Gravitational Lensing Provides Rare Glimpse Into Interiors of Black Holes

The technique of gravitational lensing relies on the presence of a large cluster of matter between the observer and the object to magnify light coming from that object. Credit: NASA

The observable Universe is an extremely big place, measuring an estimated 91 billion light-years in diameter. As a result, astronomers are forced to rely on powerful instruments to see faraway objects. But even these are sometimes limited, and must be paired with a technique known as gravitational lensing. This involves relying on a large distribution of matter (a galaxy or star) to magnify the light coming from a distant object.

Using this technique, an international team led by researchers from the California Institute of Technology’s (Caltech) Owens Valley Radio Observatory (OVRO) were able to observe jets of hot gas spewing from a supermassive black hole in a distant galaxy (known as PKS 1413 + 135). The discovery provided the best view to date of the types of hot gas that are often detected coming from the centers of supermassive black holes (SMBH).

The research findings were described in two studies that were published in the August 15th issue of The Astrophysical Journal. Both were led by Harish Vedantham, a Caltech Millikan Postdoctoral Scholar, and were part of an international project led by Anthony Readhead – the Robinson Professor of Astronomy, Emeritus, and director of the OVRO.

The Owens Valley Radio Observatory (OVRO) – located near Bishop, California – is one of the largest university-operated radio observatories in the world. Credit: ovro.caltech.edu

This OVRO project has been active since 2008, conducting twice-weekly observations of some 1,800 active SMBHs and their respective galaxies using its 40-meter telescope. These observations have been conducted in support of NASA’s Fermi Gamma-ray Space Telescope, which has be conducting similar studies of these galaxies and their SMBHs during the same period.

As the team indicated in their two studies, these observations have provided new insight into the clumps of matter that are periodically ejected from supermassive black holes, as well as opening up new possibilities for gravitational lensing research. As Dr. Vedantham indicated in a recent Caltech press statement:

“We have known about the existence of these clumps of material streaming along black hole jets, and that they move close to the speed of light, but not much is known about their internal structure or how they are launched. With lensing systems like this one, we can see the clumps closer to the central engine of the black hole and in much more detail than before.”

While all large galaxies are believed to have an SMBH at the center of their galaxy, not all have jets of hot gas accompanying them. The presence of such jets are associated with what is known as an Active Galactic Nucleus (AGN), a compact region at the center of a galaxy that is especially bright in many wavelengths – including radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray radiation.

Illustration showing the likely configuration of a gravitational lensing system discovered by OVRO. Credit: Anthony Readhead/Caltech/MOJAVE

These jets are the result of material that is being pulled towards an SMBH, some of which ends up being ejected in the form of hot gas. Material in these streams travels at close to the speed of light, and the streams are active for periods ranging from 1 to 10 million years. Whereas most of the time, the jets are relatively consistent, every few years, they spit out additional clumps of hot matter.

Back in 2010, the OVRO researchers noticed that PKS 1413 + 135’s radio emissions had brightened, faded and then brightened again over the course of a year. In 2015, they noticed the same behavior and conducted a detailed analysis. After ruling out other possible explanations, they concluded that the overall brightening was likely caused by two high-speed clumps of material being ejected from the black hole.

These clumps traveled along the jet and became magnified when they passed behind the gravitational lens they were using for their observations. This discovery was quite fortuitous, and was the result of many years of astronomical study. As Timothy Pearson, a senior research scientist at Caltech and a co-author on the paper, explained:

“It has taken observations of a huge number of galaxies to find this one object with the symmetrical dips in brightness that point to the presence of a gravitational lens. We are now looking hard at all our other data to try to find similar objects that can give a magnified view of galactic nuclei.”

Artist’s representation of an active galactic nucleus (AGN) at the center of a galaxy. Credit: NASA/CXC/M.Weiss

What was also exciting about the international team’s observations was the nature of the “lens” they used. In the past, scientists have relied on massive lenses (i.e. entire galaxies) or micro lenses that consisted of single stars. However, the team led by Dr. Vedantham and Dr. Readhead relied on an what they describe as a “milli-lens” of about 10,000 solar masses.

This could be the first study in history that relied on an intermediate-sized lens, which they believe is most likely a star cluster. One of the advantages of a milli-sized lens is that it is not large enough to block out the entire source of light, making it easier to spot smaller objects. With this new gravitational lensing system, it is estimated that astronomers will be able to observe clumps at scales about 100 times smaller than before. As Readhead explained:

“The clumps we’re seeing are very close to the central black hole and are tiny – only a few light-days across. We think these tiny components moving at close to the speed of light are being magnified by a gravitational lens in the foreground spiral galaxy. This provides exquisite resolution of a millionth of a second of arc, which is equivalent to viewing a grain of salt on the moon from Earth.”

What’s more, the researchers indicate that the lens itself is of scientific interest, for the simple reason that not much is known about objects in this mass range. This potential star cluster could therefore act as a sort of laboratory, giving researchers a chance to study gravitational milli-lensing while also providing a clear view of the nuclear jets streaming from active galactic nuclei.

Image of the 40-meter telescope of the Owens Valley Radio Observatory (OVRO), located near Bishop, California. Credit: Anthony Readhead/Caltech

Looking ahead, the team hopes to confirm the results of their studies using another technique known as Very-Long Baseline Interferometry (VLBI). This will involve radio telescopes from around the world taking detailed images of PKS 1413 + 135 and the SMBH at its center. Given what they have observed so far, it is likely that this SMBH will spit out another clump of matter in a few years time (by 2020).

Vedantham, Readhead and their colleagues plan to be ready for this event. Spotting this next clump would not only validate their recent studies, it would also validate the milli-lens technique they used to conduct their observations. As Readhead indicated, “We couldn’t do studies like these without a university observatory like the Owens Valley Radio Observatory, where we have the time to dedicate a large telescope exclusively to a single program.”

The studies were made possible thanks to funding provided by NASA, the National Science Foundation (NSF), the Smithsonian Institution, the Academia Sinica, the Academy of Finland, and the Chilean Centro de Excelencia en Astrofísica y Tecnologías Afines (CATA).

Further Reading: Caltech, The Astrophysical Journal, The Astrophysical Journal (2)

 

Prelude to Totality: A Final Look at the Total Solar Eclipse

corona
The view of the corona during totality? This computational model was derived from NASA SDO data during the last solar rotation. Credit: Predictive Science Inc.
totality
Totality! The view during the November 2012 total solar eclipse. Image credit and copyright: Sharin Ahmad (@Shahgazer)

It’s hard to believe: we’re now just one short weekend away from the big ticket astronomical event for 2017, as a total solar eclipse is set to cross over the contiguous United States on Monday, August 21st.

Celestial mechanics is a sure thing in this Universe, a certainty along with death and taxes that you can bet on. But there are still a few key question marks leading up to eclipse day, things that we can now finally make intelligent assumptions about a few days out.

Although totality slices through the U.S., partial phases of the eclipse touch on every continent except Antarctica and Australia. Credit: Michael Zeiler/The Great American Eclipse.

First up is solar activity. If you’re like us, you’ll be showing off the Sun in both visible and hydrogen alpha as the Moon begins making its slow hour long creep across the disk of Sol. First, the good news: sunspot active region AR 2671 made its Earthward debut on Tuesday August 15th, and will most likely stick around until eclipse day. The bad news is, it most likely won’t have lots of friends, as solar cycle #24 begins its long slow ebb towards the solar minimum in 2019-2020. Likewise, I wouldn’t expect to see any magnificent sprouting red prominences in the solar chromosphere in the seconds bracketing totality, though we could always be pleasantly surprised.

sunspot
The Earthward face of Sol as of August 17, four days before totality. Sunspot AR 2671 is robust and growing in complexity. Credit: NASA/SDO/HMI

How will the white hot corona appear during totality? This is the signature climax of any total solar eclipse: veteran umbraphiles can actually glance at a photo of totality and tell you which eclipse it was from, just on the shape of the corona. The National Solar Observatory released a model of what that Sun’s magnetosphere was doing one Carrington rotation (27 days) prior to the eclipse on July 25th, a pretty good predictor of the corona might look like during those fleeting moments of totality:

Solar Corona
The shape of the field lines of the solar corona, one rotation prior to the August 21st total solar eclipse. Credit: The National Solar Observatory.

NASA will be chasing the umbra of the Moon with two converted W-57 aircraft during the eclipse, hoping to unlock the “coronal heating paradox,” image Mercury in the infrared, and hunt for elusive Vulcanoid asteroids near the eclipsed Sun.

corona
The view of the corona during totality? This computational model was derived from NASA SDO data during the last solar rotation. Credit: Predictive Science Inc.

The corona is about twice as bright as a Full Moon, and its interface with the solar wind extends out past the Earth. The very onset of totality is like the footstep of a giant passing over the landscape, as the door of reality is suddenly ripped open, revealing the span of the glittering solar system at midday. Keep your eyes peeled for Mercury, Venus, Mars, Jupiter and twinkling Regulus tangled up in the corona, just a degree from the Sun-Moon pair:

The line up of the planets, bright stars and the eclipsed Sun during totality at 2:37 PM EDT as seen from Franklin, North Carolina. Credit: Stellarium.

Also, be sure to scan the local horizon for a strange 360 degree sunset as you stand in the umbra of the Moon. An “eclipse wind” may kick up, as temperatures plummet and nature is fooled by the false dawn, causing chickens to come home to roost and nocturnal animals to awaken. I dare you to blink. Totality can affect the human heart as well, causing tears to cries of surprise.

Here’s an interesting, though remote, possibility. Could a sungrazing “eclipse comet” photo bomb the show? Karl Battams (@SungrazerComets) raises this question on a recent Planetary Society blog post. Battams works with the Solar Heliospheric Observatory (SOHO), which has discovered an amazing 3,358 comets crossing the field of view of its LASCO imagers since 1995. Comets have been discovered during eclipses before, most notably in 1882 and 1948. To be sure, it’s a remote possibility this late in the game, but Battams promises to give us one last quick look via SOHO the morning of the eclipse on his Twitter feed to see if any cometary interlopers are afoot.

The possible search area for Kreutz group sungrazers during the August 21st eclipse. Credit: Karl Battams.

Now, on to the biggest question mark going into this eclipse weekend: what’s the weather going to be like during the eclipse? This is the ever-dominating factor on everyone’s mind leading up to eclipse day. Keep in mind, the partial phases are long; even a partly cloudy sky will afford occasional glimpses of the Sun during the partial phases of an eclipse. Totality, however, is fleeting – 2 minutes and 40 seconds near Hopkinsville, Kentucky and less for most – meaning even a solitary cumulus cloud drifting across the Sun at the wrong moment can spoil the view. No weather model can predict the view of the sky to that refined a level. And while best bets are still out west, lingering forest fires in Oregon are a concern, along early morning fog on the western side of the Cascade Mountains. Michael Zeiler over at The Great American Eclipse has been providing ESRI models of the cloud cover over the eclipse path for Monday… here’s the outlook as of Thursday, August 17th:

A look at cloud cover prospects over the eclipse path as of August 17. Credit: Michael Zeiler/Great American Eclipse/ESRI.

Computer models should begin to come into agreement this weekend, a good sign that we know what the weather is going to do Monday. Needless to say, a deviation from the standard climate models could send lots of folks scrambling down the path at the last minute… I’ve heard of folks with up to 5 (!) separate reservations along the path of totality, no lie…

The NOAA also has a fine site dedicated to weather and cloud coverage across the path come eclipse day, and Skippy Sky is another great resource aimed at sky viewing and cloud cover.

Clouded out? The good folks at the Virtual Telescope have got you covered, with a webcast for the total solar eclipse starting at 17:00 UT/1:00 PM EDT:

Credit: The Virtual Telescope Project.

Of course, you’ll need to use proper solar viewing methods during all partial phases of the eclipse. This means either using a telescope with a filter specifically designed to look at the Sun, a pin hole projector, or certified ISO 12312-2 eclipse glasses. If you’ve got an extra pair, why not convert them into a safe filter for those binoculars or a small telescope as well:

Also be wary of heatstroke, standing out showing folks the partially eclipsed Sun for an hour or more. It is August, and heat exhaustion can come on in a hurry. Be sure you have access to shade and stay cool and hydrated in the summer Sun.

Finally, eyes from space will be watching the eclipse from the International Space Station as well. Looking out at Monday, the ISS will pass through the penumbra of the Moon and see partial phases of the eclipse three times centered on 16:32, 18:20, and 20:00 Universal Time. The center time is particularly intriguing, as astros have a chance to see the dark umbral shadow of the Moon crossing the central U.S. This also means that eclipse viewers on planet Earth around southern Illinois might want to glance northward briefly, to spy the ISS during totality. Also, viewers along a line along southern central Canada will have a chance to catch an ISS transit across the face of the partially eclipsed Sun around the same time. Check CALSky for details.

Three passes of the International Space Station versus the path of of totality. The inset shows the view of the partially eclipsed Sun as seen from the ISS. Credit: NASA/JSC.

We’ll be at the Pisgah Astronomical Research Institute in southwestern North Carolina, for a glorious 104 seconds of totality. We expect to be out of wifi range come eclipse day, but we’ll tweet out key eclipse milestones as @Astroguyz. We also plan on writing up the eclipse experience with state-by-state testimonials post eclipse.

Perhaps, the August 21st total solar eclipse will bring us all together for one brief moment, to witness the grandest of astronomical spectacles. We’re lucky to share a small patch of time and space where total solar eclipses are possible.  Good luck, clear skies, and see you on the other side early next week!

The Most Distant Massive Galaxy Observed to Date Provides Insight into the Early Universe

A Hubble image of the galaxy cluster Abell 1689, which acts as a lens to focus the light from much more distant galaxies, including some very dusty star-forming galaxies in the early universe (seen as the nearly point-like blue smudges in this image). Credit: NASA-Hubble

In their pursuit of learning how our Universe came to be, scientists have probed very deep into space (and hence, very far back in time). Ultimately, their goal is to determine when the first galaxies in our Universe formed and what effect they had on cosmic evolution. Recent efforts to locate these earliest formations have probed to distances of up to 13 billion light-years from Earth – i.e. about 1 billion years after the Big Bang.

From this, scientist are now able to study how early galaxies affected matter around them – in particular, the reionization of neutral atoms. Unfortunately, most early galaxies are very faint, which makes studying their interiors difficult. But thanks to a recent survey conducted by an international team of astronomers, a more luminous, massive galaxy was spotted that could provide a clear look at how early galaxies led to reionization.

The study which details their findings, titled “ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ~ 7“, was recently published in The Astrophysical Journal Letters. Led by researchers from the Max Planck Institute for Radio Astronomy  in Bonn, Germany, the team relied on data from the South Pole Telescope (SPT)-SZ survey and ALMA to spot a galaxy that existed 13 billion years ago (just 800 million years after the Big Bang).

Illustration of the depth by which Hubble imaged galaxies in prior Deep Field initiatives, in units of the Age of the Universe. Credit: NASA and A. Feild (STScI)

In accordance with Big Bang model of cosmology, reionization refers to the process that took place after the period known as the “Dark Ages”. This occurred between 380,000 and 150 million years after the Big Bang, where most of the photons in the Universe were interacting with electrons and protons. As a result, the radiation of this period is undetectable by our current instruments – hence the name.

Just prior to this period, the “Recombination” occurred, where hydrogen and helium atoms began to form. Initially ionized (with no electrons bound to their nuclei) these molecules gradually captured ions as the Universe cooled, becoming neutral. During the period that followed – i.e. between 150 million to 1 billion years after the Big Bang – the large-scale structure of the Universe began to form.

Intrinsic to this was the process of reionization, where the first stars and quasars formed and their radiation reionized the surrounding Universe. It is therefore clear why astronomers want to probe this era of the Universe. By observing the first stars and galaxies, and what effect they had on the cosmos, astronomers will get a clearer picture of how this early period led to the Universe as we know it today.

Luckily for the research team, the massive, star-forming galaxies of this period are known to contain a great deal of dust. While very faint in the optical band, these galaxies emit strong radiation at submillimeter wavelengths, which makes them detectable using today’s advanced telescopes – including the South Pole Telescope (SPT), the Atacama Pathfinder Experiment (APEX), and Atacama Large Millimeter Array (ALMA).

NASA’s Spitzer Space Telescope captured this stunning infrared image of the center of the Milky Way Galaxy, where the black hole Sagitarrius A resides. Image: NASA/JPL-Caltech

For the sake of their study, Strandet and Weiss relied on data from the SPT to detect a series of dusty galaxies from the early Universe. As Maria Strandet and Axel Weiss of the Max Planck Institute for Radio Astronomy (and the lead author and co-authors on the study, respectively) told Universe Today via email:

“We have used light of about 1 mm wavelength, which can be observed by mm telescopes like SPT, APEX or ALMA. At this wavelength the photons are produced by the thermal radiation of dust. The beauty of using this long wavelength is, that for a large redshift range (look back time), the dimming of galaxies [caused] by increasing distance is compensated by the redshift – so the observed intensity is independent of the redshift. This is because, for higher redshift galaxies, one is looking at intrinsically shorter wavelengths (by (1+z)) where the radiation is stronger for a thermal spectrum like the dust spectrum.”

This was followed by data from ALMA, which the team used to determine the distance of the galaxies by looking at the redshifted wavelength of carbon monoxide molecules in their interstellar mediums (ISM). From all the data they collected, they were able to constrain the properties of one of these galaxies – SPT0311-58 – by observing its spectral lines. In so doing, they determined that this galaxy existed just 760 million years after the Big Bang.

“Since the signal strength at 1mm is independent of the redshift (look back time), we do not have an a priori clue if an object is relatively near (in the cosmological sense) or at the epoch of reionization,” they said. “That is why we undertook a large survey to determine the redshifts via the emission of molecular lines using ALMA. SPT0311-58 turns out to be the highest redshift object discovered in this survey and in fact the most distant massive dusty star-forming galaxy so far discovered.”

The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

From their observations, they also determined that SPT0311-58 has a mass of about 330 billion Solar-masses, which is about 66 times as much as the Milky Way Galaxy (which has about 5 billion Solar-masses). They also estimated that it is forming new stars at a rate of several thousand per year, which could as be the case for neighboring galaxies that are dated to this period.

This rare and distant object is one of the best candidates yet for studying what the early Universe looked like and how it has evolved since. This in turn will allow astronomers and cosmologists to test the theoretical basis for the Big Bang Theory. As Strandet and Weiss told Universe Today about their discovery:

“These objects are important to understanding the evolution of galaxies as a whole since the large amounts of dust already present in this source, only 760 million years after the Big Bang, means that it is an extremely massive object. The mere fact that such massive galaxies already existed when the Universe was still so young puts strong constraints on our understanding of galaxy mass buildup. Furthermore the dust needs to form in a very short time, which gives additional insights on the dust production from the first stellar population.”

The ability to look deeper into space, and farther back in time, has led to many surprising discoveries of late. And these have in turn challenged some of our assumptions about what happened in the Universe, and when. And in the end, they are helping scientists to create a more detailed and complete account of cosmic evolution. Someday soon, we might even be able to probe the earliest moments in the Universe, and watch creation in action!

Further Reading: CfA, The Astrophysical Journal Letters

 

Potentially Habitable, Tidally-Locked Exoplanets May be Very Common, say New Study

Artist's impression of a system of exoplanets orbiting a low mass, red dwarf star. Credit: NASA/JPL

Studies of low-mass, ultra-cool and ultra-dim red dwarf stars have turned up a wealth of extra-solar planets lately. These include the discoveries of a rocky planet orbiting the closest star to the Solar System (Proxima b) and a seven-planet system just 40 light years away (TRAPPIST-1). In the past few years, astronomers have also detected candidates orbiting the stars Gliese 581, Innes Star, Kepler 42, Gliese 832, Gliese 667, Gliese 3293, and others.

The majority of these planets have been terrestrial (i.e. rocky) in nature, and many were found to orbit within their star’s habitable zone (aka. “goldilocks zone”). However the question whether or not these planets are tidally-locked, where one face is constantly facing towards their star has been an ongoing one. And according to a new study from the University of Washington, tidally-locked planets may be more common than previously thought.

The study – which is available online under the title “Tidal Locking of Habitable Exoplanets” – was led by Rory Barnes, an assistant professor of astronomy and astrobiology at the University of Washington. Also a theorist with the Virtual Planetary Laboratory, his research is focused on the formation and evolution of planets that orbit in and around the “habitable zones” of low-mass stars.

Tidal locking results in the Moon rotating about its axis in about the same time it takes to orbit the Earth (left side). Credit: Wikipedia

For modern astronomers, tidal-locking is a well-understood phenomena. It occurs as a result of their being no net transfer of angular momentum between an astronomical body and the body it orbits. In other words, the orbiting body’s orbital period matches its rotational period, ensuring that the same side of this body is always facing towards the planet or star it orbits.

Consider Earth’s only satellite – the Moon. In addition to taking 27.32 days to orbit Earth, the Moon also takes 27.32 days to rotate once on its axis. This is why the Moon always presents the same “face” towards Earth, while the side that faces away is known as the “dark side”. Astronomers believe this became the case after a Mars-sized object (Theia) collided with Earth some 4.5 billion years ago.

Aside from throwing up debris that would eventually form the Moon, the impact is believed to have struck Earth at such an angle that it gave our planet an initial rotation period of 12 hours. In the past, researchers have used this 12-hour estimation of Earth’s rotation as a model for exoplanet behavior. However, prior to Barnes’ study, no systematic examinations had ever been conducted.

Looking to address this, Barnes chose to address the long-held assumption that only smaller, dimmer stars could host orbiting planets that were tidally locked. He also considered other possibilities, which included slower or faster initial rotation periods as well as variations in planet size and the eccentricity of their orbits. What he found was that previous studies had been rather limited and only made allowances for one outcome.

Tidally-locked, rocky planets are common around low-mass, M-type (red dwarf) stars, due to their close orbits. Credit: M. Weiss/CfA

As he explained in a University of Washington press statement:

“Planetary formation models, however, suggest the initial rotation of a planet could be much larger than several hours, perhaps even several weeks. And so when you explore that range, what you find is that there’s a possibility for a lot more exoplanets to be tidally locked. For example, if Earth formed with no Moon and with an initial ‘day’ that was four days long, one model predicts Earth would be tidally locked to the sun by now.”

From this, he found that potentially-habitable planets that orbit very late M-type (red dwarf) stars are likely to attain highly-circular orbits about 1 billion years after their formation. Furthermore, he found that for the majority, their orbits would be synchronized with their rotation – aka. they would be tidally-locked with their star. These findings could have significant implications for the study of exoplanets formation and evolution, not to mention habitability.

In the past, tidally-locked planets were thought to have extremes climates, thus eliminating any possibility of life. As an example, the planet Mercury experiences a 3:2 spin-orbit resonance, meaning it rotates three times on its axis for every two orbits it completes of the Sun. Because of this, a single day on Mercury lasts as long as 176 Earth days, and temperature range from 100 (-173 °C; -279 °F) to 700 K (427 °C; 800 °F) between the day side and the night side.

For a tidally-locked planets that orbit close to their stars, it was believed this situation would be even worse. However, astronomers have since come to speculate that the presence of an atmosphere around these planets could redistribute temperature across their surfaces. Unlike Mercury, which has no atmosphere and experiences no wind, these planets could maintain temperatures that would be supportive to life.

Artist’s impression of a “Earth-like” planet orbiting a nearby red dwarf star. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

In any case, this study is one of many that is putting constraints on recent exoplanet discoveries. This is especially important given that the detection and study of extra-solar planets is still in its infancy, and limited to largely indirect methods. In other words, astronomers make estimates of a planet’s size, composition and whether or not it has an atmosphere based on transits and the influence these planets have on their stars.

In the coming years, next-generations missions like the James Web Space Telescope and the Transiting Exoplanet Survey Satellites (TESS) are expected to improve this situation drastically. In addition to conducting more detailed observations on existing discoveries, they are also expected to uncover a wealth of more planets. If Barnes’ study is correct, the majority of those found will be tidally-locked, but that need not mean they are uninhabitable.

Prof. Barnes paper was accepted for publication by the journal Celestial Mechanics and Dynamical Astronomy. The research was funded by a NASA grant through the Virtual Planetary Laboratory.

Further Reading: University of Washington, arXiv

 

Messier 54 – the NGC 6715 Globular Cluster

Hubble image of Messier 54, a globular cluster located in the Sagittarius Dwarf Galaxy. Credit: ESA/Hubble & NASA

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at globular cluster known as Messier 54!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of these objects so others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the globular cluster known as Messier 54. Located in the direction of the Sagittarius constellation, this cluster was once thought to be part of the Milky Way, located about 50,000 light years from Earth, In recent decades, astronomers have come to realize that it is actually part of the Sagittarius Dwarf Galaxy, located some 87,000 light-years away.

What You Are Looking At:

Running away from us at a speed of 142 kilometers per second, this compact globe of stars could be as wide as 150 light years in diameter and as far away as 87,400 light years. Wait… Hold the press… Almost 90 thousand light years? Yeah. Messier 54 isn’t part of our own Milky Way Galaxy!

In 1994 astronomers made a rather shocking discovery… this tough to resolve globular was actually part of the Sagittarius Dwarf Elliptical Galaxy. As Michael H. Siegal (et al) said in their study:

“As part of the ACS Survey of Galactic Globular Clusters, we present new Hubble Space Telescope photometry of the massive globular cluster M54 (NGC 6715) and the superposed core of the tidally disrupted Sagittarius (Sgr) dSph galaxy. Our deep (F606W ~ 26.5), high-precision photometry yields an unprecedentedly detailed color-magnitude diagram showing the extended blue horizontal branch and multiple main sequences of the M54+Sgr system. Multiple turnoffs indicate the presence of at least two intermediate-aged star formation epochs with 4 and 6 Gyr ages and [Fe/H]=-0.4 to -0.6. We also clearly show, for the first time, a prominent, ~2.3 Gyr old Sgr population of near-solar abundance. A trace population of even younger (~0.1-0.8 Gyr old), more metal-rich ([Fe/H]~0.6) stars is also indicated. The Sgr age-metallicity relation is consistent with a closed-box model and multiple (4-5) star formation bursts over the entire life of the satellite, including the time since Sgr began disrupting.”

Inside its compact depths lurk at least 82 known variable stars – 55 of which are the RR Lyrae type. But astronomers using the Hubble Space telescope have have also discovered there are two semi-regular red variables with periods of 77 and 101 days. Kevin Charles Schlaufman and Kenneth John Mighell of the National Optical Astronomy Observatory explained in their study:

“Most of our candidate variable stars are found on the PC1 images of the cluster center – a region where no variables have been reported by previous ground-based studies of variables in M54. These observations cannot be done from the ground, even with AO as there are far too many stars per resolution element in ground-based observations.”

The globular cluster Messier 54. Credit: NASA

But what other kinds of unusual stars could be discovered inside such distant cosmic stellar evolutionary laboratory? Try a phenomena known as blue hook stars! As Alfred Rosenberg (et al) said in their study:

“We present BV photometry centered on the globular cluster M54 (NGC 6715). The color-magnitude diagram clearly shows a blue horizontal branch extending anomalously beyond the zero-age horizontal-branch theoretical models. These kinds of horizontal-branch stars (also called “blue hook” stars), which go beyond the lower limit of the envelope mass of canonical horizontal-branch hot stars, have so far been known to exist in only a few globular clusters: NGC 2808, Omega Centauri (NGC 5139), NGC 6273, and NGC 6388. Those clusters, like M54, are among the most luminous in our Galaxy, indicating a possible correlation between the existence of these types of horizontal-branch stars and the total mass of the cluster. A gap in the observed horizontal branch of M54 around Teff = 27,000 K could be interpreted within the late helium flash theoretical scenario, which is a possible explanation for the origin of blue hook stars.”

But with the stars packaged together so tightly, even more has been bound to occur inside of Messier 54. As Tim Adams (et al) indicated in their study:

“We investigate a means of explaining the apparent paucity of red giant stars within post-core-collapse globular clusters. We propose that collisions between the red giants and binary systems can lead to the destruction of some proportion of the red giant population, by either knocking out the core of the red giant or by forming a common envelope system which will lead to the dissipation of the red giant envelope. Treating the red giant as two point masses, one for the core and another for the envelope (with an appropriate force law to take account of the distribution of mass), and the components of the binary system also treated as point masses, we utilize a four-body code to calculate the time-scales on which the collisions will occur. We then perform a series of smooth particle hydrodynamics runs to examine the details of mass transfer within the system. In addition, we show that collisions between single stars and red giants lead to the formation of a common envelope system which will destroy the red giant star. We find that low-velocity collision between binary systems and red giants can lead to the destruction of up to 13 per cent of the red giant population. This could help to explain the colour gradients observed in PCC globular clusters. We also find that there is the possibility that binary systems formed through both sorts of collision could eventually come into contact perhaps producing a population of cataclysmic variables.”

Messier 54, as imaged by the VLT Survey Telescope at ESO’s Paranal Observatory in northern Chile. Credit: ESO

But the discoveries haven’t ended yet…. Because 2009 studies have revealed evidence for an intermediate mass black hole inside Messier 54 – the first known to have ever been discovered in a globular cluster.

“We report the detection of a stellar density cusp and a velocity dispersion increase in the center of the globular cluster M54, located at the center of the Sagittarius dwarf galaxy (Sgr). The central line-of-sight velocity dispersion is 20.2 ± 0.7 km s-1, decreasing to 16.4 ± 0.4 km s-1 at 2farcs5 (0.3 pc). Modeling the kinematics and surface density profiles as the sum of a King model and a point-mass yields a black hole mass of ~9400 M sun.” says R. Ibata (et al), “However, the observations can alternatively be explained if the cusp stars possess moderate radial anisotropy. A Jeans analysis of the Sgr nucleus reveals a strong tangential anisotropy, probably a relic from the formation of the system.”

History of Observation:

On July 24, 1778 when Charles Messier first laid eyes on this faint fuzzy, he had no clue that he was about to discover the very first extra-galactic globular cluster. In his notes he writes: “Very faint nebula, discovered in Sagittarius; its center is brilliant and it contains no star, seen with an achromatic telescope of 3.5 feet. Its position has been determined from Zeta Sagittarii, of 3rd magnitude.”

Years later Sir William Herschel would also study M54, and in his private notes he writes: “A round, resolvable nebula. Very bright in the middle and the brightness diminishing gradually, about 2 1/2′ or 3′ in diameter. 240 shews too pretty large stars in the faint part of the nebulosity, but I rather suppose them to have no connection with the nebula. I believe it to be no other than a miniature cluster of very compressed stars.”

Countless other observations would follow as the M54 became cataloged by other astronomers and each would in turn describe it only as having a much brighter core and some resolution around the edges. Have fun trying to crack this one!

Locating Messier 54:

M54 isn’t hard to find… Just skip down to Zeta Sagittarii, the southwestern-most star of Sagittarius “teapot” and hop a half degree south and a finger width (1.5 degrees) west. The problem is seeing it! In small optics, such as binoculars or a finder scope, it will appear almost stellar because of its small size. However, if you just look for what appears like a larger, dim star that won’t quite come into perfect focus, then you’ve found it.

In smaller telescopes, you’ll get no resolution on this class III globular cluster because it is so dense. Large aperture doesn’t fare much better either, with only some individual stars making their appearance at the outer perimeters. Because of magnitude and size, Messier 54 is better suited to dark sky conditions.

The location of Messier 54 in the Sagittarius constellation. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

And here are the quick facts on this Messier Object to help you get started:

Object Name: Messier 54
Alternative Designations: M54, NGC 6715
Object Type: Class III Extragalactic Globular Cluster
Constellation: Sagittarius
Right Ascension: 18 : 55.1 (h:m)
Declination: -30 : 29 (deg:m)
Distance: 87.4 (kly)
Visual Brightness: 7.6 (mag)
Apparent Dimension: 12.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Scientists Discover TRAPPIST-1 is Older Than Our Solar System

Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech
Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

In February of 2017, a team of European astronomers announced the discovery of a seven-planet system orbiting the nearby star TRAPPIST-1. Aside from the fact that all seven planets were rocky, there was the added bonus of three of them orbiting within TRAPPIST-1’s habitable zone. As such, multiple studies have been conducted that have sought to determine whether or not any planets in the system could be habitable.

When it comes to habitability studies, one of the key factors to consider is the age of the star system. Basically, young stars have a tendency to flare up and release harmful bursts of radiation while planets that orbit older stars have been subject to radiation for longer periods of time. Thanks to a new study by a pair of astronomers, it is now known that the TRAPPIST-1 system is twice as old as the Solar System.

Continue reading “Scientists Discover TRAPPIST-1 is Older Than Our Solar System”

NASA Reignites Program for Nuclear Thermal Rockets

Artist's concept of a bimodal nuclear rocket making the journey to the Moon, Mars, and other destinations in the Solar System. Credit: NASA

In its pursuit of missions that will take us back to the Moon, to Mars, and beyond, NASA has been exploring a number of next-generation propulsion concepts. Whereas existing concepts have their advantages – chemical rockets have high energy density and ion engines are very fuel-efficient – our hopes for the future hinge on us finding alternatives that combine efficiency and power.

To this end, researchers at NASA’s Marshall Space Flight Center are once again looking to develop nuclear rockets. As part of NASA’s Game Changing Development Program, the Nuclear Thermal Propulsion (NTP) project would see the creation of high-efficiency spacecraft that would be capable of using less fuel to deliver heavy payloads to distant planets, and in a relatively short amount of time.

As Sonny Mitchell, the project of the NTP project at NASA’s Marshall Space Flight Center, said in a recent NASA press statement:

“As we push out into the solar system, nuclear propulsion may offer the only truly viable technology option to extend human reach to the surface of Mars and to worlds beyond. We’re excited to be working on technologies that could open up deep space for human exploration.”

Nuclear reactors (like the one pictured here) are being considered by NASA’s Marshall Space Flight Center for possible future missions. Credit: NASA

To see this through, NASA has entered into a partnership with BWX Technologies (BWXT), a Virginia-based energy and technology company that is a leading supplier of nuclear components and fuel to the U.S. government. To assist NASA in developing the necessary reactors that would support possible future crewed missions to Mars, the company’s subsidiary (BWXT Nuclear Energy, Inc.) was awarded a three-year contract worth $18.8 million.

During this three years in which they will be working with NASA, BWXT will provide the technical and programmatic data needed to implement NTP technology. This will consist of them manufacturing and testing prototype fuel elements and helping NASA to resolve any nuclear licensing and regulatory requirements. BWXT will also aid NASA planners in addressing the issues of feasibility and affordably with their NTP program.

As Rex D. Geveden, BWXT’s President and Chief Executive Officer, said of the agreement:

“BWXT is extremely pleased to be working with NASA on this exciting nuclear space program in support of the Mars mission. We are uniquely qualified to design, develop and manufacture the reactor and fuel for a nuclear-powered spacecraft. This is an opportune time to pivot our capabilities into the space market where we see long-term growth opportunities in nuclear propulsion and nuclear surface power.”

In an NTP rocket, uranium or deuterium reactions are used to heat liquid hydrogen inside a reactor, turning it into ionized hydrogen gas (plasma), which is then channeled through a rocket nozzle to generate thrust. A second possible method, known as Nuclear Electric Propulsion (NEC), involves the same basic reactor converted its heat and energy into electrical energy which then powers an electrical engine.

Artist’s concept of a Bimodal Nuclear Thermal Rocket in Low Earth Orbit. Credit: NASA

In both cases, the rocket relies on nuclear fission to generates propulsion rather than chemical propellants, which has been the mainstay of NASA and all other space agencies to date. Compared to this traditional form of propulsion, both types of nuclear engines offers a number of advantages. The first and most obvious is the virtually unlimited energy density it offers compared to rocket fuel.

This would cut the total amount of propellant needed, thus cutting launch weight and the cost of individual missions. A more powerful nuclear engine would mean reduced trip times. Already, NASA has estimated that an NTP system could make the voyage to Mars to four months instead of six, which would reduce the amount of radiation the astronauts would be exposed to in the course of their journey.

To be fair, the concept of using nuclear rockets to explore the Universe is not new. In fact, NASA has explored the possibility of nuclear propulsion extensively under the Space Nuclear Propulsion Office. In fact, between 1959 and 1972, the SNPO conducted 23 reactor tests at the Nuclear Rocket Development Station at AEC’s Nevada Test Site, in Jackass Flats, Nevada.

In 1963, the SNPO also created the Nuclear Engine for Rocket Vehicle Applications (NERVA) program to develop nuclear-thermal propulsion for long-range crewed mission to the Moon and interplanetary space. This led to the creation of the NRX/XE, a nuclear-thermal engine which the SNPO certified as having met the requirements for a crewed mission to Mars.

Artist’s concept of a bimodal nuclear rocket slowing down to establish orbit around Mars. Credit: NASA

The Soviet Union conducted similar studies during the 1960s, hoping to use them on the upper stages of  of their N-1 rocket. Despite these efforts, no nuclear rockets ever entered service, owing to a combination of budget cuts, loss of public interest, and a general winding down of the Space Race after the Apollo program was complete.

But given the current interest in space exploration, and ambitious mission proposed to Mars and beyond, it seems that nuclear rockets may finally see service. One popular idea that is being considered is a multistage rocket that would rely on both a nuclear engine and conventional thrusters – a concept known as a “bimodal spacecraft”. A major proponent of this idea is Dr. Michael G. Houts of the NASA Marshall Space Flight Center.

In 2014, Dr. Houts  conducted a presentation outlining how bimodal rockets (and other nuclear concepts) represented “game-changing technologies for space exploration”. As an example, he explained how the Space Launch System (SLS) – a key technology in NASA’s proposed crewed mission to Mars – could be equipped with chemical rocket in the lower stage and a nuclear-thermal engine on the upper stage.

In this setup, the nuclear engine would remain “cold” until the rocket had achieved orbit, at which point the upper stage would be deployed and the reactor would be activated to generate thrust. Other examples cited in the report include long-range satellites that could explore the Outer Solar System and Kuiper Belt and fast, efficient transportation for manned missions throughout the Solar System.

The company’s new contract is expected to run through Sept. 30th, 2019. At that time, the Nuclear Thermal Propulsion project will determine the feasibility of using low-enriched uranium fuel. After that, the project then will spend a year testing and refining its ability to manufacture the necessary fuel elements. If all goes well, we can expect that NASA’s “Journey to Mars” might just incorporate some nuclear engines!

Further Reading: NASA, BWXT News

Cosmic Census Says There Could be 100 Million Black Holes in our Galaxy Alone

Artist's conception shows two merging black holes similar to those detected by LIGO on January 4th, 2017. Credit: LIGO/Caltech

In January of 2016, researchers at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history when they announced the first-ever detection of gravitational waves. Supported by the National Science Foundation (NSF) and operated by Caltech and MIT, LIGO is dedicated to studying the waves predicted by Einstein’s Theory of General Relativity and caused by black hole mergers.

According to a new study by a team of astronomers from the Center of Cosmology at the University of California Irvine, such mergers are far more common than we thought. After conducting a survey of the cosmos intended to calculate and categorize black holes, the UCI team determined that there could be as many as 100 million black holes in the galaxy, a finding which has significant implications for the study of gravitational waves.

The study which details their findings, titled “Counting Black Holes: The Cosmic Stellar Remnant Population and Implications for LIGO“, recently appeared in the Monthly Notices of the Royal Astronomical Society. Led by Oliver D. Elbert, a postdoc student with the department of Physics and Astronomy at UC Irvine, the team conducted an analysis of gravitational wave signals that have been detected by LIGO.

LIGO’s two facilities, located in Livingston, Louisiana, and Hanford, Washington. Credit: ligo.caltech.edu

Their study began roughly a year and a half ago, shortly after LIGO announced the first detection of gravitational waves. These waves were created by the merger of two distant black holes, each of which was equivalent in mass to about 30 Suns. As James Bullock, a professor of physics and astronomy at UC Irvine and a co-author on the paper, explained in a UCI press release:

“Fundamentally, the detection of gravitational waves was a huge deal, as it was a confirmation of a key prediction of Einstein’s general theory of relativity. But then we looked closer at the astrophysics of the actual result, a merger of two 30-solar-mass black holes. That was simply astounding and had us asking, ‘How common are black holes of this size, and how often do they merge?’”

Traditionally, astronomers have been of the opinion that black holes would typically be about the same mass as our Sun. As such, they sought to interpret the multiple gravitational wave detections made by LIGO in terms of what is known about galaxy formation. Beyond this, they also sought to create a framework for predicting future black hole mergers.

From this, they concluded that the Milky Way Galaxy would be home to up to 100 million black holes, 10 millions of which would have an estimated mass of about 30 Solar masses – i.e. similar to those that merged and created the first gravitational waves detected by LIGO in 2016. Meanwhile, dwarf galaxies – like the Draco Dwarf, which orbits at a distance of about 250,000 ly from the center of our galaxy – would host about 100 black holes.

They further determined that today, most low-mass black holes (~10 Solar masses) reside within galaxies of 1 trillion Solar masses (massive galaxies) while massive black holes (~50 Solar masses) reside within galaxies that have about 10 billion Solar masses (i.e. dwarf galaxies). After considering the relationship between galaxy mass and stellar metallicity, they interpreted a galaxy’s black hole count as a function of its stellar mass.

In addition, they also sought to determine how often black holes occur in pairs, how often they merge and how long this would take. Their analysis indicated that only a tiny fraction of black holes would need to be involved in mergers to accommodate what LIGO observed. It also offered predictions that showed how even larger black holes could be merging within the next decade.

As Manoj Kaplinghat, also a UCI professor of physics and astronomy and the second co-author on the study, explained:

“We show that only 0.1 to 1 percent of the black holes formed have to merge to explain what LIGO saw. Of course, the black holes have to get close enough to merge in a reasonable time, which is an open problem… If the current ideas about stellar evolution are right, then our calculations indicate that mergers of even 50-solar-mass black holes will be detected in a few years.”

In other words, our galaxy could be teeming with black holes, and mergers could be happening in a regular basis (relative to cosmological timescales). As such, we can expect that many more gravity wave detections will be possible in the coming years. This should come as no surprise, seeing as how LIGO has made two additional detections since the winter of 2016.

With many more expected to come, astronomers will have many opportunities to study black holes mergers, not to mention the physics that drive them!

Further Reading: UCI, MNRAS

Stars Orbiting Supermassive Black Hole Show Einstein was Right Again!

Artist's impression of the orbits of three of the stars very close to the supermassive black hole at the center of the Milky Way. Credit: ESO/M. Parsa/L. Calçada

At the center of our galaxy, roughly 26,000 light years from Earth, lies the Supermassive Black Hole (SMBH) known as Sagittarius A*. Measuring 44 million km across, this object is roughly 4 million times as massive as our Sun and exerts a tremendous gravitational pull. Since astronomers cannot detect black holes directly, its existence has been determined largely from the effect it has on the small group of stars orbiting it.

In this respect, scientists have found that observing Sagittarius A* is an effective way of testing the physics of gravity. For instance, in the course of observing these stars, a team of German and Czech astronomers noted subtle effects caused by the black hole’s gravity. In so doing, they were able to yet again confirm some of the predictions made by Einstein’s famous Theory of General Relativity.

Their study, titled “Investigating the Relativistic Motion of the Stars Near the Supermassive Black Hole in the Galactic Center“, was recently published in the Astrophysical Journal. As is indicated in the course of it, the team applied new analysis techniques to existing observations that were made by European Southern Observatory’s (ESO) Very Large Telescope (VLT) and other telescopes over the course of the past 20 years.

Artist’s impression of part of S2s orbit around the supermassive black hole at the center of the Milky Way. Credit: ESO/M. Parsa/L. Calçada

From this, they measured the orbits of the stars that orbit Sagittarius A* to test predictions made by classical Newtonian physics (i.e. Universal Gravitation), as well as predictions based on general relativity. What they found was that one of the stars (S2) showed deviations in its orbit which were defied the former, but were consistent with the latter.

This star, which has 15 times the mass of our Sun, follows an elliptical orbit around the SMBH, completing a single orbit in about 15.6 years. At its closest, it gets to within 17 light hours of the black hole, which is the equivalent of 120 times the distance between the Sun and the Earth (120 AU). Essentially, the research team noted that S2 had the most elliptical orbit of any star orbiting the Supermassive Black Hole.

They also noted a slight change in its orbit – a few percent in the shape and about one-sixth of a degree in orientation. This could only be explained as being due to the relativistic effects caused by Sagittarius A* intense gravity, which cause a precession in its orbit.  What this means is, the elliptical loop of S2’s orbit rotates around the SMBH over time, with its perihelion point aimed in different directions.

Interestingly enough, this is similar to the effect that was observed in Mercury’s orbit – aka. the “perihelion precession of Mercury” – during the late 19th century. This observation challenged classical Newtonian mechanics and led scientists to conclude that Newton’s theory of gravity was incomplete. It is also what prompted Einstein to develop his theory of General Relativity, which offered a satisfactory explanation for the issue.

Should the results of their study be confirmed, this will be the first time that the effects of general relativity have been precisely calculated using the stars that orbit a Supermassive Black Hole. Marzieh Parsa – a PhD student at the University of Cologne, Germany and lead author of the paper – was understandably excited with these results. As she stated in an ESO press statement:

The Galactic Center really is the best laboratory to study the motion of stars in a relativistic environment. I was amazed how well we could apply the methods we developed with simulated stars to the high-precision data for the innermost high-velocity stars close to the supermassive black hole.

This study was made possible thanks to the high-accuracy of the VLT’s instruments; in particular, the adaptive optics on the NACO camera and the SINFONI near-infrared spectrometer. These instruments were vital in tracking the star’s close approach and retreat from the black hole, which allowed for the team to precisely determine the shape of its orbit and thusly determine the relativistic effects on the star.

In addition to the more precise information about S2’s orbit, the team’s analysis also provided new and more accurate estimates of Sagittarius A* mass, as well as its distance from Earth. This could open up new avenues of research for this and other Supermassive Black Holes, as well as additional experiments that could help scientists to learn more about the physics of gravity.

The central parts of our Galaxy, the Milky Way, as observed in the near-infrared with the NACO instrument on ESO’s Very Large Telescope. Credit: ESO/MPE/S. Gillessen et al.

The results also provided a preview of the measurements and tests that will be taking place next year. In 2018, the star S2 will be making a very close approach to Sagittarius A*. Scientists from around the world will be using this opportunity to test the GRAVITY instrument, a second-generation instrument that was recently installed on the Very Large Telescope Interferometer (VLTI).

Developed by an international consortium led by the Max Planck Institute for Extraterrestrial Physics, this instrument has been conducting observations of the Galactic Center since 2016. In 2018, it will be used to measure the orbit of S2 with even greater precision, which is expected to be most revealing.  At this time, astrophysicists will be seeking to make additional measurements of the SMBH’s general relativistic effects.

Beyond that, they also hope to detect additional deviations in the star’s orbit that could hint at the existence of new physics! With the right tools trained on the right place, and at the right time, scientists just might find that even Einstein’s theories of gravity were not entirely complete. But in the meantime, it looks like the late and great theoretical physicist was right again!

And be sure to check out this video of the recent study, courtesy of the ESO:

Further Reading: ESO, Astrophysical Journal

New Study Says Moon’s Magnetic Field Existed 1 Billion Years Longer Than We Thought

New measurements of lunar rocks have demonstrated that the ancient moon generated a dynamo magnetic field in its liquid metallic core (innermost red shell). The results raise the possibility of two different mechanisms — one that may have driven an earlier, much stronger dynamo, and a second that kept the moon’s core simmering at a much slower boil toward the end of its lifetime. Credit: Hernán Cañellas/Benjamin Weiss

When it comes to the study of planets, moons, and stars, magnetic fields are kind of a big deal. Believed to be the result of convection in a planet, these fields can be the difference between a planet giving rise to life or becoming a lifeless ball of rock. For some time, scientists have known that has a Earth’s magnetic field, which is powered by a dynamo effect created by convection in its liquid, outer core.

Scientists have also long held that the Moon once had a magnetic field, which was also powered by convection in its core. Previously, it was believed that this field disappeared roughly 1 billion years after the Moon formed (ca. 3 to 3.5 billion years ago). But according to a new study from the Massachusetts Institute of Technology (MIT), it now appears that the Moon’s magnetic field continued to exist for another billion years.

The study, titled “A two-billion-year history for the lunar dynamo“, recently appeared in the journal Science Advances. Led by Dr. Sonia Tikoo, an Assistant Professor at Rutger’s University and a former researcher at MIT, the team analyzed ancient lunar rocks collected by NASA’s Apollo 15 mission. What they found was that the rock showed signs of a being in magnetic field when it was formed between 1 and 2.5 billion years ago.

Artist’s concept of a collision between proto-Earth and Theia, which led to the formation of Moon, ca. 4.5 billion years ago. Credit: NASA

The age of this rock sample means that it is significantly younger than others returned by the Apollo missions. Using a technique they developed, the team examined the sample’s glassy composition with a magnometer to determine its magnetic properties. They then exposed the sample to a lab-generated magnetic field and other conditions that were similar to those that existed on the Moon when the rock would have formed.

This was done by placing the rocks into a specially-designed oxygen-deprived oven, which was built with the help of Clement Suavet and Timothy Grove – two researchers from MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) and co-authors on the study. The team then exposed the rocks to a tenuous, oxygen-free environment and heated them to extreme temperatures.

As Benjamin Weiss – a professor of planetary sciences at EAPS – explained:

“You see how magnetized it gets from getting heated in that known magnetic field, then you compare that field to the natural magnetic field you measured beforehand, and from that you can figure out what the ancient field strength was… In this way, we finally have gotten an accurate measurement of the lunar field.”

From this, they determined the lunar rock became magnetized in a field with a strength of about 5 microtesla. That’s many times weaker than Earth’s magnetic field when measured from the surface (25 – 65 microteslas), and two orders of magnitude weaker than what it was 3 to 4 billion years ago. These findings were quite significant, since they may help to resolve an enduring mystery about the Moon.

Cutaway of the Moon, showing its differentiated interior. Credit: NASA/SSERVI

Previously, scientists suspected that the Moon’s magnetic field died out 1.5 billion years after the Moon formed (ca. 3 billion years ago). However, they were unsure if this process happened rapidly, or if the Moon’s magnetic field endured, but in a weakened state. The results of this study indicate that the magnetic field did in fact linger for an additional billion years, dissipating about 2.5 billion years ago.

As Weiss indicated, this study raises new questions about the Moon’s geological history:

“The concept of a planetary magnetic field produced by moving liquid metal is an idea that is really only a few decades old. What powers this motion on Earth and other bodies, particularly on the moon, is not well-understood. We can figure this out by knowing the lifetime of the lunar dynamo.”

In other words, this new timeline of the Moon casts some doubt on the theory that a lunar dynamo alone is what powered its magnetic field in the past. Basically, it is now seen as a distinct possibility that the Moon’s magnetic field was powered by two mechanisms. Whereas one allowed for a dynamo in the core that powered its magnetic field for a good billion years after the Moon’s formation, a second one kept it going afterwards.

In the past, scientists have proposed that the Moon’s dynamo was powered by Earth’s gravitational pull, which would have caused tidal flexing in the Moon’s interior (much in the same way that Jupiter and Saturn’s powerful gravity drives geological activity in their moons interiors). In addition, the Moon once orbited much closer to Earth, which may have been enough to power its once-stronger magnetic field.

Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone
Artist’s impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone

However, the Moon gradually moved away from Earth, eventually reaching its current orbit about 3 billion years ago. This coincides with the timeline of the Moon’s magnetic field, which began to dissipate at about the same time. This could mean that by about 3 billion years ago, without the gravitational pull of the Earth, the core slowly cooled. One billion years later, the core had solidified to the point that it arrested the Moon;s magnetic field. As Weiss explained:

“As the moon cools, its core acts like a lava lamp – low-density stuff rises because it’s hot or because its composition is different from that of the surrounding fluid. That’s how we think the Earth’s dynamo works, and that’s what we suggest the late lunar dynamo was doing as well… Today the moon’s field is essentially zero. And we now know it turned off somewhere between the formation of this rock and today.”

These findings were made possible thanks in part by the availability of younger lunar rocks. In the future, the researchers are planning on analyzing even younger samples to precisely determine where the Moon’s dynamo died out completely. This will not only serve to validate the findings of this study, but could also lead to a more comprehensive timeline of the Moon’s geological history.

The results of these and other studies that seek to understand how the Moon formed and changed over time will also go a long way towards improving our understanding of how Earth, the Solar System, and extra-solar systems came to be.

Further Reading: Science Advances, MIT News