Red Giants Offer a New Way to Measure Distance in the Universe

The Large Magellanic cloud. Credit: CTIO/NOIRLab/NSF/AURA/SMASH/D. Nidever (Montana State University) Image processing: Travis Rector (University of Alaska Anchorage), Mahdi Zamani & Davide de Martin.

For nearly three decades now, it’s been clear that the expansion of the Universe is speeding up. Some unknown quantity, dramatically dubbed ‘dark energy’, is pushing the Universe apart. But the rate at which the Universe’s expansion is increasing – called the Hubble Constant – hasn’t yet been nailed down to a single number.

Not for lack of trying.

Continue reading “Red Giants Offer a New Way to Measure Distance in the Universe”

One in Twelve Stars Ate a Planet

When a star eats a planet, it changes the star's metallicity. New research based on co-natal stars shows that one in twelve stars have eaten at least one planet. Image Credit: International Gemini Observatory/NOIRLab/NSF/AURA/M. Garlick/M. Zamani

That stars can eat planets is axiomatic. If a small enough planet gets too close to a large enough star, the planet loses. Its fate is sealed.

New research examines how many stars eat planets. Their conclusion? One in twelve stars has consumed at least one planet.

Continue reading “One in Twelve Stars Ate a Planet”

NASA Experiments Planned for the April 8th Total Solar Eclipse

Totality!
Totality! As seen from Madras, Oregon, during the 2017 total solar eclipse. Credit: NASA/Aubrey Gemignani

Totality and the April 8th total solar eclipse offers a rare chance to study the Sun.

We’re less than three weeks out now, until the April 8th total solar eclipse crosses North America. And while over 31 million residents live in the path of totality, many more will make the journey to briefly stand in the shadow of the Moon. Several scientific projects are also underway to take advantage of the event.

Continue reading “NASA Experiments Planned for the April 8th Total Solar Eclipse”

One Impact on Mars Produced More than Two Billion Secondary Craters

There are plenty of craters on Mars, especially when compared to Earth. That is primarily thanks to the lack of weathering forces and strong plate tectonics that disrupt the formations of such impacts on our home planet. However, not all impact craters on Mars are directly caused by asteroid impacts. Many of them are caused by the ejecta from an asteroid impact falling back to the planet. One recent study showed how impactful this can be – it concludes that a single large impact crater on Mars created over two billion other smaller craters up to almost 2000 km away.

Continue reading “One Impact on Mars Produced More than Two Billion Secondary Craters”

Webb Finds Hints of a Third Planet at PDS 70

An artist's illustration of the PDS 70 system, not to scale. The two planets are clearing a gap in the circumstellar disk as they form. As they accrete in-falling material, the heat makes them glow. Image Credit: W. M. Keck Observatory/Adam Makarenko

The exoplanet census now stands at 5,599 confirmed discoveries in 4,163 star systems, with another 10,157 candidates awaiting confirmation. So far, the vast majority of these have been detected using indirect methods, including Transit Photometry (74.4%) and Radial Velocity measurements (19.4%). Only nineteen (or 1.2%) were detected via Direct Imaging, a method where light emitted or reflected from an exoplanet’s atmosphere or surface is used to detect and characterize it. Thanks to the latest generation of high-contrast and high-angular resolution instruments, this is starting to change.

This includes the James Webb Space Telescope and its sophisticated mirrors and advanced infrared imaging suite. Using data obtained by Webb‘s Near-Infrared Camera (NIRCam), astronomers within the MIRI mid-INfrared Disk Survey (MINDS) survey recently studied a very young variable star (PDS 70) about 370 light-years away with two confirmed protoplanets. After examining the system and its extended protoplanetary disk, they found evidence of a third possible protoplanet orbiting the star. These observations could help advance our understanding of planetary systems that are still in the process of formation.

Continue reading “Webb Finds Hints of a Third Planet at PDS 70”

Finally, an Explanation for the “String of Pearls” in Supernova 1987A

A JWST NIRCam view of Supernova 1987a showing its string of pearls. The keyhole-shaped material at the heart is ejecta from the explosion. NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH)
A JWST NIRCam view of Supernova 1987a showing its string of pearls. The keyhole-shaped material at the heart is ejecta from the explosion. NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH)

Not long after the explosion of Supernova 1987a, astronomers were abuzz with predictions about how it might look in a few years. They suggested a pulsar would show up soon and many said that the expanding gas cloud would encounter earlier material ejected from the star. The collision would light up the region around the event and sparkle like diamonds.

Continue reading “Finally, an Explanation for the “String of Pearls” in Supernova 1987A”

Little Red Dots in Webb Photos Turned Out to Be Quasars

A n EIGER JWST image of the luminous quasar J1148+5251, an extremely rare active SMBH of 10 billion solar masses (blue box). Two “baby quasars” (red boxes) are seen in the same dataset. © NASA, ESA, CSA, J. Matthee (ISTA), R. Mackenzie (ETH Zurich), D. Kashino (National Observatory of Japan), S. Lilly (ETH Zurich)

In its first year of operation, the James Webb Space Telescope (JWST) made some profound discoveries. These included providing the sharpest views of iconic cosmic structures (like the Pillars of Creation), transmission spectra from exoplanet atmospheres, and breathtaking views of Jupiter, its largest moons, Saturn’s rings, its largest moon Titan, and Enceladus’ plumes. But Webb also made an unexpected find during its first year of observation that may prove to be a breakthrough: a series of little red dots in a tiny region of the night sky.

These little red dots were observed as part of Webb’s Emission-line galaxies and Intergalactic Gas in the Epoch of Reionization (EIGER) and the First Reionization Epoch Spectroscopically Complete Observations (FRESCO) surveys. According to a new analysis by an international team of astrophysicists, these dots are galactic nuclei containing the precursors of Supermassive Black Holes (SMBHs) that existed during the early Universe. The existence of these black holes shortly after the Big Bang could change our understanding of how the first SMBHs in our Universe formed.

Continue reading “Little Red Dots in Webb Photos Turned Out to Be Quasars”

Webb Continues to Confirm That Universe is Behaving Strangely

Image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. Credit: NASA/ESA/CSA/STScI/A. Riess (JHU/STScI)

Over a century ago, astronomers Edwin Hubble and Georges Lemaitre independently discovered that the Universe was expanding. Since then, scientists have attempted to measure the rate of expansion (known as the Hubble-Lemaitre Constant) to determine the origin, age, and ultimate fate of the Universe. This has proved very daunting, as ground-based telescopes yielded huge uncertainties, leading to age estimates of anywhere between 10 and 20 billion years! This disparity between these measurements, produced by different techniques, gave rise to what is known as the Hubble Tension.

It was hoped that the aptly named Hubble Space Telescope (launched in 1990) would resolve this tension by providing the deepest views of the Universe to date. After 34 years of continuous service, Hubble has managed to shrink the level of uncertainty but not eliminate it. This led some in the scientific community to suggest (as an Occam’s Razor solution) that Hubble‘s measurements were incorrect. But according to the latest data from the James Webb Space Telescope (JWST), Hubble’s successor, it appears that the venerable space telescope’s measurements were right all along.

Continue reading “Webb Continues to Confirm That Universe is Behaving Strangely”

Webb Sees a Star-Forming Region Blowing Vast Bubbles

JWST's near-infrared view of the star-forming region NGC 604 in the Triangulum galaxy. Credit: NASA, ESA, CSA, STScI
JWST's near-infrared view of the star-forming region NGC 604 in the Triangulum galaxy. Credit: NASA, ESA, CSA, STScI

Star birth is a messy and chaotic event. Some of the process remains well hidden behind clouds of gas and dust that make up star-forming regions. However, part of it happens in wavelengths of light we can detect, such as visible light and infrared. It’s an intricate process that the Webb telescope (JWST) can study in detail.

Continue reading “Webb Sees a Star-Forming Region Blowing Vast Bubbles”

Colliding Neutron Stars are the Ultimate Particle Accelerators

This artist’s impression shows two tiny but very dense neutron stars at the point at which they merge and explode as a kilonova. Such a very rare event is expected to produce both gravitational waves and a short gamma-ray burst, both of which were observed on 17 August 2017 by LIGO–Virgo and Fermi/INTEGRAL respectively. Subsequent detailed observations with many ESO telescopes confirmed that this object, seen in the galaxy NGC 4993 about 130 million light-years from the Earth, is indeed a kilonova. Such objects are the main source of very heavy chemical elements, such as gold and platinum, in the Universe.

Gamma-ray telescopes observing neutron star collisions might be the key to identifying the composition of dark matter. One leading theory explaining dark matter it that is mostly made from hypothetical particles called axions. If an axion is created within the intensely energetic environment of two neutron stars merging, it should then decay into gamma-ray photons which we could see using space telescopes like Fermi-LAT.

Continue reading “Colliding Neutron Stars are the Ultimate Particle Accelerators”