby on Dec 16th, 2017. Credit: NASA/JPL-Caltech/SwRI/MSSS/David Marriott

The research effort was led by Professo Kaspi and Dr. Galanti, who in addition to being the lead authors on the second study were co-authors on the other two. The pair have been preparing for this analysis even before Juno launched in 2011, during which time they built mathematical tools to analyze the gravitational field data and get a better grasp of Jupiter’s atmosphere and its dynamics.

All three studies were based on data gathered by Juno as it passed from one of Jupiter’s pole to the other every 53-days – a maneuver known as a “perijove”. With each pass, the probe used its advanced suite of instruments to peer beneath the surface layers of the atmosphere. In addition, radio waves emitted by the probe were measured to determine how they were shifted by the planet’s gravitational field with each orbit.

As astronomers have understood for some time, Jupiter’s jets flow in bands from east to west and west to east. In the process, they disrupt the even distribution of mass on the planet. By measuring changes in the planet’s gravity field (and thus this mass imbalance), Dr. Kaspi and Dr. Galanti’s analytical tools were able to calculate how deep the storms extend beneath the surface and what it’s interior dynamics are like.

Above all, the team expected to find anomalies because of the way the planet deviates from being a perfect sphere – which is due to how its rapid rotation squishes it slightly. However, they also looked for additional anomalies that could be explained due to the presence of powerful winds in the atmosphere.

This image from Juno’s JunoCam captured the south pole in visible light only. It’s a puzzle why the north and south poles are so similar, yet have a different number of cyclones. Image: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

In the first study, Dr. Iess and his colleagues used precise Doppler tracking of the Juno spacecraft to conduct measurements of Jupiter’s gravity harmonics – both even and odd. What they determined was Jupiter’s magnetic field has a north-south asymmetry, which is indicative of interior flows in the atmosphere.

Analysis of this asymmetry was followed-up on in the second study, where Dr. Kaspi, Dr. Galanti and their colleagues used the variations in the planet’s gravity field to calculate the depth of Jupiter’s east-west jet streams. By measuring how these jets cause an imbalance in Jupiter’s gravity field, and even disrupt the mass of the planet, they concluded that they extend to a depth of 3000 km (1864 mi).

From all this, Prof. Guillot and his colleagues conducted the third study, where they used the previous findings about the planet’s gravitational field and jet streams and compared the results to predictions of interior models. From this, they determined that the interior of the planet rotates almost like a rigid body and that differential rotation decreases farther down.

In addition, they found that the zones of atmospheric flow extended to between 2,000 km (1243 mi) and 3,500 km (2175 mi) deep, which was consistent with the constraints obtained from the odd gravitational harmonics. This depth also corresponds to the point where electric conductivity would become large enough that magnetic drag would suppress differential rotation.

Based on their findings, the team also calculated that Jupiter’s atmosphere constitutes 1% of its total mass. For comparison, Earth’s atmosphere is less than a millionth of its total mass. Still, as Dr. Kaspi explained in Weizzmann Institute press release, this was rather surprising:

“That is much more than anyone thought and more than what has been known from other planets in the Solar System. That is basically a mass equal to three Earths moving at speeds of tens of meters per second.”

All told, these studies have shed new light on the Jupiter’s atmospheric dynamics and interior structure. At present, the subject of what resides at Jupiter’s core remains unresolved. But the researchers hope to analyze further measurements made by Juno to see whether Jupiter has a solid core and (if so) to determine its mass. This in turn will help astronomers learn a great deal about the Solar System’s history and formation.

In addition, Kaspi and Galanti are looking to use some of the same methods they developed to characterize Jupiter’s jet streams to tackle its most iconic feature – Jupiter’s Great Red Spot. In addition to determining how deep this storm extends, they also hope to learn why this storm has persisted for so many centuries, and why it has been noticeably shrinking in recent years.

The Juno mission is expected to wrap up in July of 2018. Barring any extensions, the probe will conduct a controlled deorbit into Jupiter’s atmosphere after conducting perijove 14. However, even after the mission is over, scientists will be analyzing the data it has collected for years to come. What this reveals about the Solar System’s largest planet will also go a long way towards informing out understanding of the Solar System.

Further Reading: Weizmann Institute of Science, Nature, Nature (2), Nature (3),

Gaze in Wonder at Jupiter’s Mysterious Geometric Polar Storms

This wondrous image of Jupiter's south pole shows the arrangement of cyclones that is unique in our Solar System: five circumpolar cyclones perfectly arranged around a single polar cyclone. Image: NASA/SWRI/JPL/ASI/INAF/IAPS

When the Juno spacecraft arrived at Jupiter in July 2016, it quickly got to work. Among the multitude of stunning images of the planet were our first ever images of Jupiter’s poles. And what we saw there was a huge surprise: geometric arrangements of cyclones in persistent patterns.

Jupiter’s polar regions have always been a mystery to Earth-bound observers. The planet isn’t tilted much, which means the poles are always tantalizingly out of view. Other spacecraft visiting Jupiter have focused on the equatorial regions, but Juno’s circumpolar orbit is giving us good, close-up views of Jupiter’s poles.

“They are extraordinarily stable arrangements of such chaotic elements. We’d never seen anything like it.” – Morgan O’Neill, University of Chicago

Juno has a whole suite of instruments designed to unlock some of the mysteries surrounding Jupiter, including an infrared imager and a visible light camera. The polar regions are a particular focus for the mission, and astronomers were looking forward to their first views of Jupiter’s hidden poles. They were not disappointed when they got them.

Each of Jupiter’s poles is a geometric array of large cyclones arranged in persistent, polygonal patterns. At the north pole, eight storms are arranged around a single polar cyclone. In the south, one storm is encircled by five others.

Jupiter’s north pole is an arrangement of 8 cyclones around one central cyclone. Image: NASA/SWRI/JPL/ASI/INAF/IAPS

This was a stunning discovery, and quickly led to questions around the why and the how of these storm arrangements. Jupiter’s atmosphere is dominated by storm activity, including the well-known horizontal storm bands in the equatorial regions, and the famous Great Red Spot. But these almost artful arrangements of polar storms were something else.

The persistent arrangement of the storms is a puzzle. Our current understanding tells us that the storms should drift around and merge, but these storms do neither. They just turn in place.

A new paper published in Nature is looking deeper into these peculiar arrangements of storms. The paper is by scientists from an international group of institutions including the University of Chicago. It’s one of four papers dedicated to new observations from the Juno spacecraft.

One of the paper’s co-authors is Morgan O’Neill, a University of Chicago postdoctoral scholar. Remarking on the storms, she had this to say: “They are extraordinarily stable arrangements of such chaotic elements. We’d never seen anything like it.”

This image from Juno’s JunoCam captured the south pole in visible light only. It’s a puzzle why the north and south poles are so similar, yet have a different number of cyclones. Image: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

The strange geometrical arrangement of Jupiter’s polar storms reminded O’Neill of something from the library of strange physical phenomena only observed under laboratory conditions. Back in the ’90s, scientists had used electrons to simulate a frictionless, turbulent 2-D fluid as it cools. In those conditions, they observed similar behaviour. Rather than merging like expected, small vortices clumped together and formed equally spaced arrays around a center. They called these arrays “vortex crystals.”

This could help explain what’s happening at Jupiter’s poles, but it’s too soon to be certain. “The next step is: Can you create a model that builds a virtual planet and predicts these flows?” O’Neill said. That’ll be the next step in understanding the phenomenon.

Maybe it’s not surprising that these delicate-looking storms at the poles are so persistent. After all, the Great Red Spot on Jupiter has been visible for over 200 years. Maybe Jupiter is just huge and stable.

But the polar cyclones still require an explanation. And whatever that explanation is, understanding what’s happening on Jupiter will help us understand other planets better.

James Webb Telescope is Probably Going to be Delayed Again, and Could Exceed a Congress Spending Cap

The James Webb Space Telescope will be the first of the Super Telescopes to see first light. It is scheduled to be launched in October, 2018. Image credit: NASA/Desiree Stover
The James Webb Telescope will be the most powerful telecope once it is deployed. However, delays and cost overruns could be a problem. Credit: NASA/Desiree Stover

When the James Webb Space Telescope takes to space, some tremendous scientific discoveries are expected to result. As the spiritual and scientific successor to the Hubble, Spitzer, and Kepler Space Telescopes, this space observatory will use its advanced suite of infrared instruments to the look back at the early Universe, study the Solar System, and help characterize extra-solar planets.

Unfortunately, the launch of this mission has been delayed several times now, with the launch date now set for some time in 2019. And based on the amount of work NASA needs to do complete the JWST before launch, the Government Accountability Office (GAO) believes that more delays are coming and believes that the project is likely to exceed the cost cap set by Congress in 2011 at $8 billion. 

Part of the problem is that all the remaining schedule reserve – the extra time set aside in the event of delays or unforeseen risks – was recently used to address technical issues. These include the “anomalous readings” detected from the telescope during vibration testing back in December 2016. NASA responded to this by giving the project up to 4 months of schedule reserve by extending the launch window.

The JWST sunshield being unfolded in the clean room at Northrop Grumman Aerospace Systems in Redondo Beach, California. Credits: Northrop Grumman Corp.

However, in 2017, NASA delayed the launch window again by 5 months, from October 2018 to a between March and June 2019. This delay was requested by the project team, who indicated that they needed to address lessons learned from the initial folding and deployment of the observatory’s sunshield. As Eric Smith, the program director for the James Webb Space Telescope at NASA Headquarters, explained to Congress at the time:

“Webb’s spacecraft and sunshield are larger and more complex than most spacecraft. The combination of some integration activities taking longer than initially planned, such as the installation of more than 100 sunshield membrane release devices, factoring in lessons learned from earlier testing, like longer time spans for vibration testing, has meant the integration and testing process is just taking longer. Considering the investment NASA has made, and the good performance to date, we want to proceed very systemmatically through these tests to be ready for a Spring 2019 launch.”

Given the remaining integration and test work that lies ahead, more delays are expected. According to the GAO, it is this phase where problems are most likely to be found and schedules revised. Coupled with the fact that only 1.5 months of schedule reserves remain until the end of the launch window, they anticipate that additional launch delays are likely, which will also require budget increases.

Initially, the budget estimates that were set by Congress indicated that the observatory would cost $1.6 billion and would launch by 2011, with an overall cost cap set at $8 billion. However, NASA has revised the budget multiple times since then (in conjunction with the multiple delays) and estimates that the budget for a 2019 launch window would now be $8.8 billion.

The James Webb Space Telescope being placed in the Johnson Space Center’s historic Chamber A on June 20th, 2017. Credit: NASA/JSC

Once deployed, the JWST will be the most powerful space telescope ever built and will serve thousands of astronomers worldwide. As a collaborative project between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), it also representative of the new era of international cooperation. But by far, the most impressive thing about this mission is the scientific discoveries it is expected to make.

It’s 6.5 meter (21-foot) infrared-optimized telescopes will search to a distance of over 13 billion light years, allowing it to study the first stars and galaxies that formed. It will also allow astronomers to study the atmospheres of Solar Planets and exoplanets and other objects within our Solar System. As such, and delays and cost overruns in the project are cause for concern.

In the meantime, the project’s Standing Review Board will conduct an independent review in early 2018 to determine if the June 2019 launch window can still be met. With so many experiments and surveys planned for the telescope, it would be no exaggeration to say that a lot is riding on its successful completion and deployment. Best of luck passing review James Webb Space Telescope!

Further Reading: Government Accountability Office

Hubble Sees a Huge Dust Cloud Around a Newly Forming Star

Astronomers have used NASA's Hubble Space Telescope to uncover a vast, complex dust structure, about 150 billion miles across, enveloping the young star HR 4796A. Image:NASA/ESA/G. Schneider (Univ. of Arizona)

Younger stars have a cloud of dusty debris encircling them, called a circumstellar disk. This disk is material left over from the star’s formation, and it’s out of this material that planets form. But scientists using the Hubble have been studying an enormous dust structure some 150 billion miles across. Called an exo-ring, this newly imaged structure is much larger than a circumstellar disk, and the vast structure envelops the young star HR 4796A and its inner circumstellar disk.

Discovering a dust structure around a young star is not new, and the star in this new paper from Glenn Schneider of the University of Arizona is probably our most (and best) studied exoplanetary debris system. But Schneider’s paper, along with capturing this new enormous dust structure, seems to have uncovered some of the interplay between the bodies in the system that has previously been hidden.

Schneider used the Space Telescope Imaging Spectrograph (STIS) on the Hubble to study the system. The system’s inner disk was already well-known, but studying the larger structure has revealed more complexity.

The Hubble Space Telescope has imaged a vast, complex dust structure surrounding the star HR 4769A. The bright, inner ring is well-known to astronomers, but the huge dust structure surrounding the whole system is a new discovery. Image: NASA/ESA/G. Schneider (Univ. of Arizona)

The origin of this vast structure of dusty debris is likely collisions between newly forming planets within the smaller inner ring. Outward pressure from the star HR 4769A then propelled the dust outward into space. The star is 23 times more luminous than our Sun, so it has the necessary energy to send the dust such a great distance.

A press release from NASA describes this vast exo-ring structure as a “donut-shaped inner tube that got hit by a truck.” It extends much further in one direction than the other, and looks squashed on one side. The paper presents a couple possible causes for this asymmetric extension.

It could be a bow wave caused by the host star travelling through the interstellar medium. Or it could be under the gravitational influence of the star’s binary companion (HR 4796B), a red dwarf star located 54 billion miles from the primary star.

“The dust distribution is a telltale sign of how dynamically interactive the inner system containing the ring is'” – Glenn Schneider, University of Arizona, Tucson.

The asymmetrical nature of the vast exo-structure points to complex interactions between all of the stars and planets in the system. We’re accustomed to seeing the radiation pressure from the host star shape the gas and dust in a circumstellar disk, but this study presents us with a new level of complexity to account for. And studying this system may open a new window into how solar systems form over time.

Artist’s impression of circumstellar disk of debris around a distant star. These disk are common around younger stars, but the star in this study has a massive dust cloud that envelops and dwarfs the smaller, inner ring. Credit: NASA/JPL

“We cannot treat exoplanetary debris systems as simply being in isolation. Environmental effects, such as interactions with the interstellar medium and forces due to stellar companions, may have long-term implications for the evolution of such systems. The gross asymmetries of the outer dust field are telling us there are a lot of forces in play (beyond just host-star radiation pressure) that are moving the material around. We’ve seen effects like this in a few other systems, but here’s a case where we see a bunch of things going on at once,” Schneider further explained.

The paper suggests that the location and brightness of smaller rings within the larger dust structure places constraints on the masses and orbits of planets within the system, even when the planets themselves can’t be seen. But that will require more work to determine with any specificity.

This paper represents a refinement and advancement of the Hubble’s imaging capabilities. The paper’s author is hopeful that the same methods using in this study can be used on other similar systems to better understand these larger dust structures, how they form, and what role they play.

As he says in the paper’s conclusion, “With many, if not most, technical challenges now understood and addressed, this capability should be used to its fullest, prior to the end of the HST mission, to establish a legacy of the most robust images of high-priority exoplanetary debris systems as an enabling foundation for future investigations in exoplanetary systems science.”