Gravitational lenses are an important tool for astronomers seeking to study the most distant objects in the Universe. This technique involves using a massive cluster of matter (usually a galaxy or cluster) between a distant light source and an observer to better see light coming from that source. In an effect that was predicted by Einstein’s Theory of General Relativity, this allows astronomers to see objects that might otherwise be obscured.
Recently, a group of European astronomers developed a method for finding gravitational lenses in enormous piles of data. Using the same artificial intelligence algorithms that Google, Facebook and Tesla have used for their purposes, they were able to find 56 new gravitational lensing candidates from a massive astronomical survey. This method could eliminate the need for astronomers to conduct visual inspections of astronomical images.
While useful to astronomers, gravitational lenses are a pain to find. Ordinarily, this would consist of astronomers sorting through thousands of images snapped by telescopes and observatories. While academic institutions are able to rely on amateur astronomers and citizen astronomers like never before, there is imply no way to keep up with millions of images that are being regularly captured by instruments around the world.
To address this, Dr. Petrillo and his colleagues turned to what are known as “Convulutional Neural Networks” (CNN), a type of machine-learning algorithm that mines data for specific patterns. While Google used these same neural networks to win a match of Go against the world champion, Facebook uses them to recognize things in images posted on its site, and Tesla has been using them to develop self-driving cars.
As Petrillo explained in a recent press article from the Netherlands Research School for Astronomy:
“This is the first time a convolutional neural network has been used to find peculiar objects in an astronomical survey. I think it will become the norm since future astronomical surveys will produce an enormous quantity of data which will be necessary to inspect. We don’t have enough astronomers to cope with this.”
The team then applied these neural networks to data derived from the Kilo-Degree Survey (KiDS). This project relies on the VLT Survey Telescope (VST) at the ESO’s Paranal Observatory in Chile to map 1500 square degrees of the southern night sky. This data set consisted of 21,789 color images collected by the VST’s OmegaCAM, a multiband instrument developed by a consortium of European scientist in conjunction with the ESO.
These images all contained examples of Luminous Red Galaxies (LRGs), three of which wee known to be gravitational lenses. Initially, the neural network found 761 gravitational lens candidates within this sample. After inspecting these candidates visually, the team was able to narrow the list down to 56 lenses. These still need to be confirmed by space telescopes in the future, but the results were quite positive.
As they indicate in their study, such a neural network, when applied to larger data sets, could reveal hundreds or even thousands of new lenses:
“A conservative estimate based on our results shows that with our proposed method it should be possible to find ?100 massive LRG-galaxy lenses at z ~> 0.4 in KiDS when completed. In the most optimistic scenario this number can grow considerably (to maximally ? 2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.”
In addition, the neural network rediscovered two of the known lenses in the data set, but missed the third one. However, this was due to the fact that this lens was particularly small and the neural network was not trained to detect lenses of this size. In the future, the researchers hope to correct for this by training their neural network to notice smaller lenses and rejects false positives.
But of course, the ultimate goal here is to remove the need for visual inspection entirely. In so doing, astronomers would be freed up from having to do grunt work, and could dedicate more time towards the process of discovery. In much the same way, machine learning algorithms could be used to search through astronomical data for signals of gravitational waves and exoplanets.
Much like how other industries are seeking to make sense out of terabytes of consumer or other types of “big data”, the field astrophysics and cosmology could come to rely on artificial intelligence to find the patterns in a Universe of raw data. And the payoff is likely to be nothing less than an accelerated process of discovery.
Four days before the Great American Solar Eclipse on August 21, a newly discovered gravitational wave caused more astronomers (8,223+), using more telescopes (70), to publish more papers (100 — see the list below) in less time than for any other astronomical event in history. The sixth gravitational wave (GW) to be discovered by the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo GW observatories, which occurred on August 17, 2017 at 12:41:04 UTC, was surprising in two ways already reported.
GW event six, designated GW170817, did not result from the collision and subsequent explosion of two black holes. All previous GW events, including the first ever discovered in 2015, had involved the collision of black holes with typically 40 times the mass of the Sun between them. Here however, the GW was evidently triggered by the collision and explosion of two neutron stars, having only 3 times the Sun’s mass in total.
Crucially, GW170817 occurred ten times closer to Earth than all earlier GW events. Earlier GWs involved black hole collisions at more than 1.3 billion light-years (400 million parsecs or Mpc). GW170817, in comparison, was known within hours of its discovery to lie within only 130 million light-years (40 Mpc). That vastly improved astronomer’s odds of detecting the event independently, because in cosmological terms, it occurred within less than 1% of the universe’s Hubble length of 14 billion light-years (4,300 Mpc).
Not widely reported is that our current astronomical theory regarding GW170817 still depends significantly on observations yet to be made. In brief, astronomers currently believe that GW170817 was triggered by the merger of two neutron stars, which triggered the explosion of a Short Gamma-Ray Burst (SGRB), which emitted only a fraction of the gamma-ray energy in our direction normally associated with SGRBs, because it was the first SGRB observed at such a large angle away from the direction of its focused jets of gamma-rays. The SGRB associated with GW170817 emitted its jet at roughly 30 degrees away from our line-of-sight. All other SGRBs have been observed at only a few degrees from alignment with their jets. The exact angle of the newly discovered SGRB’s jet is important in understanding how its afterglow compares with other SGRB afterglows. Significant properties reported for the GW, including its distance, depend on the angle at which the two neutron stars collided relative to Earth.
The collision angle determined roughly based on the GW itself is probably OK. Only radio maps of the SGRB region at 100 days however, will provide astronomers with the most precise measurements of the resulting explosion’s velocities and directions over time to date. Only then will astronomers learn more about the exact angle of the SGRB’s jet, providing potentially a more accurate estimate of the angle at which the neutron stars collided. More surprises could be in store as a result, including refinements of the properties reported.
Unlike previous events, GW170817 was close enough that within 1.74 seconds of its initial detection by LIGO, it’s gamma radiation was detected by the Fermi Gamma-Ray space telescope. The INTEGRAL Gamma-Ray space observatory detected it too, and it was later designated SGRB 170817A. As an SGRB alone, the event would have triggered alerts to observatories worldwide and aloft, each aiming to detect the explosion’s faint optical afterglow. SGRB optical afterglows have been used to pinpoint the exact positions of SGRBs, not only on the sky, but also in terms of their distance from Earth.
Astronomers in this case had the first GW ever to coincide with, and be independently corroborated by, any observable counterpart, and alerts became a call to astronomical arms. Even though its exact position on the sky was uncertain by many degrees, GW170817 was so close that astronomers were able to quickly narrow down its exact location.
“With a previously-compiled list of nearby galaxies having positions and distances culled from the massive on-line archive of the NASA/IPAC Extragalactic Database (NED), our team rapidly zeroed in on the host galaxy of the event,” said Barry Madore, of Carnegie Observatories.
Precisely because GW170817 occurred at only 130 million light-years, the number of candidate galaxies to observe was only several dozen. In contrast, for previous GW discoveries occurring at billions of light-years, thousands of galaxies would have to be observed. Within 11 hours of the explosion, its afterglow was discovered in the lenticular galaxy NGC 4993, by the Swope 1-m telescope in Chile. They obtained the first-ever visual image of an event associated with a GW.
“Where observation is concerned, chance favors only the prepared mind,” added Madore, quoting Louis Pasteur from 150 years ago. Madore is also a researcher with the Swope team and a co-author on six papers reporting Swope’s discovery of the afterglow and some of its implications. “When alerts were sent out to the LIGO/VIRGO gravity wave detection consortium on the night of August 17, 2017, our team of astronomers was indeed prepared.”
New images of the afterglow of GW170817, aka SGRB 170817A, initially designated as Swope Supernova Survey SSS17a, revealed a bright blue astronomical transient, later designated as AT2017gfo by the International Astronomical Union (IAU).
“There will be more such events, no doubt; but this image taken at the Henrietta Swope 1m telescope at the Las Campanas Observatory in Chile was the first in history, and it truly ushered in the Era of Multi-Messenger Astronomy,” said Madore.
Radio observatories joined the hunt, including the Karl G. Jansky Very Large Array (VLA), the Australia Telescope Compact Array (ATCA) and the Giant Metrewave Radio Telescope (GMRT). So did the Swift ultraviolet and Chandra X-ray space observatory satellites. By day one after the explosion, all frequencies of the electromagnetic spectrum were being observed in the direction of NGC 4993. On multiple wavelengths, multiple “messengers” of GW170817’s existence began to reveal more than the sum of their parts.
AT2017gfo brightened over the next few days after explosion, in near infrared observations continued by Swope. Their light-curves show the changes in the afterglow’s brightness over time. At three days post explosion, the near-infrared afterglow stops brightening and begins to fade. As with other SGRB afterglows, AT2017gfo faded completely from visual observation over the course of days to weeks, but observations in X-rays and radio continue. Radio observations at 100 days post explosion, which will not occur until November 25, are crucial as said. Although a month away, planned radio observations will determine more than just the long-term evolution of the afterglow over 3 months. Indeed, our astronomical theory accounting for the event’s first three weeks, as already observed, analyzed, and reported, still depends to a surprising degree on an exact number of degrees. The number of degrees relative to Earth for this SGRB based on radio data however, will not be known for at least a month.
“With GW170817 we have for the first time truly independent verification of a gravitational wave source,” said Robert Quimby, of the Kavli Institute for the Physics and Mathematics of the Universe at the University of Tokyo, and coauthor of a paper regarding the event’s implications. “The electromagnetic signature of this event can be uniquely matched to the predictions of binary neutron star mergers, and it is actually quite amazing how well the theory matches the data considering how few observational constraints were available to guide the model.”
“With GW170817, we can learn about nuclear physics, relativity, stellar evolution, and cosmology all in one shot,” added Sako, who is also a co-author on ten papers regarding the event. “Plus we now know how all of the heaviest elements in the Universe are created.”
EVENT CHRONOLOGY
T = 0 sec.: GW170817 detected by LIGO/VIRGO [1, 82]
T = 1.74 sec.: SGRB 170817A detected by Fermi Gamma-Ray Burst Monitor satellite immediately after GW170817 [52]
T = 28 min.: Gamma-ray Coordinates Network (GCN) Notice [53]
T = 40 min.: GCN Circular [53]
T = 5.63 hr.: First sky map locating GW170817 to within several degrees [53]
T = 10.9 hr.: Swope 1-m observatory discovers explosion’s afterglow, AT 2017gfo, in galaxy NGC 4993 [18, 24, 64, 75, 77]
T = 11.09 hr.: PROMPT 0.4m observatory detects AT 2017gfo [88]
T = 11.3 hr.: Hubble Space Telescope images AT 2017gfo [20]
T = 12-24 hr.: Magellan; Las Campanas Observatory; W. M. Keck Observatory; Blanco 4-m Cerro Tololo Inter-American Observatory; Gemini South; European Southern Observatory VISTA; Subaru among 6 Japanese telescopes; Pan-STARRS1; Very Large Telescope; 14 Australian telescopes; and Antarctic Survey Telescope optical observatories, and VLA, VLITE, ATCA, GMRT, and ALMA radio observatories, as well as Swift and NuSTAR ultraviolet satellite observatories
PROPERTIES
Position: Right Ascension 13h09m48.085s ± 0.018s; Declination -23d22m53.343s ± 0.218s (J2000 equinox); 10.6s or 7,000 light-years (2.0 kiloparsecs or kpc) from the nucleus of lenticular galaxy NGC 4993 [18]
Distance: 140 ± 40 million light-years (41 ± 13 Mpc), with 30% scatter based on 3 GW-based estimates [1, 25, 82], and 131 ± 9 million light-years (39.3 ± 2.7 Mpc), with 7% scatter based on 3 distance indicators, including GW-based as well as new Fundamental Plane relation-based distances for NGC 4993 [41, 43], and Tully-Fisher relation-based distances for galaxies in the group of galaxies including NGC 4993 from the NASA/IPAC Extragalactic Database (NED)
Mass: Neutron stars total 2.82 +0.47 -0.09 Sun’s mass [82]; mass ejected in elements heavier than iron is 0.03 ± 0.01 Sun’s mass or 10,000 Earth masses, based on 4 estimates [24, 59, 82, 93], including gold amounting to 150 ± 50 Earth masses [60]
Luminosity: Peaks at 0.5 days after explosion, at ~1042 erg/s, equivalent to 260 million Suns [24]
SGRB jet angle: 31 ± 3 degrees away from line-of-sight to Earth, based on 9 estimates [2, 25, 34, 35, 36, 44, 58, 62, 82]
SGRB jet speed: 30% speed of light, based on 4 estimates [20, 42, 59, 75]
Names: GW170817, SGRB 170817A, AT 2017gfo = IAU designation for SGRB afterglow, aka SSS17a, DLT17ck, J-GEM17btc, and MASTER OTJ130948.10-232253.3
IMPLICATIONS
Astronomy (1): Confirms binary neutron star collisions as a source for GW and SGRB events [1, 82]
Astronomy (2): GWs provide a new way of measuring neutron star diameters [8]
Astronomy (3): Gives universal expansion rate, or Hubble constant, as H0 = 71 ± 10 km -1 Mpc-1, with 14% accuracy, based on 6 GW-based estimates for GW170817 ranging from 69 to 74 km -1 Mpc-1, bridging current estimates [1, 22, 36, 60, 74, 82]; accuracy will improve to 4% with future similar events [74]
General Relativity (1): Confirms GW velocity equals speed of light to within 1 part per 1,000,000,000,000,000 or 1/1015 [7, 21, 70, 91]
General Relativity (2): Confirms equivalence of gravitational energy and inertial energy, or Weak Equivalence Principle, to within 1 part per 1,000,000,000 or 1/109 [7, 11, 91, 92]
Physics: Confirms binary neutron star collisions are significant production sites for elements heavier than iron, including gold, platinum, and uranium [17, 69]
Life on Earth: Indicates a higher deadly rate of gamma-rays for extraterrestrial life [15]
GW170817 (1): Predicted one binary neutron star collision per year similar to GW170817 within a distance from Earth of 130 million light-years [40 Mpc] [24]
GW170817 (2): Predicted to produce a 10 Giga-Hertz afterglow that peaks at ~100 days with a radio magnitude of ~10 milli-Janskys [24]
GW170817 (3): Predicted to remain visible in radio for 5-10 years, and for decades with next-generation radio observatories [2]
BIBLIOGRAPHY
96 papers on GW170817 released on arXiv during week of October 16-20
1. Abbott, B. P. et al., A gravitational-wave standard siren measurement of the Hubble constant, Nature, arXiv:1710.05835
2. Alexander, K. D. et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-Time Emission from the Kilonova Ejecta, ApJL, arXiv:1710.05457
3. Andreoni, I. et al., Follow up of GW170817 and its electromagnetic counterpart by Australian-led observing programs, PASA, arXiv:1710.05846
4. ANTARES, IceCube, Pierre Auger, LIGO Scientific, Virgo Collaborations, Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, na, arXiv:1710.05839
5. Arcavi, I. et al., Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger, Nature, arXiv:1710.05843
6. Arcavi, I. et al., Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory, ApJL, arXiv:1710.05842
7. Baker, T. et al., Strong constraints on cosmological gravity from GW170817 and GRB 170817A, na, arXiv:1710.06394
8. Bauswein, A. et al., Neutron-star radius constraints from GW170817 and future detections, ApJL, submitted, arXiv:1710.06843
9. Belczynski, K. et al., GW170104 and the origin of heavy, low-spin binary black holes via classical isolated binary evolution, A&A, arXiv:1706.07053
10. Blanchard, P. K. et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale, ApJL, arXiv:1710.05458
11. Boran, S. et al., GW170817 Falsifies Dark Matter Emulators, na, arXiv:1710.06168
12. Brocato, E. et al., GRAWITA: VLT Survey Telescope observations of the gravitational wave sources GW150914 and GW151226, MNRAS, submitted, arXiv:1710.05915
13. Bromberg, O. et al., The gamma-rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta, MNRAS, arXiv:1710.05897
14. Buckley, D. A. H. et al., A comparison between SALT/SAAO observations and kilonova models for AT 2017gfo: the first electromagnetic counterpart of a gravitational wave transient – GW170817, MNRAS, arXiv:1710.05855
15. Burgess, J. M. et al., Viewing short Gamma-ray Bursts from a different angle, na, arXiv:1710.05823
16. Chang, P.; & Murray, N., GW170817: A Neutron Star Merger in a Mass-Transferring Triple System, MNRAS Letters, arXiv:1710.05939
17. Chornock, R. et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South, ApJL, arXiv:1710.05454
18. Coulter, D. A. et al., Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source, Science, arXiv:1710.05452
19. Covino, S. et al., The unpolarized macronova associated with the gravitational wave event GW170817, Nature Astronomy, arXiv:1710.05849
20. Cowperthwaite, P. S. et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. II. UV, Optical, and Near-IR Light Curves and Comparison to Kilonova Models, ApJL, arXiv:1710.05840
21. Creminelli, P.; & Vernizzi, F., Dark Energy after GW170817, na, arXiv:1710.05877
22. Di Valentino, E.; & Melchiorri, A., Cosmological constraints combining Planck with the recent gravitational-wave standard siren measurement of the Hubble constant, na, arXiv:1710.06370
23. Diaz, M.C. et al., Observations of the first electromagnetic counterpart to a gravitational wave source by the TOROS collaboration, ApJL, arXiv:1710.05844
24. Drout, M. R. et al., Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis, Science, arXiv:1710.05443
25. Evans, P.A. et al., Swift and NuSTAR observations of GW170817: detection of a blue kilonova, Science, arXiv:1710.05437
26. Ezquiaga, J. M.; & Zumalacarregui, M., Dark Energy after GW170817, na, arXiv:1710.05901
27. Fargion, D.; Khlopov, M.; & Oliva, P., Could GRB170817A be really correlated to a NS-NS merging?, Research in Astron. Astrophys. , arXiv:1710.05909
28. Fermi-LAT Collaboration, Fermi-LAT observations of the LIGO/Virgo event GW170817, na, arXiv:1710.05450
29. Fong, W. et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-ray Bursts, ApJL, arXiv:1710.05438
30. Gall, C. et al., Lanthanides or dust in kilonovae: lessons learned from GW170817, ApJL, arXiv:1710.05863
31. Goldstein, A. et al., An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A, ApJL, arXiv:1710.05446
32. Gompertz, B. P. et al., The Diversity of Kilonova Emission in Short Gamma-Ray Bursts, ApJ, submitted, arXiv:1710.05442
33. Gottlieb, O. et al., A cocoon shock breakout as the origin of the ?-ray emission in GW170817, MNRAS, arXiv:1710.05896
34. Granot, J.; Guetta, D.; & Gill, R., Lessons from the short GRB170817A — the First Gravitational Wave Detection of a Binary Neutron Star Merger, na, arXiv:1710.06407
35. Granot, J. et al., Off-Axis Emission of Short GRB Jets from Double Neutron St.r Mergers and GRB 170817A, MNRAS, arXiv:1710.06421
36. Guidorzi, C. et al., Improved Constraints on H0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817, ApJL, submitted, arXiv:1710.06426
37. H.E.S.S. Collaboration et al., TeV gamma-ray observations of the binary neutron star merger GW170817 with H.E.S.S, ApJL, submitted, arXiv:1710.05862
38. Haggard, D. et al., A Deep Chandra X-ray Study of Neutron Star Coalescence GW170817, ApJL, arXiv:1710.05852
39. Hallinan, G. et al., A Radio Counterpart to a Neutron Star Merger, Science, arXiv:1710.05435
40. He, X.-B.; Tam, P-H. T.; & Shen, R. F.), GRB 170817A: a short GRB seen off-axis, MNRAS, arXiv:1710.05869
41. Hjorth, J. et al., The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817, ApJL, arXiv:1710.05856
42. Hu, L. et al., Optical Observations of LIGO Source GW 170817 by the Antarctic Survey Telescopes at Dome A, Antarctica, Science Direct, arXiv:1710.05462
43. Im, M. et al., Distance and properties of NGC 4993 as the host galaxy of a gravitational wave source, GW170817, ApJL, arXiv:1710.05861
44. Ioka, K.; & Nakamura, T., Can an Off-axis Gamma-Ray Burst Jet in GW170817 Explain All the Electromagnetic Counterparts?, Prog. Theor. Exp. Phys. , arXiv:1710.05905
45. Kasen, D. et al., Origin of the heavy elements in binary neutron-star mergers from a gravitational wave event, Nature, arXiv:1710.05463
46. Kasliwal, M. M. et al., Illuminating Gravitational Waves: A Concordant Picture of Photons from a Neutron Star Merger, Science, arXiv:1710.05436
47. Kilpatrick, C. D. et al., Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger, Science, arXiv:1710.05434
48. Kim, S. et al., ALMA and GMRT constraints on the off-axis gamma-ray burst 170817A from the binary neutron star merger GW170817, na, arXiv:1710.05847
49. Lamb, G. P.; & Shiho Kobayashi, GRB 170817A as a jet counterpart to gravitational wave trigger GW 170817, MNRAS, arXiv:1710.05857
50. Levan, A. J. et al., The environment of the binary neutron star merger GW170817, ApJL, arXiv:1710.05444
51. Li, T.-P. et al., Insight-HXMT observations of the first binary neutron star merger GW170817, Sci. China-Phys. Mech. Astron. , arXiv:1710.06065
52. LIGO Scientific Collaboration, Virgo Collaboration, Fermi Gamma-Ray Burst Monitor, INTEGRAL, Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, ApJL, arXiv:1710.05834
53. LIGO Scientific Collaboration, Virgo Collaboration, et al., Multi-messenger Observations of a Binary Neutron Star Merger, ApJL, arXiv:1710.05833
54. Lipunov, V. M. et al., MASTER optical detection of the first LIGO/Virgo neutron stars merging GW170817, ApJL, arXiv:1710.05461
55. Lipunov, V. et al., Discovery of the neutron stars merger GW170817/GRB170817A and Binary Stellar Evolution, New Astronomy Review, arXiv:1710.05911
56. Lu, R.-J. et al., {\em Fermi}/GBM Short Gamma-ray Burst Catalog and Case Study for GRB 170817A/GW 170817, na, arXiv:1710.06979
57. Margalit, B.; & Metzger, B., Constraining the Maximum Mass of Neutron Stars From Multi-Messenger Observations of GW170817, ApJL, submitted, arXiv:1710.05938
58. Margutti, R. et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. V. Rising X-ray Emission from an Off-Axis Jet, ApJL, arXiv:1710.05431
59. McCully, C. et al., The Rapid Reddening and Featureless Optical Spectra of the optical counterpart of GW170817, AT 2017gfo, During the First Four Days, ApJL, arXiv:1710.05853
60. Metzger, B. D. , Welcome to the Multi-Messenger Era! Lessons from a Neutron Star Merger and the Landscape Ahead, na, arXiv:1710.05931
61. Murguia-Berthier, A. et al., A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a, ApJL, arXiv:1710.05453
62. Nicholl, M. et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. III. Optical and UV Spectra of a Blue Kilonova From Fast Polar Ejecta, ApJL, arXiv:1710.05456
63. Palmese, A. et al., DECam and DES perspective of the GW170817 host, NGC 4993: indication for dynamically-driven formation of binary neutron star in early type galaxies, na, arXiv:1710.06748
64. Pan, Y.-C. et al., The Old Host-Galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational Wave Source, ApJL, arXiv:1710.05439
65. Paul, D., Binary neutron star merger rate via the luminosity function of short gamma-ray bursts, MNRAS, arXiv:1710.05620
66. Pian, E. et al., Spectroscopic identification of r-process nucleosynthesis in a double neutron star merger, Nature, arXiv:1710.05858
67. Piro, A. L.; & Kollmeier, J. A., Evidence for Cocoon Emission from the Early Light Curve of SSS17a, na, arXiv:1710.05822
68. Pozanenko, A. et al., GRB170817A associated with GW170817: multifrequency observations and modeling of prompt gamma-ray emission, ApJL, submitted, arXiv:1710.05448
69. Rosswog, S. et al., The first direct double neutron star merger detection: implications for cosmic nucleosynthesis, A&A, accepted?, arXiv:1710.05445
70. Sakstein, J.; & Jain, B., Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories, na, arXiv:1710.05893
71. Salafia, O. S.; Ghisellini, G.; & Ghirlanda, G., Jet-driven and jet-less fireballs from compact binary mergers, MNRAS Letters, arXiv:1710.05859
72. Savchenko, V. et al., INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational Wave Event GW170817, ApJL, arXiv:1710.05449
73. Scolnic, D. et al., How Many Kilonovae Can Be Found in Past, Present, and Future Survey Datasets?, ApJL, submitted, arXiv:1710.05845
74. Seto, N.; & Kyutoku, K., Prospects of the local Hubble parameter measurement using gravitational waves from double neutron stars, MNRAS, arXiv:1710.06424
75. Shappee, B. J. et al., Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger, Science, arXiv:1710.05432
76. Shoemaker, I. M.; & Murase, K., Constraints from the Time Lag between Gravitational Waves and Gamma Rays: Implications of GW 170817 and GRB 170817A, na, arXiv:1710.06427
77. Siebert, M. R. et al., The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational Wave Source, ApJL, arXiv:1710.05440
78. Smartt, S. J. et al., A kilonova as the electromagnetic counterpart to a gravitational-wave source, Nature, arXiv:1710.05841
79. Soares-Santos, M. et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Dark Energy Camera Discovery of the Optical Counterpart, ApJL, arXiv:1710.05459
80. Tanaka, M. et al., Kilonova from post-merger ejecta as an optical and near-infrared counterpart of GW170817, PASJ, arXiv:1710.05850
81. Tanvir, N. R. et al., The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars, na, arXiv:1710.05455
82. The LIGO Scientific Collaboration, The Virgo Collaboration, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett., arXiv:1710.05832
83. The LIGO Scientific Collaboration, the Virgo Collaboration, Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817, ApJL, arXiv:1710.05836
84. The LIGO Scientific Collaboration, the Virgo Collaboration, On the Progenitor of Binary Neutron Star Merger GW170817, ApJL, arXiv:1710.05838
85. Tominaga, N. et al., Subaru Hyper Suprime-Cam Survey for An Optical Counterpart of GW170817, PASJ, submitted, arXiv:1710.05865
86. Troja, E. et al., The X-ray counterpart to the gravitational wave event GW 170817, Nature, arXiv:1710.05433
87. Utsumi, Y. et al., J-GEM observations of an electromagnetic counterpart to the neutron star merger GW170817, PASJ, arXiv:1710.05848
88. Valenti, S. et al., The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck, ApJL, arXiv:1710.05854
89. Verrecchia, F. et al., AGILE Observations of the Gravitational Wave Source GW 170817: Constraining Gamma-Ray Emission from a NS-NS Coalescence, ApJL, submitted, arXiv:1710.05460
90. Wang, F. Y.; & Zou, Y. C., Measuring peculiar velocities from gravitational waves and electromagnetic counterparts, na, arXiv:1710.06113
91. Wang, H. et al., GW170817/GRB 170817A/AT2017gfo association: some implications for physics and astrophysics, na, arXiv:1710.05805
92. Wei, J.-J. et al., Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts, na, arXiv:1710.05860
93. Xiao, D. et al., Afterglows and Macronovae Associated with Nearby Low-Luminosity Short-Duration Gamma-Ray Bursts: Application to GW170817/GRB170817A, na, arXiv:1710.05910
94. Yang, S. et al., An empirical limit on the kilonova rate from the DLT40 one day cadence Supernova Survey, ApJL, submitted, arXiv:1710.05864
95. Yue, C. et al., Is GRB 170817A Alone?, na, arXiv:1710.05942
96. Zhang, B.-B. et al., A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor, na, arXiv:1710.05851
In the past few decades, thousands of exoplanets have been discovered in neighboring star systems. In fact, as of October 1st, 2017, some 3,671 exoplanets have been confirmed in 2,751 systems, with 616 systems having more than one planet. Unfortunately, the vast majority of these have been detected using indirect means, ranging from Gravitational Microlensing to Transit Photometry and the Radial Velocity Method.
What’s more, we have been unable to study these planets up close because the necessary instruments do not yet exist. Project Blue, a consortium of scientists, universities and institutions, is looking to change that. Recently, they launched a crowdfunding campaign through Indiegogo to finance the development of a space telescope that will start looking for exoplanets in the Alpha Centauri system by 2021.
To accomplish their goal of directly studying exoplanets, Project Blue is seeking to leverage recent changes in space exploration, which include improved instruments and methodology, the rate at which exoplanet have been discovered in recent years, and increased collaboration between the private and public sector. As SETI Institute President and CEO Bill Diamond explained in a recent SETI press statement:
“Project Blue builds on recent research in seeking to show that Earth is not alone in the cosmos as a planet capable of supporting life, and wouldn’t it be amazing to see such a planet in our nearest neighboring star system? This is the fundamental reason we search.”
As noted, virtually all exoplanet discoveries that have been made in the past few decades were done using indirect methods – the most popular of which is Transit Photometery. This method is what the Kepler and K2 missions relied on to detect a total of 5,017 exoplanet candidates and confirm the existence of 2,470 exoplanets (30 of which were found to orbit within their star’s habitable zone).
This method consists of astronomers monitoring distant stars for periodic dips in brightness, which are caused by a planet transiting in front of the star. By measuring these dips, scientists are able to determine the size of planets in that system. Another popular technique is the Radial Velocity (or Doppler) Method, which measures changes in a star’s position relative to the observer to determine how massive its system of planets are.
These and other methods (alone or in combination) have allowed for the many discoveries that have been made to take place. But so far, no exoplanets have been directly imaged, which is due to the cancelling effect stars have on optical instruments. Basically, astronomers have been unable to spot the light being reflected off of an exoplanet’s atmosphere because the light coming from the star is up to ten billion times brighter.
The challenge has thus become how to go about blocking this light so that the planets themselves can become visible. One proposed solution to this problem is NASA’s Starshade concept, a giant space structure that would be deployed into orbit alongside a space telescope (most likely, the James Webb Space Telescope). Once in orbit, this structure would deploy its flower-shaped foils to block the glare of distant stars, thus allowing the JWST and other instruments to image exoplanets directly.
But since Alpha Centauri is a binary system (or trinary, if you count Proxima Centauri), being able to directly image any planets around them is even more complicated. To address this, Project Blue has developed plans for a telescope that will be able to suppress light from both Alpha Centauri A and B, while simultaneously taking images of any planets that orbit them. It’s specialized starlight suppression system consists of three components.
First, there is the coronagraph, an instrument which will rely on multiple techniques to block starlight. Second, there’s the deformable mirror, low-order wavefront sensors, and software control algorithms that will manipulate incoming light. Last, there is the post-processing method known as Orbital Differntial Imaging (ODI), which will allow the Project Blue scientist to enhance the contrast of the images taken.
Given its proximity to Earth, the Alpha Centauri system is the natural choice for conducting such a project. Back in 2012, an exoplanet candidate – Alpha Centauri Bb – was announced. However, in 2015, further analysis indicated that the signal detected was an artefact in the data. In March of 2015, a second possible exoplanet (Alpha Centauri Bc) was announced, but its existence has also come to be questioned.
With an instrument capable of directly imaging this system, the existence of any exoplanets could finally be confirmed (or ruled out). As Franck Marchis – the Senior Planetary Astronomer at the SETI Institute and Project Blue Science Operation Lead – said of the Project:
“Project Blue is an ambitious space mission, designed to answer to a fundamental question, but surprisingly the technology to collect an image of a “Pale Blue Dot” around Alpha Centauri stars is there. The technology that we will use to reach to detect a planet 1 to 10 billion times fainter than its star has been tested extensively in lab, and we are now ready to design a space-telescope with this instrument.”
If Project Blue meets its crowdfunding goals, the organization intends to deploy the telescope into Near-Earth Orbit (NEO) by 2021. The telescope will then spend the next two years observing the Alpha Centauri system with its corongraphic camera. All told, between the development of the instrument and the end of its observation campaign, the mission will last six years, a relatively short run for an astronomical mission.
However, the potential payoff for this mission would be incredibly profound. By directly imaging another planet in the closest star system to our own, Project Blue could gather vital data that would indicate if any planets there are habitable. For years, astronomers have attempted to learn more about the potential habitability of exoplanets by examining the spectral data produced by light passing through their atmospheres.
However, this process has been limited to massive gas giants that orbit close to their parent stars (i.e. “Super-Jupiters”). While various models have been proposed to place constraints on the atmospheres of rocky planets that orbit within a star’s habitable zone, none have been studied directly. Therefore, if it should prove to be successful, Project Blue would allow for some of the greatest scientific finds in history.
What’s more, it would provide information that could a long way towards informing a future mission to Alpha Centauri, such as Breakthrough Starshot. This proposed mission calls for the use of a large laser array to propel a lightsail-driven nanocraft up to relativistic speeds (20% the speed of light). At this rate, the craft would reach Alpha Centauri within 20 years time and be able to transmit data back using a series of tiny cameras, sensors and antennae.
As the name would suggest, Project Blue hopes to capture the first images of a “Pale Blue Dot” that orbits another star. This is a reference to the photograph of Earth that was taken by the Voyager 1 probe on February 19th, 1990, after the probe concluded its primary mission and was getting ready to leave the Solar System. The photos were taken at the request of famed astronomer and science communicator Carl Sagan.
When looking at the photographs, Sagan famously said: “Look again at that dot. That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives.” Thereafter, the name “Pale Blue Dot” came to be synonymous with Earth and capture the sense of awe and wonder that the Voyage 1 photographs evoked.
More recently, other “Pale Blue Dot” photographs have been snapped by missions like the Cassini orbiter. While photographing Saturn and its system of rings in the summer of 2013, Cassini managed to capture images that showed Earth in the background. Given the distance, Earth once again appeared as a small point of light against the darkness of space.
Beyond relying on crowdfunding and the participation of multiple non-profit organizations, this low-cost mission also seeks to capitalize on a growing trend in space exploration, – which is open participation and collaborations between scientific institutions and citizen scientists. This is one of the primary purposes behind Project Blue, which is to engage the public and educate them about the importance of space exploration.
As Jon Morse, the CEO of the BoldlyGo Institute, explained:
“The future of space exploration holds boundless potential for answering profound questions about our existence and destiny. Space-based science is a cornerstone for investigating such questions. Project Blue seeks to engage a global community in a mission to search for habitable planets and life beyond Earth.”
As of the penning of this article, Project Blue has managed to raise $125,561 USD of their goal of $175,000. For those interesting in backing this project, Project Blue’s Indiegogo campaign will remain open for another 11 days. And be sure to check out their promotional video as well:
Finding planets beyond our Solar System is already tough, laborious work. But when it comes to confirmed exoplanets, an even more challenging task is determining whether or not these worlds have their own satellites – aka. “exomoons”. Nevertheless, much like the study of exoplanets themselves, the study of exomoons presents some incredible opportunities to learn more about our Universe.
Of all possible candidates, the most recent (and arguably, most likely) one was announced back in July 2017. This moon, known as Kepler-1625 b-i, orbits a gas giant roughly 4,000 light years from Earth. But according to a new study, this exomoon may actually be a Neptune-sized gas giant itself. If true, this will constitute the first instance where a gas giant has been found orbiting another gas giant.
Within the Solar System, moons tell us much about their host planet’s formation and evolution. In the same way, the study of exomoons is likely to provide insight into extra-solar planetary systems. As Dr. Heller explained to Universe Today via email, these studies could also shed light on whether or not these systems have habitable planets:
“Moons have proven to be extremely helpful to study the formation and evolution of the planets in the solar system. The Earth’s Moon, for example, was key to set the initial astrophysical conditions, such as the total mass of the Earth and the Earth’s primordial spin state, for what has become our habitable environment. As another example, the Galilean moons around Jupiter have been used to study the conditions of the primordial accretion disk around Jupiter from which the planet pulled its mass 4.5 billion years ago. This accretion disk has long gone, but the moons that formed within the disk are still there. And so we can use the moons, in particular their contemporary composition and water contents, to study planet formation in the far past.”
When it comes to the Kepler-1625 star system, previous studies were able to produce estimates of the radii of both Kepler-1625 b and its possible moon, based on three observed transits it made in front of its star. The light curves produced by these three observed transits are what led to the theory that Kepler-1625 had a Neptune-size exomoon orbiting it, and at a distance of about 20 times the planet’s radius.
But as Dr. Heller indicated in his study, radial velocity measurements of the host star (Kepler-1625) were not considered, which would have produced mass estimates for both bodies. To address this, Dr. Heller considered various mass regimes in addition to the planet and moon’s apparent sizes based on their observed signatures. Beyond that, he also attempted to place the planet and moon into the context of moon formation in the Solar System.
The first step, accroding to Dr. Heller, was to conduct estimates of the possible mass of the exomoon candidate and its host planet based on the properties that were shown in the transit lightcurves observed by Kepler.
“A dynamical interpretation of the data suggests that the host planet is a roughly Jupiter-sized (“size” in terms of radius) brown dwarf with a mass of almost 18 Jupiter masses,” he said. “The uncertainties, however, are very large mostly due to the noisiness of the Kepler data and due to the low number of transits (three). In fact, the host object could be a Jupiter-like planet or even be a moderate-sized brown dwarf of up to 37 Jupiter masses. The mass of the moon candidate ranges somewhere between a super-Earth of a few Earth masses and Neptune’s mass.”
Next, Dr. Heller compared the relative mass of the exomoon candidate and Kepler-1625 b and compared this value to various planets and moons of the Solar System. This step was necessary because the moons of the Solar System show two distinct populations, based the mass of the planets compared to their moon-to-planet mass ratios. These comparisons indicate that a moon’s mass is closely related to how it formed.
For instance, moons that formed through impacts – such as Earth’s Moon, and Pluto’s moon Charon – are relatively heavy, whereas moons that formed from a planet’s accretion disk are relatively light. While Jupiter’s moon Ganymede is the most massive moon in the Solar System, it is rather diminutive and tiny compared to Jupiter itself – the largest and most massive body in the Solar System.
In the end, the results Dr. Heller obtained proved to be rather interesting. Basically, they indicated that Kepler-1625 b-i cannot be definitively placed in either of these families (heavy, impact moons vs. lighter, accretion moons). As Dr. Heller explained:
“[T]]he most reasonable scenarios suggest that the moon candidate is more of the heavy kind, which suggests it should have formed through an impact. However, this exomoon, if real, is most likely gaseous. The solar system moons are all rocky/icy bodies without a significant gas envelope (Titan has a thick atmosphere but its mass is negligible). So how would a gas giant moon have formed through an impact? I don’t know. I don’t know if anybody knows.
“Alternatively, in a third scenario, Kepler-1625 b-i could have formed through capture, but this implies a very unlikely progenitor planetary binary system, from which it was pulled into a bound orbit around Kepler-1625 b, while its former planetary companion was ejected from the system.”
What was equally interesting were the mass estimates for Keple-1625 b, which Dr. Heller averaged to be 19 Jupiter masses, but could be as high as 112 Jupiter Masses. This means that the host planet could be anything from a gas giant that is just slightly larger than Saturn to a Brown Dwarf or even a Very-Low-Mass-Star (VLMS). So rather than a gas giant moon orbiting a gas giant, we could be dealing with a gas giant moon orbiting a small star, which together orbit a larger star!
It’s the stuff science fiction is made of! And while this study cannot provide exact mass constraints on Keplder-1625 b and its possible moon, its significance cannot be denied. Beyond providing astrophysicists with the first possible example of a gas giant moon, this study is of immense significance as far as the study of exoplanet systems is concerned. If and when Kepler-1625 b-i is confirmed, it will tell us much about the conditions under which its host formed.
In the meantime, more observations are needed to confirm or rule out the existence of this moon. Fortunately, these observations will be taking place in the very near future. When Kepler-1625 b makes it next transit – on October 29th, 2017 – the Hubble Space Telescope will be watching! Based on the light curves it observes coming from the star, scientist should be able to get a better idea of whether or not this mysterious moon is real and what it looks like.
“If the moon turns out to be a ghost in the data, then most of this study would not be applicable to the Kepler-1625 system,” said Dr. Heller. “The paper would nevertheless present an example study of how to classify future exomoons and how to put them into the context of the solar system. Alternatively, if Kepler-1625 b-i turns out to be a genuine exomoon, then my study suggests that we have found a new kind of moon that has a very different formation history than the moons we know as of today. Certainly an exquisite riddle for astrophysicists to solve.”
The study of exoplanet systems is like pealing an onion, albeit in a dark room with the lights turned off. With every successive layer scientists peel back, the more mysteries they find. And with the deployment of next-generation telescopes in the near future, we are bound to learn a great deal more!
When hunting for potentially habitable exoplanets, one of the most important things astronomers look for is whether or not exoplanet candidates orbit within their star’s habitable zone. This is necessary for liquid water to exist on a planet’s surface, which in turn is a prerequisite for life as we know it. However, in the course of discovering new exoplanets, scientists have become aware of an extreme case known as “water worlds“.
Water worlds are essentially planets that are up to 50% water in mass, resulting in surface oceans that could be hundreds of kilometers deep. According to a new study by a team of astrophysicists from Princeton, the University of Michigan and Harvard, water worlds may not be able to hang on to their water for very long. These findings could be of immense significance when it comes to the hunt for habitable planets in our neck of the cosmos.
This most recent study, titled “The Dehydration of Water Worlds via Atmospheric Losses“, recently appeared in The Astrophysical Journal Letters. Led by Chuanfei Dong from the Department of Astrophysical Sciences at Princeton University, the team conducted computer simulations that took into account what kind of conditions water worlds would be subject to.
This study was motivated largely by the number of exoplanet discoveries have been made around low-mass, M-type (red dwarf) star systems in recent years. These planets have been found to be comparable in size to Earth – which indicated that they were likely terrestrial (i.e. rocky). In addition, many of these planets – such as Proxima b and three planets within the TRAPPIST-1 system – were found to be orbiting within the stars habitable zones.
However, subsequent studies indicated that Proxima b and other rocky planets orbiting red dwarf stars could in fact be water worlds. This was based on mass estimates obtained by astronomical surveys, and the built-in assumptions that such planets were rocky in nature and did not have massive atmospheres. At the same time, numerous studies have been produced that have cast doubt on whether or not these planets would be able to hold onto their water.
Basically, it all comes down to the type of star and the orbital parameters of the planets. While long-lived, red dwarf stars are known for being variable and unstable compared to our Sun, which results in periodic flares up that would strip a planet’s atmosphere over time. On top of that, planets orbiting within a red dwarf’s habitable zone would likely be tidally-locked, meaning one side of the planet would be constantly exposed to the star’s radiation.
Because of this, scientists are focused on determining just how well exoplanets in different types of star systems could hold onto their atmospheres. As Dr. Dong told Universe Today via email:
“It is fair to say that the presence of an atmosphere is perceived as one of the requirements for the habitability of a planet. Having said that, the concept of habitability is a complex one with myriad factors involved. Thus, an atmosphere by itself will not suffice to guarantee habitability, but it can be regarded as an important ingredient for a planet to be habitable.”
To test whether or not a water world would be able to hold onto its atmosphere, the team conducted computer simulations that took into account a variety of possible scenarios. These included the effects of stellar magnetic fields, coronal mass ejections, and atmospheric ionization and ejection for various types of stars – including G-type stars (like our Sun) and M-type stars (like Proxima Centauri and TRAPPIST-1).
With these effects accounted for, Dr. Dong and his colleagues derived a comprehensive model that simulated how long exoplanet atmospheres would last. As he explained it:
“We developed a new multi-fluid magnetohydrodynamic model. The model simulated both the ionosphere and magnetosphere as a whole. Due to the existence of the dipole magnetic field, the stellar wind cannot sweep away the atmosphere directly (like Mars due to the absence of a global dipole magnetic field), instead, the atmospheric ion loss was caused by the polar wind.
“The electrons are less massive than their parent ions, and as a result, are more easily accelerated up to and beyond the escape velocity of the planet. This charge separation between the escaping, low-mass electrons and significantly heavier, positively-charged ions sets up a polarization electric field. That electric field, in turn, acts to pull the positively charged ions along behind the escaping electrons, out of the atmosphere in the polar caps.”
What they found was that their computer simulations were consistent with the current Earth-Sun system. However, in some extreme possibilities – such as exoplanets around M-type stars – the situation is very different and the escape rates could be one thousand times greater or more. The result means that even a water world, if it orbits an red dwarf star, could lose its atmosphere after about a gigayear (Gyr), one billion years.
Considering that life as we know it took around 4.5 billion years to evolve, one billion years is a relatively brief window. In fact, as Dr. Dong explained, these results indicate that planets that orbit M-type stars would be hard pressed to develop life:
“Our results indicate that the ocean planets (orbiting a Sun-like star) will retain their atmospheres much longer than the Gyr timescale as the ion escape rates are far too low, therefore, it allows a longer duration for life to originate on these planets and evolve in terms of complexity. In contrast, for exoplanets orbiting M-dwarfs, they could have their oceans depleted over the Gyr timescale due to the more intense particle and radiation environments that exoplanets experience in close-in habitable zones. If the atmosphere were to be depleted over the timescale less than Gyr, this could prove to be problematic for the origin of life (abiogenesis) on the planet.”
Once again, these results cast doubt on the potential habitability of red dwarf star systems. In the past, researchers have indicated that the longevity of red dwarf stars, which can remain in their main sequence for up to 10 trillion years or longer, make them the best candidate for finding habitable exoplanets. However, the stability of these stars and the way in which they are likely to strip planets of their atmospheres seems to indicate otherwise.
Studies such as this one are therefore highly significant in that they help to address just how long a potentially habitable planet around a red dwarf star could remain potentially habitable. As Dr. Dong indicated:
“Given the importance of atmospheric loss on planetary habitability, there has been a great deal of interest in using telescopes such as the upcoming James Webb Space Telescope (JWST) to determine whether these planets have atmospheres and, if so, what their composition are like. It is expected that the JWST should be capable of characterizing these atmospheres (if present), but quantifying the escape rates accurately requires a much higher degree of precision and may not be feasible in the near-future.”
The study is also significant as far as our understanding of the Solar System and its evolution is concerned. At one time, scientists have ventured that both Earth and Venus may have been water worlds. How they made the transition from being very watery to what they are today – in the case of Venus, dry and hellish; and in the case of Earth, having multiple continents – is an all-important question.
In the future, more detailed surveys are anticipated that could help shed light on these competing theories. When the James Webb Space Telescope (JWST) is deployed in Spring of 2018, it will use its powerful infrared capabilities to study planets around nearby red dwarfs, Proxima b being one of them. What we learn about this and other distant exoplanets will go a long way towards informing our understanding of how our own Solar System evolved as well.
Chances are, at one time or another, we’ve all used Google Maps to find the shortest route from point A to point B. But if you are like some people, you’ve used this mapping tool to have a look at geographical features or places you hope to visit someday. In an age where digital technology is allowing for telecommuting and even telepresence, it’s nice to take virtual tours of the places we may never get to see in person.
But now, Google Maps is using its technology to enable the virtual exploration of something far grander: the Solar System! Thanks to images provided by the Cassini orbiter of the planets and moons it studied during its 20 year mission, Google is now allowing users to explore places like Venus, Mercury, Mars, Europa, Ganymede, Titan, and other far-off destinations that are impossible for us to visit right now.
Similar to how Google Earth uses satellite imagery to create 3D representations of our planet, this new Google Maps tool relies on the more than 500,000 images taken by Cassini as it made its way across the Solar System. This probe recently concluded its 20 year mission, 13 of which were spent orbiting Saturn and studying its system of moons, by crashing into the atmosphere of Saturn.
After launching from Earth on October 15th, 1997, Cassini conducted a flyby of Venus in order to pick up a gravity-assist. It then flew by Earth, obtaining a second gravity-assist, while making its way towards the Asteroid Belt. Before reaching the Saturn System, where it would begin studying the gas giant and its moons, Cassini also conducted a flyby of Jupiter – snapping pictures of its moons, rings, and Great Red Spot.
When it reached Saturn in July of 2004, Cassini went to work studying the planet and its larger moons – particularly Titan and Enceladus. During the next 13 years and 76 days, the probe would provide breathtaking images and sensor data on Saturn’s rings, atmosphere and polar storms and reveal things about Titan’s surface that were never before seen (such as its methane lakes, hydrological cycle, and surface features).
It’s flybys of Enceladus also revealed some startling things about this icy moon. Aside from detecting a tenuous atmosphere of ionized water vapor and Enceladus’ mysterious “Tiger Stripes“, the probe also detected jets of water and organic molecules erupting from the moon’s southern polar region. These jets, it was later determined, were indicative of a warm water ocean deep in the moon’s interior, and possibly even life!
Interestingly enough, the original Cassini mission was only planned to last for four years once it reached Saturn – from June 2004 to May 2008. But by the end of this run, the mission was extended with the Cassini Equinox Mission, which was intended to run until September of 2010. It was extended a second time with the Cassini Solstice Mission, which lasted until September 15th, 2017, when the probe was crashed into Saturn’s atmosphere.
Thanks to all the images taken by this long-lived mission, Google Maps is now able to offer exploratory tours of 16 celestial bodies in the Solar System – 12 of which are new to the site. These include Earth, the Moon, Mercury, Venus, Mars, Pluto, Ceres, Io, Europa, Ganymede, Mimas, Enceladus, Dione, Rhea, Titan, Iapetus and (available as of July 2017) the International Space Station.
This latest development also builds on several extensions Google has released over the years. These include Google Moon, which was released on July 20th, 2005, to coincide with the 36th anniversary of the Apollo 11 Moon Landing. Then there was Google Sky (introduced in 2007), which used photographs taken by the Hubble Space Telescope to create a virtual map of the visible universe.
Then there was Google Mars, the result of a collaborative effort between Google and NASA scientists at the Mars Space Flight Facility released in 2011, one year before the Curiosity rover landed on the Red Planet. This tool relied on data collected by the Mars Global Surveyor and the Mars Odyssey missions to create high-resolution 3D terrain maps that included elevations.
In an age of high-speed internet and telecommunications, using the internet to virtually explore the many planets and bodies of the Solar System just makes sense. Especially when you consider that even the most ambitious plans to conduct tourism to Mars or the Moon (looking at you, Elon Musk and Richard Branson!) are not likely to bear fruit for many years, and cost an arm and a leg to boot!
In the future, similar technology could lead to all kinds of virtual exploration. This concept, which is often referred to as “telexploration”, would involve robotic missions traveling to other planets and even star systems. The information they gather would then be sent back to Earth to create virtual experiences, which would allow scientists and space-exploration enthusiasts to feel like they were seeing it firsthand.
In truth, this mapping tool is just the latest gift to be bestowed by the late Cassini mission. NASA scientists expect to be sifting through the volumes of data collected by the orbiter for years to come. Thanks to improvements made in software applications and the realms of virtual and augmented reality, this data (and that of present and future missions) is likely to be put to good use, enabling breathtaking and educational tours of our Universe!
Beyond Earth’s orbit, there are innumerable comets and asteroids that are collectively known as Near-Earth Objects. On occasion, some of these objects will cross Earth’s orbit; and every so often, one will pass too close to Earth and impact on its surface. While most of these objects have been too small to cause serious damage, some have been large enough to trigger Extinction Level Events (ELEs).
For this reason, NASA and other space agencies have spent decades cataloging and monitoring the larger NEAs in order to determine if they might collide with Earth at some point in the future. The only question has been, how many remain to be found? According to a recent analysis performed by Alan W. Harris of MoreData! – a California-based research company – only a handful of NEAs haven’t been catalogued yet.
These findings were the subject of a presentation made this week at the 49th annual meeting of the American Astronomical Society’s Division for Planetary Sciences in Provo, Utah. As Harris indicated during the presentation, titled “The Population of Near-Earth Asteroids Revisited”, previous estimates of the remaining NEAs have been plagued by a consequential round-off error that have skewed the results.
The source of this error has to do with how organizations that monitor NEOs determine “size-frequency distribution”. Basically, estimates are given in terms of number versus brightness, since most discovery surveys were conducted in the visible spectrum. This is not a reliable way of determining size though, since asteroids don’t all have the same albedo (aka. reflectivity).
As such, NEA brightness is expressed in units of absolute magnitude (H), where lower numbers indicate brighter objects. The IAU Minor Planet Center – which is responsible for maintaining information on asteroid and other small-body measurements – rounds off the reported values of H to the nearest 0.1 magnitude. As Harris explained during the course of his presentation:
“So, for example, a bin from H of 17.5 to 18.0 is really from 17.55 to 18.05, or 17.45 to 17.95, depending on which side of the bin you take “less than or equal to” rather than ‘less than’.”
While this has not caused much in the way of problems in the past, it has become significant as far as assessments of how many larger objects remain to be found are concerned. Harris first became aware of the potential for problems this past year after Dr. Pasqual Tricario – a Senior Scientist at the Planetary Science Institute – conducted a study that produced estimates different from those obtained by Harris and Italian astronomer Germano D’Abramo two years before.
The 2015 study conducted by Harris and D’Abramo – which appeared in Icarus under the title “The population of near-Earth asteroids” – yielded an estimate of 990 NEAs that were larger than 1 km in diameter. However, Tricario’s study (“The near-Earth asteroid population from two decades of observations“, also published in Icarus), which was based on the opposite “less than or equal to” assumption, produced estimates that were 10% lower.
As Harris explained, this prompted D’Adramo and him to considered a different approach. “We corrected the problem for the current analysis by choosing bin boundaries at .05 magnitudes, e.g. 17.25 to 17.75, so the 0.1 round-off thresholds naturally put objects in the right bin,” he said. “When Tricarico and I each made these corrections, our population estimates fell into almost perfect agreement.”
After applying the correction, Harris and D’Abramo’s overall estimate of undiscovered NEAs dropped from 990 to 921 ± 20. Beyond allowing for consistency between different studies, these corrected estimates also reduced the total number of undiscovered objects that remain undiscovered. According to the latest tallies from NASA’s Jet Propulsion Laboratory, 884 NEAs that are about 1 km in diameter have been discovered so far.
Based on the previous population estimate of 990 objects, this implied that the current surveys are 89% complete and 106 were yet to be found. When the corrections were applied to these numbers, JPL’s surveys now appears to be 96% complete, and only 37 objects remain to be found (almost three times less). Naturally, these new estimates depends on their own sets of assumptions, and different results can be obtained based on different criteria.
Still, a reduced estimate of undiscovered asteroids is definitely encouraging news. Especially when one considers how hazardous large asteroids are to the safety and well-being of life here on Earth. As of October 3rd, 2017, NASA’s Center for Near-Earth Object Studies (CNEOS) announced that there are a total of 157 potentially hazardous asteroids out there. Knowing that only a few more need to be found is bound to help some of us sleep at night!
Future studies are also expected to benefit from the deployment of next-generation missions. Thanks to the efforts of NASA’s Near-Earth-Object WISE (NEOWISE) mission, which looks for NEOs in the infrared band (rather than visible light), that number of known NEOs has increased substantially. With the deployment of the James Webb Space Telescope, those numbers are expected to reach even higher.
Between improvements in technology and methodology, a day may yet come when all Near-Earth Objects – be they big or small, potentially hazardous or harmless – are accounted for. Combined with asteroid defenses, like directed-energy beams or robots spacecraft capable of attaching themselves to asteroids and redirecting them, Extinction Level Events might very well become a thing of the past.
When it comes to searching for worlds that could support extra-terrestrial life, scientists currently rely on the “low-hanging fruit” approach. Since we only know of one set of conditions under which life can thrive – i.e. what we have here on Earth – it makes sense to look for worlds that have these same conditions. These include being located within a star’s habitable zone, having a stable atmosphere, and being able to maintain liquid water on the surface.
Until now, scientists have relied on methods that make it very difficult to detect water vapor in the atmosphere’s of terrestrial planets. But thanks to a new study led by Yuka Fujii of NASA’s Goddard Institute for Space Studies (GISS), that may be about to change. Using a new three-dimensional model that takes into account global circulation patterns, this study also indicates that habitable exoplanets may be more common than we thought.
To put it simply, liquid water is essential to life as we know it. If a planet does not have a warm enough atmosphere to maintain liquid water on its surface for a sufficient amount of time (on the order of billions of years), then it is unlikely that life will be able to emerge and evolve. If a planet is too distant from its star, its surface water will freeze; if it is too close, its surface water will evaporate and be lost to space.
While water has been detected in the atmospheres of exoplanets before, in all cases, the planets were massive gas giants that orbited very closely to their stars. (aka. “Hot Jupiters”). As Fujii and her colleagues state in their study:
“Although H2O signatures have been detected in the atmospheres of hot Jupiters, detecting molecular signatures, including H2O, on temperate terrestrial planets is exceedingly challenging, because of the small planetary radius and the small scale height (due to the lower temperature and presumably larger mean molecular weight).”
When it comes to terrestrial (i.e. rocky) exoplanets, previous studies were forced to rely on one-dimensional models to calculate the presence of water. This consisted of measuring hydrogen loss, where water vapor in the stratosphere is broken down into hydrogen and oxygen from exposure to ultraviolet radiation. By measuring the rate at which hydrogen is lost to space, scientists would estimate the amount of liquid water still present on the surface.
However, as Dr. Fujii and her colleagues explain, such models rely on several assumptions that cannot be addressed, which include the global transport of heat and water vapor vapor, as well as the effects of clouds. Basically, previous models predicted that for water vapor to reach the stratosphere, long-term surface temperatures on these exoplanets would have to be more than 66 °C (150 °F) higher than what we experience here on Earth.
These temperatures could create powerful convective storms on the surface. However, these storms could not be the reason water reaches the stratosphere when it comes to slowly rotating planets entering a moist greenhouse state – where water vapor intensifies heat. Planets that orbit closely to their parent stars are known to either have a slow rotation or to be tidally-locked with their planets, thus making convective storms unlikely.
This occurs quite often for terrestrial planets that are located around low-mass, ultra cool, M-type (red dwarf) stars. For these planets, their proximity to their host star means that it’s gravitational influence will be strong enough to slow down or completely arrest their rotation. When this occurs, thick clouds form on the dayside of the planet, protecting it from much of the star’s light.
The team found that, while this could keep the dayside cool and prevent water vapor from rising, the amount of near-Infrared radiation (NIR) could provide enough heat to cause a planet to enter a moist greenhouse state. This is especially true of M-type and other cool dwarf stars, which are known to produce more in the way of NIR. As this radiation warms the clouds, water vapor will rise into the stratosphere.
To address this, Fujii and her team relied on three-dimensional general circulation models (GCMs) which incorporate atmospheric circulation and climate heterogeneity. For the sake of their model, the team started with a planet that had an Earth-like atmosphere and was entirely covered by oceans. This allowed the team to clearly see how variations in distance from different types of stars would effect conditions on the planets surfaces.
These assumptions allowed the team to clearly see how changing the orbital distance and type of stellar radiation affected the amount of water vapor in the stratosphere. As Dr. Fujii explained in a NASA press release:
“Using a model that more realistically simulates atmospheric conditions, we discovered a new process that controls the habitability of exoplanets and will guide us in identifying candidates for further study… We found an important role for the type of radiation a star emits and the effect it has on the atmospheric circulation of an exoplanet in making the moist greenhouse state.”
In the end, the team’s new model demonstrated that since low-mass star emit the bulk of their light at NIR wavelengths, a moist greenhouse state will result for planets orbiting closely to them. This would result in conditions on their surfaces that comparable to what Earth experiences in the tropics, where conditions are hot and moist, instead of hot and dry.
What’s more, their model indicated that NIR-driven processes increased moisture in the stratosphere gradually, to the point that exoplanets orbiting closer to their stars could remain habitable. This new approach to assessing potential habitability will allow astronomers to simulate circulation of planetary atmospheres and the special features of that circulation, which is something one-dimensional models cannot do.
In the future, the team plans to assess how variations in planetary characteristics -such as gravity, size, atmospheric composition, and surface pressure – could affect water vapor circulation and habitability. This will, along with their 3-dimensional model that takes planetary circulation patterns into account, allow astronomers to determine the potential habitability of distant planets with greater accuracy. As Anthony Del Genio indicated:
“As long as we know the temperature of the star, we can estimate whether planets close to their stars have the potential to be in the moist greenhouse state. Current technology will be pushed to the limit to detect small amounts of water vapor in an exoplanet’s atmosphere. If there is enough water to be detected, it probably means that planet is in the moist greenhouse state.”
Beyond offering astronomers a more comprehensive method for determining exoplanet habitability, this study is also good news for exoplanet-hunters hoping to find habitable planets around M-type stars. Low-mass, ultra-cool, M-type stars are the most common star in the Universe, accounting for roughly 75% of all stars in the Milky Way. Knowing that they could support habitable exoplanets greatly increases the odds of find one.
In addition, this study is VERY good news given the recent spate of research that has cast serious doubt on the ability of M-type stars to host habitable planets. This research was conducted in response to the many terrestrial planets that have been discovered around nearby red dwarfs in recent years. What they revealed was that, in general, red dwarf stars experience too much flare and could strip their respective planets of their atmospheres.
These include the 7-planet TRAPPIST-1 system (three of which are located in the star’s habitable zone) and the closest exoplanet to the Solar System, Proxima b. The sheer number of Earth-like planets discovered around M-type stars, coupled with this class of star’s natural longevity, has led many in the astrophysical community to venture that red dwarf stars might be the most likely place to find habitable exoplanets.
With this latest study, which indicates that these planets could be habitable after all, it would seem that the ball is effectively back in their court!
In April of 2016, astronomers became aware of a distant object that appeared to be orbiting the Sun, but was also passing close enough to Earth that it could be periodically viewed using the most powerful telescopes. Since then, there has been ample speculation as to what this “Temporary Moon” could be, with most astronomers claiming that it is likely nothing more than an asteroid.
However, some suggested that it was a burnt-out rocket booster trapped in a near-Earth orbit. But thanks to new study by a team from the University of Arizona’s Lunar and Planetary Laboratory, this object – known as (469219) 2016 HO3 – has been confirmed as an asteroid. While this small near-Earth-asteroid orbits the Sun, it also orbits Earth as a sort of “quasi-satellite”.
The team that made this discovery was led by Vishnu Reddy, an assistant professor at the University of Arizona’s Lunar and Planetary Laboratory. Their research was also made possible thanks to NASA’s Near-Earth Object Observations Program. This program is maintained by NASA’s Center for Near-Earth Object Studies (CNEOS) and provides grants to institutions dedicated to the research of NEOs.
The details of this discovery were presented this week at the 49th Annual Meeting of the Division for Planetary Sciences in Utah at a presentation titled “Ground-based Characterization of Earth Quasi Satellite (469219) 2016 HO3”. During the course of the presentation, Reddy and his colleagues described how they spotted the object using the Large Binocular Telescope (LBT) at the LBT Observatory on Mount Graham in southeastern Arizona.
According to their observations, 2016 HO3 measures just 100 meters (330 feet) across and is the most stable quasi-satellite discovered to date (of which there have been five). Over the course of a few centuries, this asteroid remains at a distance of 38 to 100 lunar distances – i.e. the distance between the Earth and the Moon. As Reddy explained in a UANews press statement, this makes the asteroid a challenging target:
“While HO3 is close to the Earth, its small size – possibly not larger than 100 feet – makes it challenging target to study. Our observations show that HO3 rotates once every 28 minutes and is made of materials similar to asteroids.”
Discovering the true nature of this object has also solved another big question – namely, where did 2016 HO3 come from? For those speculating that it might be space junk, it then became necessary to determine what the likely source of that junk was. Was it a remnant of an Apollo-era mission, or something else entirely? By determining that it is actually an NEO, Reddy and his team have indicted that it likely comes from the same place as other NEOs.
Reddy and his colleagues also indicated that 2016 HO3 reflected light off its surface in a way that is similar to meteorites that have been studied here on Earth. This was another indication that 2016 HO3 has similar origins to other NEOs (some of which have entered our atmosphere as meteors) which are generally asteroids that were kicked out of the Main Belt by Jupiter’s gravity.
“In an effort to constrain its rotation period and surface composition, we observed 2016 HO3 on April 14 and 18 with the Large Binocular Telescope and the Discovery Channel Telescope,” Reddy said. “The derived rotation period and the spectrum of emitted light are not uncommon among small NEOs, suggesting that 2016 HO3 is a natural object of similar provenance to other small NEOs.”
But unlike other NEOs which periodically cross Earth’s orbit, “quasi-satellites” are distinguished by their rather unique orbits. In the case of 2016 HO3, it has an orbit that follows a similar path to that the Earth’s; but because it is not dominated by the Earth’s gravity, their two orbits are out of sync. This causes 2016 HO3 to make annual loops around the Earth as it orbits the Sun.
Christian Veillet, one of co-authors of the presentation, is also the director of the LBT Observatory. As he explained, this characteristic could make “quasi-satellites” ideal targets for future NEO studies:
“Of the near-Earth objects we know of, these types of objects would be the easiest to reach, so they could potentially make suitable targets for exploration. With its binocular arrangement of two 8.4-meter mirrors, coupled with a very efficient pair of imagers and spectrographs like MODS, LBT is ideally suited to the characterization of these Earth’s companions.”
Similarly, their orbital characteristic could make “quasi-satellites” an ideal target for future space missions. One of NASA’s main goals in the coming decade is to send a crewed mission to a Near-Earth Object in order to test the Orion spacecraft and the Space Launch System. Such a mission would also help develop the necessary expertise for mounting missions deeper into space (i.e. to Mars and beyond).
The study of Near-Earth Objects is also of immense importance when it comes to determining how and where as asteroid might pose a threat to Earth. This knowledge allows for advanced warnings which can potentially save lives. It is also significant when it comes to the development of proposed counter-measures, several of which are currently being explored.
And be sure to enjoy this video of 2016 HO3’s orbit, courtesy of NASA’s Jet Propulsion Laboratory:
In January of 2016, astronomers Mike Brown and Konstantin Batygin published the first evidence that there might be another planet in our Solar System. Known as “Planet 9” (“Planet X” to those who reject the controversial 2006 Resolution by the IAU), this hypothetical body was believed to orbit at an extreme distance from our Sun, as evidenced by the fact that certain Trans-Neptunian Objects (TNOs) all seem to be pointing in the same direction.
Since that time, more and more evidence has been produced that show how the presence of Planet 9 affected the evolution of the Solar System, leading it to become as it is today. For example, a recent study by a team of researchers from the University of Michigan has shown how Planet 9 may have kept certain TNOs from being destroyed or ejected from the Solar System over the course of billions of years.
The study, which was recently published in the Astronomical Journal under the title “Evaluating the Dynamical Stability of Outer Solar System Objects in the Presence of Planet Nine“, was led by Juliette Becker, a graduate student with the University of Michigan’s Department of Astronomy. It was supported by Professors David Gerdes and Fred Adams, as well as graduate and undergraduate students from UofM’s Depart of Physics.
For the sake of their study, Becker and her colleagues conducted a large set of computer simulations that examined the stability of Trans-Neptunian Objects (TNOs) who’s orbits are believed to have been influenced by Planet 9. In each simulation, the researchers tested a different version of Planet 9 to see if its gravitational influence would result in the Solar System as we know it today.
From this, they uncovered two key findings. First, the simulations showed that Planet 9 may have led to the current Solar System by preventing these TNOs from being destroyed or ejected from the Solar System. Second, the simulations indicated that TNOs can jump between stable orbits, a process they refer to as “resonance hopping”. This would prevent these same TNOs from being thrown out of the Kuiper Belt.
As Becker explained in a University of Michigan press statement:
“From that set of simulations, we found out that there are preferred versions of Planet Nine that make the TNO stay stable for longer, so it basically increases the probability that our solar system exists the way it does. Through these computer simulations, we were able to determine which realization of Planet Nine creates our solar system—the whole caveat here being, if Planet Nine is real.”
Next, Becker and her team examined the TNOs to see if they experienced resonance with Planet 9. This phenomena, which occurs as a result of objects exerting a gravitational influence on each other, causes them to line up in a pattern. What they found was that, on occasion, Neptune will push a TNOs out of its orbital resonance, but does not disturb it enough to send it towards the Sun.
A plausible explanation for this behavior was the gravitational influence of another object, which serves to catch any TNOs and confine them to a different resonance. In addition, the team also considered a newly-discovered TNO that was recently detected by The Dark Energy Survey collaboration – a group of 400 scientist from 26 institutions in seven countries, which includes several members from the University of Michigan.
This object has a high orbital inclination compared to the plane of the Solar System, where it is tilted at 54° relative to the Sun’s ecliptic. After analyzing this new object, Becker and team concluded that the object also experiences resonance hopping, which is consistent with the existence of Planet 9. This, along with other recent studies, are creating a picture where it is harder to imagine the Solar System without Planet 9 than with it.
As Becker explained, all that remains now is to observe Planet 9 directly.”The ultimate goal would be to directly see Planet Nine—to take a telescope, point it at the sky, and see reflected light from the sun bouncing off of Planet Nine,” she said. “Since we haven’t yet been able to find it, despite many people looking, we’re stuck with these kinds of indirect methods.”