Rosetta’s 67P Is The Result Of A Collision Of Two Comets

The comet 67P/Churyumov-Gerasimenko, which was visited by Rosetta in 2014-15, certainly appears to be the result of a collision between two comets. A new study explains how and when the collision occurred. By ESA/Rosetta/OSIRIS - http://www.esa.int/spaceinimages/Images/2014/12/Colour_image_of_comet, CC BY-SA 3.0,

Ever since we’ve been able to get closer looks at comets in our Solar System, we’ve noticed something a little puzzling. Rather than being round, they’re mostly elongated or multi-lobed. This is certainly true of Comet 67P/Churyumov-Gerasimenko (67P or Chury for short.) A new paper from an international team coordinated by Patrick Michel at France’s CNRS explains how they form this way.

The European Space Agency (ESA) spacecraft Rosetta visited 67P in 2014, end even placed its lander Philae on the surface. Rosetta spent 17 months orbiting 67P, and at its closest approach, Rosetta was only 10 km (6 mi) from 67P’s surface. Rosetta’s mission ended with its guided impact into 67P’s surface in September, 2016, but the attempt to understand the comet and its brethren didn’t end then.

An artist’s illustration of the spacecraft Rosetta and the Philae lander at comet 67P C-G. Image: By European Space Agency – Rosetta and Philae at comet, CC BY-SA 3.0-igo,

Though Rosetta’s pictures of 67P are the most detailed comet pictures we have, other spacecraft have visited other comets. And most of those other comets appear elongated or multi-lobed, too. Scientists explain these shapes with a “comet merger theory.” Two comets collide, creating the multi-lobed appearance of comets like 67P. But there’s been a problem with that theory.

In order for comets to merge and come out looking the way they do, they would have to merge very slowly, or else they would explode. They would also have to be very low-density, and be very rich in volatile elements. The “comet merger theory” also says that these types of gentle mergers between comets would have to have happened billions of years ago, in the early days of the Solar System.

The problem with this theory is, how could bodies like 67P have survived for so long? 67P is fragile, and subjected to repeated collisions in its part of the Solar System. How could it have retained its volatiles?

Geysers of dust and gas shooting off the comet’s nucleus are called jets. The volatile material they deliver outside the nucleus builds the comet’s coma. Credit: ESA/Rostta/NAVCAM

In the new paper, the research team ran a simulation that answers these questions.

The simulation showed that when two comets meet in a destructive collision, only a small portion of their material is pulverized and reduced to dust. On the sides of the comets opposite from the impact point, materials rich in volatiles withstand the collision. They’re still ejected into space, but their relative speed is low enough for them to join together in accretion. This process forms many smaller bodies, which keep clumping up until they form just one, larger body.

The most surprising part of this simulation is that this entire process may only take a few days, or even a few hours. The whole process explains how comets like 67P can keep their low density, and their abundant volatiles. And why they appear multi-lobed.

This image from the simulation shows how the ejected material from two bodies colliding re-accretes into a bilobal comet. Image: ESA/Rosetta/Navcam – CC BY-SA IGO 3.0

The simulation also answered another question: how can comets like 67P survive for so long?

The team behind the simulation thinks that the process can take place at speeds of 1 km/second. These speeds are typical in the Kuiper Belt, which is the disc of comets where 67P has its origins. In this belt, collisions between comets are a regular occurrence, which means that 67P didn’t have to form in the early days of the Solar System as previously thought. It could have formed at any time.

The team’s work also explains the surface appearance of 67P and other comets. They often have holes and stratified layers, and these features could have formed during re-accretion, or sometime after its formation.

Smooth terrain in the Imhotep region on 67P C-G, showing layering (B) and circular structures or pits (circled). Credit: ESA/Rosetta

One final point from the study concerns the composition of comets. One reason they’re a focus of such intense interest is their age. Scientists have always thought of them as ancient objects, and that studying them would allow us to look back into the primordial Solar System.

Though 67P—and other comets—may have formed much more recently than we used to believe, this process shows that there is no significant amount of heating or compaction during the collision. As a result, their original composition from the the early days of the Solar System is retained intact. No matter when 67P formed, it’s still a messenger from the formative days.

You can watch a video from the simulation here: http://www.dropbox.com/s/u7643hanvva57rp/Catastrophic%20disruptions.mp4?dl=0

Catch Sight of Humanity Star… While You Can

Humanity Star: shinny star-ball or light pollution menace. Credit Humanity Star
Humanity Star: shinny star-ball, or light pollution menace? Credit: Humanity Star.

It’s a question I’ve gotten lots, now that the calendar has flipped over from February to March. When will we get our first good look at the Humanity Star reflector satellite?

The Humanity Star satellite was a surprise payload object placed on the January 21st, 2018 inaugural orbital launch for Rocket Lab’s Electron rocket. Said launch occurred at Rocket Lab’s Launch Complex-1 on the Mahia Peninsula in New Zealand, placing Humanity Star in a 92 minute orbit inclined 83 degrees to the equator.

Launch! Electron’s inaugural flight. Credit: Rocket Lab.

Dubbed “A bright symbol and a reminder of our fragile place in the Universe,” Humanity Star is a one metre-wide reflective ball. The project is part of an effort to get humanity looking up worldwide in an effort to raise awareness about the night sky and space. Apparently, the cheap showiness of the natural night sky just isn’t enough to drag kids from their smartphone screens these days…

The Upcoming Passes

It makes sense to put a low priority payload such as a shinny orbiting ball or a Tesla roadster on an inaugural rocket launch. Anything can happen the first time ’round, and you wouldn’t want to say, bet the success of the James Webb Space Telescope on an untested launch platform.

And since placing Humanity Star in orbit was a secondary objective for Electron, the orbit is a tough one to observe. It’s just now becoming visible around middle latitudes this week over the swath of the planet inhabited by most of well, humanity.

Heavens-Above’s main page has a link dedicated to Humanity Star. Early magnitude estimates place its maximum brightness on a good overhead pass at around magnitude +1—visible to the naked eye, but hardly the “Brightest Object in the Heavens!” proclaimed on many websites.

The Friday, March 9th pass of Humanity Star up the U.S. East Coast at 7:13 PM EST. Credit: Orbitron.

And what goes up, must come back down. Very early predictions by the U.S. Joint Space Operations Command’s Space-Track website place the reentry for Humanity Star at sometime around March 25th. We’ll be watching for Humanity Star from our current base camp of operations in Norfolk, Virginia this week, clear skies willing. Follow us on Twitter (we’re @Astroguyz) for updates on sightings, magnitude etc.

There’s no word yet as to when the next Electron rocket launch from New Zealand by Rocket Lab will take place.

Is it good to put shinny junk in space? Another recent effort, the Russian Mayak reflector satellite from 2017, proved to be underwhelming. The first constellation of Iridium satellites will reenter over the next few years, marking the end of the Iridium Flare Era. One Japanese company even wants to provide customized artificial meteor showers.

It reminds me of the good old/bad old days of the 1970s, when plans were afoot to place everything in orbit, from large reflectors to abolish the night (!) to orbiting advertising. And while our astrophotos aren’t getting photo-bombed by Pepsi or McDonald’s logos (yet), we can all chase down the latest attempt to get folks to look up this weekend.

Astronomers See A Dead Star Come Back To Life Thanks To A Donor Star

The ESA INTEGRA observatory has witnessed a "zombie" neutron star being re-energized by the solar wind of its companion red giant star, and coming back to life in a burst of x-rays. Image: ESA

It’s not exactly an organ donor, but a star in the direction of the hyper-populated core of the Milky Way donating some of its mass to a dormant neighbor. The result? The dormant neighbor sprung back to life with an X-ray burst captured by the ESA‘s INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) space observatory.

“INTEGRAL caught a unique moment in the birth of a rare binary system” – Enrico Bozzo, University of Geneva.

The neighbors have likely been paired together for billions of years, which is not in itself noteworthy: stars often live in binary pairs. But the pair spotted by INTEGRAL on August 13th 2017 is very unusual. The donor star is a red giant, and the recipient is a neutron star. So far, astronomers only know of 10 of these pairs, called ‘symbiotic X-ray binaries’.

To understand what’s happening between these neighbors, we have to look at stellar evolution.

The donor star is in its red giant phase. That’s when a star in the same mass range as our star reaches the later stage of its life. As its mass is depleted, gravity can’t hold the star together in the same way it has for the early part of its life. The star expands outwards by millions of kilometers. As it does so, it sheds stellar material from its outer layers in a solar wind that travels several hundreds of km/sec.

The red giant and the neutron star may have traveled different evolutionary pathways, but proximity made them partners. Image: ESA

Its neighbor is in a different state. It’s a star that had an initial mass of about 25 to 30 times the Sun. When a star this big approaches the end of its life, it suffers a different fate. Stars this large live fast, and burn through their fuel quickly. Then, they explode as supernovae, in this case leaving a corpse behind. In the binary system captured by INTEGRAL, the corpse is a spinning neutron star with a magnetic field.

Neutron stars are dense. In fact, they’re some of the densest stellar objects we know of, packing as much mass as one-and-a-half of our Suns into an object that’s only about 10 km across.
When the red giant’s stellar wind met the neutron star, the neutron star slowed its rate of spin, and burst into life, emitting high-energy x-rays.

“INTEGRAL caught a unique moment in the birth of a rare binary system,” says Enrico Bozzo from University of Geneva and lead author of the paper that describes the discovery. “The red giant released a sufficiently dense slow wind to feed its neutron star companion, giving rise to high-energy emission from the dead stellar core for the first time.”

After INTEGRAL spotted the x-ray burst from the binary, other observations quickly followed. The ESA’s XMM Newton and NASA’s NuSTAR and Swift space telescopes got to work, along with ground-based telescopes. These observations confirmed what initial observations showed: this is a very peculiar pair of stars.

“…we believe we saw the X-rays turning on for the first time.” – Erik Kuulkers, ESA INTEGRAL Project Scientist.

The neutron star spins very slowly, taking about 2 hours to revolve, which is remarkable since other neutron stars can spin many times per second. The magnetic field of the neutron star was also much stronger than expected. But the magnetic field around a neutron star is thought to weaken over time, making this a relatively young neutron star. And a red giant is old, so this is a very odd pairing of old red giant with young neutron star.

One possible explanation is that the neutron star didn’t form from a supernova, but from a white dwarf. In that scenario, the white dwarf would’ve collapsed into a neutron star after a very long period of feeding on material from the red giant. That would explain the disparity in ages of the two stars in the system.

An artist’s illustration of ESA’s INTEGRAL space observatory. INTEGRAL was launched in 2002 to study some of the most energetic phenomena in the universe. Image: ESA.

“These objects are puzzling,” says Enrico. “It might be that either the neutron star magnetic field does not decay substantially with time after all, or the neutron star actually formed later in the history of the binary system. That would mean it collapsed from a white dwarf into a neutron star as a result of feeding off the red giant over a long time, rather than becoming a neutron star as a result of a more traditional supernova explosion of a short-lived massive star.”

The next question is how long will this process go on? Is it short-lived, or the beginning of a long-term relationship?

“We haven’t seen this object before in the past 15 years of our observations with INTEGRAL, so we believe we saw the X-rays turning on for the first time,” says Erik Kuulkers, ESA’s INTEGRAL project scientist. “We’ll continue to watch how it behaves in case it is just a long ‘burp’ of winds, but so far we haven’t seen any significant changes.”

The INTEGRAL space observatory was launched in 2002 to study some of the most energetic phenomena in the universe. It focuses on things like black holes, neutron stars, active galactic nuclei and supernovae. INTEGRAL is a European Space Agency mission in cooperation with the United States and Russia. Its projected end date is December, 2018.

Saturn Photobombs a Picture of the Martian Moon Phobos

This image of Deimos and Saturn was taken by the Super Resolution Channel of Mars Express’ High Resolution Stereo Camera. Credit: ESA/DLR/FU Berlin

The ESA’s Mars Express probe has been studying Mars and its Moons for many years. While there are several missions currently in orbit around Mars, Mars Express‘s near-polar elliptical orbit gives it some advantages over the others. For one, its orbital path takes it closer to Phobos than any other spacecraft, which allows it to periodically observe the moon from distances of around 150 km (93 mi).

Because of this, the probe is in an ideal position to study Mars’ moons and capture images of them. On occasion, this allows for some interesting photo opportunities. For example, in November of 2017, while taking pictures of Phobos and Deimos, the probe spotted Saturn in the background. This fortuitous event led to the creation of some beautiful images, which were put together to produce a video.

Since 2003, Mars Express has been studying Phobos and Deimos in the hopes of learning more about these mysterious objects. While it has learned much about their size, appearance and position, much remains unknown about their composition, how and where they formed, and what their surface conditions are like. To answer these questions, the probe has been conducting regular flybys of these moons and taking pictures of them.

Phobos and background star (circled in red). Credit: ESA/DLR/FU Berlin

The video that was recently released by the ESA combines 30 such images which show Phobos passing through the frame. In the background, Saturn is visible as a small ringed dot, despite being roughly 1 billion km away.  The images that were used to create this video were taken by the probes High Resolution Stereo Camera on November 26th, 2016, while the probe was traveling at a speed of about 3 km/s.

This photobomb was not unexpected, since the Mars Express repeatedly uses background reference stars and other bodies in the Solar System to confirm positions of the moons in the sky. In so doing, the probe is able to calculate the position of Phobos and Deimos with an accuracy of up to a few kilometers. The probes ideal position for capturing detailed images has also helped scientists to learn more about the surface features and structure of the two moons.

For instance, the pictures taken during the probe’s close flybys of Phobos showed its bumpy, irregular and dimpled surface in detail.The moon’s largest impact crater – the Stickney Crater – is also visible in one of the frames. Measuring 9 km ( mi) in diameter, this crater accounts for a third of the moon’s diameter, making it one the largest impact craters relative to body size in the Solar System.

In another image, taken on January 15th, 2018, Deimos is visible as an irregular and partially shadowed body in the foreground, while the delicate rings of Saturn are just visible encircling the small dot in the background (see below). In addition, Mars Express also obtained images of Phobos set against a reference star on January 8th, 2018 (see above) and close-up images of Phobos’ pockmarked surface on September 12th, 2017.

This image of Deimos and Saturn was taken by the Super Resolution Channel of Mars Express’ High Resolution Stereo Camera. Credit: ESA/DLR/FU Berlin

In the future, the Mars Express probe is expected to reveal a great deal more about Mars’ system of moons. In addition to the enduring questions of their origins, formation and composition, there are also questions about where future missions could land in order to study the surface directly. In particular, Phobos has been considered for a possible landing and sample-return mission.

Because of its nearness to Mars and the fact that one side is always facing towards the planet, the moon could make for an ideal location for a permanent observation post. This post would allow for the long-term study of the Martian surface and atmosphere, could act as a communications relay for other spacecraft, and could even serve as a base for future missions to the surface.

If and when such a mission to Phobos becomes a reality, it is the Mars Express probe that will determine where the ideal landing site would be. In essence, by studying the Martian moons to learning more about them, Mars Express is helping to prepare future missions to the Red Planet.

Be sure to check out the time-lapse video of Phobos and Saturn, courtesy of the ESA:

Further Reading: ESA

Did the Milky Way Steal These Stars or Kick Them Out of the Galaxy?

The Milky Way galaxy, perturbed by the tidal interaction with a dwarf galaxy, as predicted by N-body simulations. The locations of the observed stars above and below the disk, which are used to test the perturbation scenario, are indicated. Credit: T. Mueller/C. Laporte/NASA/JPL-Caletch

Despite thousands of years of research and observation, there is much that astronomers still don’t know about the Milky Way Galaxy. At present, astronomers estimate that it spans 100,000 to 180,000 light-years and consists of 100 to 400 billion stars. In addition, for decades, there have been unresolved questions about how the structure of our galaxy evolved over the course of billions of years.

For example, astronomers have long suspected that galactic halo came from – giant structures of stars that orbit above and below the flat disk of the Milky Way – were formed from debris left behind by smaller galaxies that merged with the Milky Way. But according to a new study by an international team of astronomers, it appears that these stars may have originated within the Milky Way but were then kicked out.

The study recently appeared in the journal Nature under the title “Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk“. The study was led by Margia Bergmann, a researcher from the Max Planck Institute for Astronomy, and included members from the Australian National University, the California Institute of Technology, and multiple universities.

Artist’s impression of the Milky Way Galaxy. Credit: NASA/JPL-Caltech/R. Hurt (SSC-Caltech)

For the sake of their study, the team relied on data from the W.M. Keck Observatory to determine the chemical abundance patterns from 14 stars located in the galactic halo. These stars were located in two different halo structures – the Triangulum-Andromeda (Tri-And) and the A13 stellar overdensities – which are bout 14,000 light years above and below the Milky Way disc.

As Bergemann explained in a Keck Observatory press release:

“The analysis of chemical abundances is a very powerful test, which allows, in a way similar to the DNA matching, to identify the parent population of the star. Different parent populations, such as the Milky Way disk or halo, dwarf satellite galaxies or globular clusters, are known to have radically different chemical compositions. So once we know what the stars are made of, we can immediately link them to their parent populations.”

The team also obtained spectra from one additional using the European Southern Observatory’s Very Large Telescope (VLT) in Chile. By comparing the chemical compositions of these stars with the ones found in other cosmic structures, the scientists noticed that the chemical compositions were almost identical. Not only were they similar within and between the groups being studies, they closely matched the abundance patterns of stars found within the Milky Way’s outer disk.

Computer model of the Milky Way and its smaller neighbor, the Sagittarius dwarf galaxy. Credit: Tollerud, Purcell and Bullock/UC Irvine

From this, they concluded that these stellar population in the Galactic Halo were formed in the Milky Way, but then relocated to locations above and below the Galactic Disk. This phenomena is known as “galactic eviction”, where structures are pushed off the plane of the Milky Way when a massive dwarf galaxy passes through the galactic disk. This process causes oscillations that eject stars from the disk, in whichever the dwarf galaxy is moving.

“The oscillations can be compared to sound waves in a musical instrument,” added Bergemann. “We call this ‘ringing’ in the Milky Way galaxy ‘galactoseismology,’ which has been predicted theoretically decades ago. We now have the clearest evidence for these oscillations in our galaxy’s disk obtained so far!”

These observations were made possible thanks to the High-Resolution Echelle Spectrometer (HiRES) on the Keck Telescope. As Judy Cohen, the Kate Van Nuys Page Professor of Astronomy at Caltech and a co-author on the study, explained:

“The high throughput and high spectral resolution of HIRES were crucial to the success of the observations of the stars in the outer part of the Milky Way. Another key factor was the smooth operation of Keck Observatory; good pointing and smooth operation allows one to get spectra of more stars in only a few nights of observation. The spectra in this study were obtained in only one night of Keck time, which shows how valuable even a single night can be.”

360-degree panorama view of the Milky Way (an assembled mosaic of photographs) by ESO. Credit: ESO/S. Brunier

These findings are very exciting for two reasons. On the one hand, it demonstrates that halo stars likely originated in the Galactic think disk – a younger part of the Milky Way. On the other hand, it demonstrates that the Milky Way’s disk and its dynamics are much more complex than previously thought. As Allyson Sheffield of LaGuardia Community College/CUNY, and a co-author on the paper, said:

“We showed that it may be fairly common for groups of stars in the disk to be relocated to more distant realms within the Milky Way – having been ‘kicked out’ by an invading satellite galaxy. Similar chemical patterns may also be found in other galaxies, indicating a potential galactic universality of this dynamic process.”

As a next step, the astronomers plan to analyze the spectra of additional stars in the Tri-And and A13 overdensities, as well as stars in other stellar structures further away from the disk. They also plan to determine masses and ages of these stars so they can constrain the time limits of when this galactic eviction took place.

In the end, it appears that another long-held assumption on galactic evolution has been updated. Combined with ongoing efforts to probe the nuclei of galaxies – to see how their Supermassive Black Holes and star formation are related – we appear to be getting closer to understanding just how our Universe evolved over time.

Further Reading: W.M. Keck Observatory, Nature

Amazing High Resolution Image of the Core of the Milky Way, a Region with Surprisingly Low Star Formation Compared to Other Galaxies

NASA's Spitzer Space Telescope captured this stunning infrared image of the center of the Milky Way Galaxy, where the black hole Sagitarrius A resides. Credit: NASA/JPL-Caltech

Compared to some other galaxies in our Universe, the Milky Way is a rather subtle character. In fact, there are galaxies that are a thousands times as luminous as the Milky Way, owing to the presence of warm gas in the galaxy’s Central Molecular Zone (CMZ). This gas is heated by massive bursts of star formation that surround the Supermassive Black Hole (SMBH) at the nucleus of the galaxy.

The core of the Milky Way also has a SMBH (Sagittarius A*) and all the gas it needs to form new stars. But for some reason, star formation in our galaxy’s CMZ is less than the average. To address this ongoing mystery, an international team of astronomers conducted a large and comprehensive study of the CMZ to search for answers as to why this might be.

The study, titled “Star formation in a high-pressure environment: an SMA view of the Galactic Centre dust ridge” recently appeared in the Monthly Notices of the Royal Astronomical Society. The study was led by Daniel Walker of the Joint ALMA Observatory and the National Astronomical Observatory of Japan, and included members from multiple observatories, universities and research institutes.

A false color Spitzer infrared image of the Milky Way’s Central Molecular Zone (CMZ). Credit: Spitzer/NASA/CfA

For the sake of their study, the team relied on the Submillimeter Array (SMA) radio interferometer, which is located atop Maunakea in Hawaii. What they found was a sample of thirteen high-mass cores in the CMZ’s “dust ridge” that could be young stars in the initial phase of development. These cores ranged in mass from 50 to 2150 Solar Masses and have radii of 0.1 – 0.25 parsecs (0.326 – 0.815 light-years).

They also noted the presence of two objects that appeared to be previously unknown young, high-mass protostars. As they state in their study, all of this indicated that stars in CMZ had about the same rate of formation as those in the galactic disc, despite their being vast pressure differences:

“All appear to be young (pre-UCHII), meaning that they are prime candidates for representing the initial conditions of high-mass stars and sub-clusters. We compare all of the detected cores with high-mass cores and clouds in the Galactic disc and find that they are broadly similar in terms of their masses and sizes, despite being subjected to external pressures that are several orders of magnitude greater.”

To determine that the external pressure in the CMZ was greater, the team observed spectral lines of the molecules formaldehyde and methyl cyanide to measure the temperature of the gas and its kinetics. These indicated that the gas environment was highly turbulent, which led them to the conclusion that the turbulent environment of the CMZ is responsible for inhibiting star formation there.

A radio image from the NSF’s Karl G. Jansky Very Large Array showing the center of our  galaxy. Credit: NSF/VLA/UCLA/M. Morris et al.

As they state in their study, these results were consistent with their previous hypothesis:

“The fact that >80 percent of these cores do not show any signs of star-forming activity in such a high-pressure environment leads us to conclude that this is further evidence for an increased critical density threshold for star formation in the CMZ due to turbulence.”

So in the end, the rate of star formation in a CMZ is not only dependent on their being a lot of gas and dust, but on the nature of the gas environment itself. These results could inform future studies of not only the Milky Way, but of other galaxies as well – particularly when it comes to the relationship that exists between Supermassive Black Holes (SMBHs), star formation, and the evolution of galaxies.

For decades, astronomers have studied the central regions of galaxies in the hopes of determining how this relationship works. And in recent years, astronomers have come up with conflicting results, some of which indicate that star formation is arrested by the presence of SMBHs while others show no correlation.

In addition, further examinations of SMBHs and Active Galactic Nuclei (AGNs) have shown that there may be no correlation between the mass of a galaxy and the mass of its central black hole – another theory that astronomers previously subscribed to.

As such, understanding how and why star formation appears to be different in galaxies like the Milky Way could help us to unravel these other mysteries. From that, a better understanding of how stars and galaxies evolved over the course of cosmic history is sure to emerge.

Further Reading: CfA, MNRAS

Proxima Centauri Just Released a Deadly Flare, so it’s Probably not a Great Place for Habitable Planets

Artist impression of a red dwarf star like Proxima Centauri, the nearest star to our sun. New analysis of ALMA observations reveal that Proxima Centauri emitted a powerful flare that would have created inhospitable conditions for planets in that system. Credit: NRAO/AUI/NSF; D. Berry

Since it’s discovery was announced in August of 2016, Proxima b has been an endless source of wonder and the target of many scientific studies. As the closest extra-solar planet to our Solar System – and a terrestrial planet that orbits within Proxima Centauri’s circumstellar habitable zone (aka. “Goldilocks Zone”) – scientists have naturally wondered whether or not this planet could be habitable.

Unfortunately, many of these studies have emphasized the challenges that life on Proxima b would likely face, not the least of which is harmful radiation from its star. According to a recent study, a team of astronomers used the ALMA Observatory to detect a large flare emanating from Proxima Centauri. This latest findings, more than anything, raises questions about how habitable its exoplanet could be.

The study, titled “Detection of a Millimeter Flare from Proxima Centauri“, recently appeared in The Astrophysical Journal Letters. Led by Meredith A. MacGregor, an NSF Astronomy and Astrophysics Postdoctoral Fellow at the Carnegie Institution for Science, the team also included members from the Harvard-Smithsonian Center for Astrophysics (CfA) and the University of Colorado Boulder.

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

For the sake of their study, the team used data obtained by the Atacama Large Millimeter/submillimeter Array (ALMA) between January 21st to April 25th, 2017. This data revealed that the star underwent a significant flaring event on March 24th, where it reached a peak that was 1000 times brighter than the star’s quiescent emission for a period of ten seconds.

Astronomers have known for a long time that when compared to stars like our Sun, M-type stars are variable and unstable. While they are the smallest, coolest, and dimmest stars in our Universe, they tend to flare up at a far greater rate. In this case, the flare detected by the team was ten times larger than our Sun’s brightest flares at similar wavelengths.

Along with a smaller preceding flare, the entire event lasted fewer than two minutes of the 10 hours that ALMA was observing the star between January and March of last year. While it was already known that Proxima Centauri, like all M-type stars, experiences regular flare activity, this one appeared to be a rare event. However, stars like Proxima Centauri are also known to experienced regular, although smaller, X-ray flares.

All of this adds up to a bad case for habitability. As MacGregor explained in a recent NRAO press statement:

“It’s likely that Proxima b was blasted by high energy radiation during this flare. Over the billions of years since Proxima b formed, flares like this one could have evaporated any atmosphere or ocean and sterilized the surface, suggesting that habitability may involve more than just being the right distance from the host star to have liquid water.”

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

MacGregor and her colleagues also considered the possibility that Proxima Centauri is circled by several disks of dust. This was suggested by a previous study (also based on ALMA data) that indicated that the light output of both the star and flare together pointed towards the existence of debris belts around the star. However, after examining the ALMA data as a function of observing time, they were able to eliminate this as a possibility.

As Alycia J. Weinberger, also a researcher with the Carnegie Institution for Science and a co-author on the paper, explained:

“There is now no reason to think that there is a substantial amount of dust around Proxima Cen. Nor is there any information yet that indicates the star has a rich planetary system like ours.”

To date, studies that have looked at possible conditions on Proxima b have come to different conclusions as to whether or not it could retain an atmosphere or liquid water on its surface. While some have found room for “transient habitability” or evidence of liquid water, others have expressed doubt based on the long-term effects that radiation and flares from its star would have on a tidally-locked planet.

In the future, the deployment of next-generation instruments like the James Webb Space Telescope are expected to provide more detailed information on this system. With precise measurements of this star and its planet, the question of whether or not life can (and does) exist in this system may finally be answered.

And be sure to enjoy this animation of Proxima Centauri in motion, courtesy of NRAO outreach:

Further Reading: NRAO, The Astrophysical Journal Letters

Precise New Measurements From Hubble Confirm the Accelerating Expansion of the Universe. Still no Idea Why it’s Happening

These Hubble Space Telescope images showcase two of the 19 galaxies analyzed in a project to improve the precision of the universe's expansion rate, a value known as the Hubble constant. The color-composite images show NGC 3972 (left) and NGC 1015 (right), located 65 million light-years and 118 million light-years, respectively, from Earth. The yellow circles in each galaxy represent the locations of pulsating stars called Cepheid variables. Credits: NASA, ESA, A. Riess (STScI/JHU)

In the 1920s, Edwin Hubble made the groundbreaking revelation that the Universe was in a state of expansion. Originally predicted as a consequence of Einstein’s Theory of General Relativity, this confirmation led to what came to be known as Hubble’s Constant. In the ensuring decades, and thanks to the deployment of next-generation telescopes – like the aptly-named Hubble Space Telescope (HST) – scientists have been forced to revise this law.

In short, in the past few decades, the ability to see farther into space (and deeper into time) has allowed astronomers to make more accurate measurements about how rapidly the early Universe expanded. And thanks to a new survey performed using Hubble, an international team of astronomers has been able to conduct the most precise measurements of the expansion rate of the Universe to date.

This survey was conducted by the Supernova H0 for the Equation of State (SH0ES) team, an international group of astronomers that has been on a quest to refine the accuracy of the Hubble Constant since 2005. The group is led by Adam Reiss of the Space Telescope Science Institute (STScI) and Johns Hopkins University, and includes members from the American Museum of Natural History, the Neils Bohr Institute, the National Optical Astronomy Observatory, and many prestigious universities and research institutions.

Illustration of the depth by which Hubble imaged galaxies in prior Deep Field initiatives, in units of the Age of the Universe. Credit: NASA and A. Feild (STScI)

The study which describes their findings recently appeared in The Astrophysical Journal under the title “Type Ia Supernova Distances at Redshift >1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate“. For the sake of their study, and consistent with their long term goals, the team sought to construct a new and more accurate “distance ladder”.

This tool is how astronomers have traditionally measured distances in the Universe, which consists of relying on distance markers like Cepheid variables – pulsating stars whose distances can be inferred by comparing their intrinsic brightness with their apparent brightness. These measurements are then compared to the way light from distance galaxies is redshifted to determine how fast the space between galaxies is expanding.

From this, the Hubble Constant is derived. To build their distant ladder, Riess and his team conducted parallax measurements using Hubble’s Wide Field Camera 3 (WFC3) of eight newly-analyzed Cepheid variable stars in the Milky Way. These stars are about 10 times farther away than any studied previously – between 6,000 and 12,000 light-year from Earth – and pulsate at longer intervals.

To ensure accuracy that would account for the wobbles of these stars, the team also developed a new method where Hubble would measure a star’s position a thousand times a minute every six months for four years. The team then compared the brightness of these eight stars with more distant Cepheids to ensure that they could calculate the distances to other galaxies with more precision.

Illustration showing three steps astronomers used to measure the universe’s expansion rate (Hubble constant) to an unprecedented accuracy, reducing the total uncertainty to 2.3 percent. Credits: NASA/ESA/A. Feild (STScI)/and A. Riess (STScI/JHU)

Using the new technique, Hubble was able to capture the change in position of these stars relative to others, which simplified things immensely. As Riess explained in a NASA press release:

“This method allows for repeated opportunities to measure the extremely tiny displacements due to parallax. You’re measuring the separation between two stars, not just in one place on the camera, but over and over thousands of times, reducing the errors in measurement.”

Compared to previous surveys, the team was able to extend the number of stars analyzed to distances up to 10 times farther. However, their results also contradicted those obtained by the European Space Agency’s (ESA) Planck satellite, which has been measuring the Cosmic Microwave Background (CMB) – the leftover radiation created by the Big Bang – since it was deployed in 2009.

By mapping the CMB, Planck has been able to trace the expansion of the cosmos during the early Universe – circa. 378,000 years after the Big Bang. Planck’s result predicted that the Hubble constant value should now be 67 kilometers per second per megaparsec (3.3 million light-years), and could be no higher than 69 kilometers per second per megaparsec.

The Big Bang timeline of the Universe. Cosmic neutrinos affect the CMB at the time it was emitted, and physics takes care of the rest of their evolution until today. Credit: NASA/JPL-Caltech/A. Kashlinsky (GSFC).

Based on their sruvey, Riess’s team obtained a value of 73 kilometers per second per megaparsec, a discrepancy of 9%. Essentially, their results indicate that galaxies are moving at a faster rate than that implied by observations of the early Universe. Because the Hubble data was so precise, astronomers cannot dismiss the gap between the two results as errors in any single measurement or method. As Reiss explained:

“The community is really grappling with understanding the meaning of this discrepancy… Both results have been tested multiple ways, so barring a series of unrelated mistakes. it is increasingly likely that this is not a bug but a feature of the universe.”

These latest results therefore suggest that some previously unknown force or some new physics might be at work in the Universe. In terms of explanations, Reiss and his team have offered three possibilities, all of which have to do with the 95% of the Universe that we cannot see (i.e. dark matter and dark energy). In 2011, Reiss and two other scientists were awarded the Nobel Prize in Physics for their 1998 discovery that the Universe was in an accelerated rate of expansion.

Consistent with that, they suggest that Dark Energy could be pushing galaxies apart with increasing strength. Another possibility is that there is an undiscovered subatomic particle out there that is similar to a neutrino, but interacts with normal matter by gravity instead of subatomic forces. These “sterile neutrinos” would travel at close to the speed of light and could collectively be known as “dark radiation”.

This illustration shows the evolution of the Universe, from the Big Bang on the left, to modern times on the right. Credit: NASA

Any of these possibilities would mean that the contents of the early Universe were different, thus forcing a rethink of our cosmological models. At present, Riess and colleagues don’t have any answers, but plan to continue fine-tuning their measurements. So far, the SHoES team has decreased the uncertainty of the Hubble Constant to 2.3%.

This is in keeping with one of the central goals of the Hubble Space Telescope, which was to help reduce the uncertainty value in Hubble’s Constant, for which estimates once varied by a factor of 2.

So while this discrepancy opens the door to new and challenging questions, it also reduces our uncertainty substantially when it comes to measuring the Universe. Ultimately, this will improve our understanding of how the Universe evolved after it was created in a fiery cataclysm 13.8 billion years ago.

Further Reading: NASA, The Astrophysical Journal

22 Years Of The Sun From Soho

The magnetic field of the Sun operates on a 22 year cycle. It takes 11 years for the orientation of the field to flip between the northern and southern hemisphere, and another 11 years to flip back to its original orientation. This composite image is made up of snapshots of the Sun taken with the Extreme ultraviolet Imaging Telescope on SOHO. Image: SOHO (ESA & NASA)

The Solar and Heliospheric Observatory (SOHO) is celebrating 22 years of observing the Sun, marking one complete solar magnetic cycle in the life of our star. SOHO is a joint project between NASA and the ESA and its mission is to study the internal structure of the sun, its extensive outer atmosphere, and the origin of the solar wind.

The activity cycle in the life of the Sun is based on the increase and decrease of sunspots. We’ve been watching this activity for about 250 years, but SOHO has taken that observing to a whole new level.

Though sunspot cycles work on an 11-year period, they’re caused by deeper magnetic changes in the Sun. Over the course of 22 years, the Sun’s polarity gradually shifts. At the 11 year mark, the orientation of the Sun’s magnetic field flips between the northern and southern hemispheres. At the end of the 22 year cycle, the field has shifted back to its original orientation. SOHO has now watched that cycle in its entirety.

The magnetic field of the Sun operates on a 22 year cycle. It takes 11 years for the orientation of the field to flip between the northern and southern hemisphere, and another 11 years to flip back to its original orientation. This composite image is made up of snapshots of the Sun taken with the Extreme ultraviolet Imaging Telescope on SOHO. Image: SOHO (ESA & NASA)

SOHO is a real success story. It was launched in 1995 and was designed to operate until 1998. But it’s been so successful that its mission has been prolonged and extended several times.

An artist’s illustration of the SOHO spacecraft. Image: NASA

SOHO’s 22 years of observation has turbo-charged our space weather forecasting ability. Space weather is heavily influenced by solar activity, mostly in the form of Coronal Mass Ejections (CMEs). SOHO has observed well over 20,000 of these CMEs.

Space weather affects key aspects of our modern technological world. Space-based telecommunications, broadcasting, weather services and navigation are all affected by space weather. So are things like power distribution and terrestrial communications, especially at northern latitudes. Solar weather can also degrade not only the performance, but the lifespan, of communication satellites.

Besides improving our ability to forecast space weather, SOHO has made other important discoveries. After 40 years of searching, it was SOHO that finally found evidence of seismic waves in the Sun. Called g-modes, these waves revealed that the core of the Sun is rotating 4 times faster than the surface. When this discovery came to light, Bernhard Fleck, ESA SOHO project scientist said, “This is certainly the biggest result of SOHO in the last decade, and one of SOHO’s all-time top discoveries.”

Data from SOHO revealed that the core of the Sun rotates 4 times faster than the surface. Image: ESA

SOHO also has a front row seat for comet viewing. The observatory has witnessed over 3,000 comets as they’ve sped past the Sun. Though this was never part of SOHO’s mandate, its exceptional view of the Sun and its surroundings allows it to excel at comet-finding. It’s especially good at finding sun-grazer comets because it’s so close to the Sun.

“But nobody dreamed we’d approach 200 (comets) a year.” – Joe Gurman, mission scientist for SOHO.

“SOHO has a view of about 12-and-a-half million miles beyond the sun,” said Joe Gurman in 2015, mission scientist for SOHO at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “So we expected it might from time to time see a bright comet near the sun. But nobody dreamed we’d approach 200 a year.”

A front-row seat for sun-grazing comets allows SOHO to observe other aspects of the Sun’s surface. Comets are primitive relics of the early Solar System, and observing them with SOHO can tell scientists quite a bit about where they formed. If a comet has made other trips around the Sun, then scientists can learn something about the far-flung regions of the Solar System that they’ve traveled through.

Watching these sun-grazers as they pass close to the Sun also teaches scientists about the Sun. The ionized gas in their tails can illuminate the magnetic fields around the Sun. They’re like tracers that help observers watch these invisible magnetic fields. Sometimes, the magnetic fields have torn off these tails of ionized gas, and scientists have been able to watch these tails get blown around in the solar wind. This gives them an unprecedented view of the details in the movement of the wind itself.

It’s hard to make out, but the dot in the cross-hairs is a comet streaming toward the Sun. This image is from 2015, and the comet is the 3,000th one discovered by SOHO since it was launched. Image: SOHO/ESA/NASA

SOHO is still going strong, and keeping an eye on the Sun from its location about 1.5 million km from Earth. There, it travels in a halo orbit around LaGrange point 1. (It’s orbit is adjusted so that it can communicate clearly with Earth without interference from the Sun.)

Beyond the important science that SOHO provides, it’s also a source of amazing images. There’s a whole gallery of images here, and a selection of videos here.

In 2003, SOHO captured this image of a massive solar flare, the third most powerful ever observed in X-ray wavelengths. Very spooky. Image: NASA/ESA/SOHO

You can also check out daily views of the Sun from SOHO here.

Venus Returns to the Dusk Sky

The changing phases of Venus, from the 2013 apparition. Credit and copyright: Shahrin Ahmad (@Shahgazer)
Venus returns  – The changing phases of Venus, from the 2013 apparition. Credit and copyright: Shahrin Ahmad (@Shahgazer)

Where have all the planets gone? The end of February 2018 sees the three naked eye outer planets – Mars, Jupiter and Saturn — hiding in the dawn. It takes an extra effort to brave the chill of a February morning, for sure. The good news is, the two inner planets – Mercury and Venus – begin favorable dusk apparitions this week, putting on a fine sunset showing in March.

Venus in 2018: Venus begins the month of March as a -3.9 magnitude, 10” disk emerging from behind the Sun. Venus is already over 12 degrees east of the Sun this week, as it begins its long chase to catch up to the Earth. Venus always emerges from behind the Sun in the dusk, lapping the Earth about eight months later as it passes through inferior conjunction between the Sun and the Earth as it ventures into the dusk sky.

Follow that planet, as Venus reaches greatest elongation at 45.9 degrees east of the Sun on August 17th. Venus occupies the apex of a right triangle on this date, with the Earth at the end of one vertice, and the Sun at the end of the other.

Not all elongations of Mercury or Venus are equal, but depend on the seasonal angle of the ecliptic, and whether they occur near aphelion or perihelion. Credit: Dave Dickinson

Mercury joins the fray in early March, as the fleeting innermost world races up to meet Venus in the dusk. March 4th is a great date to check Mercury off of your life list, as the -1.2 magnitude planet passes just 66′ – just over a degree, or twice the span of a Full Moon – from Venus. Mercury reaches greatest elongation 18.4 degrees east of the Sun on March 15th.

And the Moon makes three on the evening of March 18th, as Mercury, Venus and the slim waxing crescent Moon form a line nine degrees long.

The Moon, Venus and Mercury – looking west at dusk on March 18th. Credit: Stellarium

It’s a bit of a cosmic irony: Venus, the closest planet to the Earth, is also eternally shrouded in clouds and appears featureless at the eyepiece. The most notable feature Venus exhibits are its phases, similar to the Moon’s. Things get interesting as Venus reaches half phase near greatest elongation. After that, the disk of Venus swells in size but thins down to a slender crescent. Venus’s orbit is tilted 3.4 degrees relative to the ecliptic, and on some years, you can follow it right through inferior conjunction from the dusk to the dawn sky. Unfortunately, this also means that Venus usually misses transiting the disk of the Sun, as it last did on June 5-6th, 2012, and won’t do again until just under a century from now on December 10-11th, 2117.

Small consolation prize: Mercury, a much more frequent solar transiter, will do so again next year on November 11-12th, 2019.

Amateur astronomers have, however, managed to tease out detail from the Venusian cloudtops using ultraviolet filters. And check out this amazing recent image of Venus courtesy of the Japanese Space Agency’s Akatsuki spacecraft:

Venus in the ultraviolet courtesy of JAXA’s Akatsuki spacecraft. Credit: JAXA/Akatsuki/ISAS/DARTS/Damia Bouic

It’s one of our favorite astro-challenges. Can you see Venus in the daytime? Once you’ve seen it, it’s surprisingly easily to spy… the main difficulty is to get your eyes to focus in on it without any other references against a blank sky. The crescent Moon makes a great visual aid in this quest; although the Moon’s reflectivity or albedo is actually much lower than Venus’s, it’s larger apparent size in the sky makes it stand out. Key upcoming dates to see Venus near the Moon around greatest elongation are April 17th, May 17th, June 16th, July 15th, and Aug 14th.

Apparitions of Venus also follow a predictable eight year cycle. This occurs because 13 orbits of Venus very nearly equals eight orbits of the Earth. For example, Venus will resume visiting the Pleiades star cluster during the dusk 2020 apparition, just like it did back before 2012.

Phenomena of Venus

When does Venus appear half illuminated to you? This stage is known as dichotomy, and its actual observed point can often be several days off from its theoretical arrival. Also keep an eye out for the Ashen Light of Venus, a faint illumination of the planet’s night side during crescent phase, similar to the familiar sight seen on the crescent Moon. Unlike the Moon, however, Venus has no nearby body to illuminate its nighttime side… What’s going on here? Is this just the psychological effect of the brain filling in what the eye sees when it looks at the dazzling curve of the crescent Venus, or is it something real? Long reported by observers, a 2014 study suggests that a nascent air-glow or aurora may persist on the broiling night side of Venus.

All thoughts to ponder, as you follow Venus emerging into the dusk sky this March.