Three Possible Super-Earths Discovered Around Nearby Sun-Like Star

Artist’s impression of a Super-Earth planet orbiting a Sun-like star. Credit: ESO/M. Kornmesser

Since it was launched in 2009, NASA’s Kepler mission has continued to make important exoplanet discoveries. Even after the failure of two reaction wheels, the space observatory has found new life in the form of its K2 mission. All told, this space observatory has detected 5,017 candidates and confirmed the existence of 2,494 exoplanets using the Transit Method during its past eight years in service.

The most recent discovery was made by an international team of astronomers around Gliese 9827 (GJ 9827), a late K-type dwarf star located about 100 light-years from Earth. Using data provided by the K2 mission, they detected the presence of three Super-Earths. This star system is the closest exoplanet-hosting star discovered by K2 to date, which makes these planets well-suited for follow-up studies.

The study which describes their findings, titled “A System of Three Super Earths Transiting the Late K-Dwarf GJ 9827 at Thirty Parsecs“, was recently published online. Led by Dr. Jospeh E. Rodriguez from the Harvard-Smithsonian Center for Astrophysics (CfA), the team includes researchers from the University of Austin, the Massachusetts Institute of Technology (MIT), and the NASA Exoplanet Science Institute (NExSci) at Caltech.

The Transit Method, which remains one of the most trusted means for exoplanet detection, consists of monitoring stars for periodic dips in brightness. These dips correspond to planets passing (aka. transiting) in front of the star causing a measurable drop in the light coming from it. This method also offers unique opportunities to examine light passing through an exoplanet’s atmosphere. As Dr. Rodriguez told Universe Today via email:

“The success of Kepler combined with ground based radial velocity and transit surveys has now led to the discovery of over 4000 planetary system. Since we now know that planets appear to be quite common, the field has shifted its focus to understand architectures, interior structures, and atmospheres. These key properties of planetary systems help us understand some fundamental questions: how do planets form and evolve? What are the terrestrial planets around other stars like, are they similar to Earth in composition and atmosphere?”

These questions were central to the team’s study, which relied on data obtained during Campaign 12 of the K2 mission – from December 2016 to March 2017. After consulting this data, the team noted the presence of three super-Earth sized planets orbiting in a very compact configuration. This system, as they note in their study, was independently and simultaneously discovered by another team from Wesleyan University.

These three planetary objects, designated as GJ 9827 b, c, and d, are located at a distance of about 0.02, 0.04 and 0.06 AU from their host star (respectively). Owing to their sizes and radii, these planets are classified as “Super-Earths”, and have radii of 1.6, 1.2, and 2.1 times the radius of Earth. They are also located very close to their host star, completing orbits within 6.2 days.

The light curve obtained during Campaign 12 of the K2 mission of the GJ 9827 system. Credit: Rodriguez et al., 2017

Specifically, GJ 9827 b measures 1.64 Earth radii, has a mass of up to 4.25 Earth masses, a 1.2 day orbital period, and a temperature of 1,119 K (846 °C; 1555 °F). Meanwhile, GJ 9827 c measures 1.29 Earth radii, has a mass of 2.62 Earth masses, an orbital period of 3.6 days, and a temperature of 774 K (500 °C; 934°F). Lastly, GJ 9827 d measures 2.08 Earth radii, has a mass of 5.3 Earth masses, a 6.2 day period, and a temperature of 648 K (375 °C; 707 °F).

In short, all three planets are very hot, with temperatures that are hot as Venus and Mercury or (in the case of GJ 9827b) is even hotter! Interestingly, these radii and mass estimates place these planets within the transition boundary between terrestrial (i.e. rocky) planets and gas giants. In fact, the team found that GJ 9827 b and c fall in or close to the known gap in radius distribution for planets that are in between these two populations.

In other words, these planets could be rocky or gaseous, and the team won’t know for sure until they can place more accurate constraints on their masses. What’s more, none of these planets are likely to be capable of supporting life, certainly not as we know it! So if you were hoping that this latest find would produce an Earth-analog or potentially habitable planet, you’re sadly mistaken.

Nevertheless, the fact that these planets straddle the radius and mass boundary between terrestrial and gaseous planets – and the fact that this system is the closest planetary system to be identified by the K2 mission – makes the system well-situated for studies designed to probe the interior structure and atmosphere of exoplanets.

Artistic design of the super-Earth orbiting a Sun-like star. Credit: Gabriel Pérez/SMM (IAC)

The reason for this has much to do with the brightness of the host star. In addition to being relatively close to our Sun (~100 light-years), this K-type star is very bright and also relatively small – about 60% the size of our Sun. As a result, any planet passing in front of it would be able to block out more light than if the star were larger. But as noted, there’s also the curious nature of the planets themselves. As Dr. Rodriguez indicated:

Recently, we have found planets around other stars that have no analogue to a planet in our own system. These are known as “super Earths” and they have radii of 1-3 times the radius of the Earth. To add to the complexity of these planets, their is a clear dichotomy in their composition within this radius range. The larger super Earths (>1.6 x radius of the Earth) appear to be less dense, consistent with a puffy Hydrogen/Helium atmosphere. However, the smaller super Earths are more dense, consistent with an Earth-like composition (rock).

“As mentioned above, the GJ 9827 system hosts three super Earth sized planets. Interestingly, planet c has a radius consistent with it being rocky, planet d is consistent with being puffy, and planet b has a radius that is right on what we believe to be the transition boundary between rock and gas. Therefore, by studying the atmospheres of super-Earths, we may better understand the transition from dense rocky planets to puffier planets with very thick atmospheres (like Neptune).”

Artist’s impression of the super-Earth orbiting closely to its parent star. Credit: ESA/NASA

Looking ahead, the team hopes to conduct further studies to determine the masses of these planets more precisely. From this, they will be able to place better constraints on their compositions and determine if they are Super-Earths, mini gas giants, or some of each. Beyond that, they are to conduct more detailed studies of this system with next-generation instruments like the James Webb Space Telescope (JWST), which is scheduled to launch in 2018.

“I am really interested in studying the atmosphere of GJ 9827 b, whether it is rocky or puffy,” said Dr. Rodriguez. “This planet has a radius at the rock/gas transition but it is very close to its host star. Therefore, by studying the chemical composition of its atmosphere we may better understand the impact of the host star’s proximity has on the evolution of its atmosphere.  To do this we would use JWST to take spectroscopic observations during the transit of GJ 9827b (known as “Transmission Spectroscopy”). From this observations we will gather information on the chemical composition and extent of the planet’s atmosphere.

Now that we have thousands of extra-solar planet discoveries under our belt, its only natural that research would be shifting towards trying to understand these planets better. In the coming years and decades, we are likely to learn volumes about the respective structures, compositions, atmospheres, and surface features of many distant worlds. One can only imagine what kind of things these studies will turn up!

Further Reading: arXiv

This Weekend: The Moon Photobombs ‘Planet-palooza’ at Dawn

The planetary lineup at dawn from September 12th. Image credit and copyright: Alan Dyer (AmazingSky.com)
September planets
The planetary lineup at dawn (minus the Moon) from September 12th. Image credit and copyright: Alan Dyer (AmazingSky.com).

Following the Moon and wondering where are the fleeting inner solar system planets are this month?

While Jupiter and Saturn sink into the dusk on the far side of the Sun this month, the real action transpires in the dawn sky in mid-September, with a complex set of early morning conjunctions, groupings and occultations.

First, let’s set the stage for the planetary drama. Mercury just passed greatest elongation 18 degrees west of the Sun on September 12th.

The action warms up with a great pre-show on the morning of Saturday, September 16th, when the closest conjunction of two naked eye planets for 2017 occurs, as Mercury passes just 3′ north of Mars. The conjunction occurs at 16:00 UT, favoring the western Pacific region in the dawn hours. The pair is just 17 degrees from the Sun. As mentioned previously, this is the closest conjunction of two naked eye planets in 2017, so close the two will seem to merge to the naked eye and make a nice split with binoculars. This is also one of the first good chances to spy Mars for this apparition, fresh off of its solar conjunction on July 27th, 2017. Mars is now headed towards a favorable opposition next summer on July 27th, 2018, one that’s very nearly as favorable as the historic grand opposition of 2003.

Mars shines at magnitude +1.8 on Saturday morning with a disk 3.6” across, while Mercury shines at magnitude +0.05 with a 64% illuminated disk 6.4” across. Mars is actually 389 million km (2.6 AU) from the Earth this weekend, while Mercury is 158 million km (1.058 AU) distant.

The view looking east on the morning of September 17th. Stellarium

Follow that planet, as Mars also makes a close (12′) pass near Venus on October 5th. At the eyepiece, Venus will look like it has a large moon, just like the Earth!

Think this pass is close? Stick around until August 10th, 2079 and you can actually see Mercury occult (pass in front of) Mars… our cyborg body should be ready to download our consciousness into by then.

Mark your calendars: Mercury occults Mars in 2079. Stellarium

The waning crescent Moon joins the view on Monday, September 18th, making a spectacular series of passes worldwide as it threads its way through the stellar-planetary lineup. Occultations involving the waning Moon are never as spectacular as those involving the waxing Moon, as the bright limb of the Moon leads the way for ingress instead of the dark edge. The best sight to behold will be the sudden reappearance of the planet of star (egress) from behind the waning crescent Moon’s dark limb.

The Moon on Sept 18th
The sky looking east on the morning of September 18th. Stellarium

First up is an occultation of Venus on September 18th centered on 00:55 UT. Unfortunately, this favors the eastern Indian Ocean at dawn, though viewers in Australia and New Zealand can watch the occultation under post dawn daytime skies. The pair is 22 degrees west of the Sun, and the Moon is two days from New during the event. Shining at magnitude -4, it’s actually pretty easy to pick out Venus near the crescent Moon in the daytime. Observers worldwide should give this a try on the 18th as well… folks are always amazed when I show them Venus in the daytime. The last time the Moon occulted Venus was September 3rd, 2016 and the two won’t cross paths again until February 16th, 2018.

The footprint of the occultation of Venus by the Moon. Occult 4.2

Next up, the Moon occults the +1.4 magnitude star Regulus on the 18th at 4:56 UT. Observers across north-central Africa are best placed to observe this event. This is the 11th occultation of Regulus by the Moon in a series of 19, spanning December 2016 to April 2018.

The occultation of Regulus by the Moon. Occult 4.2

The brightest star in the constellation Leo, Regulus is actually 79 light years distant.

Next up, the dwindling waning crescent Moon meets the Red Planet Mars and occults it for the western Pacific at 19:42 UT. Shining at magnitude +1.8 low in the dawn sky, Mars is currently only 3.6” in size, a far cry from its magnificent apparition next summer when it will appear 24.3” in size… very nearly the largest it can appear from the Earth.

The occultation of Mars by the Moon. Occult 4.2

And finally, the slim 2% illuminated Moon will occult the planet Mercury on September 18th centered on 23:21 UT.

The occultation of Mercury by the Moon. Occult 4.2

Mercury occultations are tough, as the planet never strays very far from the Sun. The only known capture I’ve seen was out of Japan back in 2013:

This week’s occultation favors southeast Asia at dawn, and the pair is only 16 degrees west of the Sun. Mercury is gibbous 74% illuminated and 6” in size during the difficult occultation.

We just miss having a simultaneous “multiple occultation” this week. The Moon moves at the span of its half a degree size about once every hour with respect to the starry background, meaning an occultation must occur about 60 minutes apart for the Moon to cover two planets or a planet and a bright star at the same time, a rare once in a lifetime event indeed. The last time this transpired, the Moon covered Venus and Jupiter simultaneously for observers on Ascension Island on the morning of April 23rd 1998.

When is the next time this will occur? We’re crunching the numbers as we speak… watch this space!

Looking into next week, the Moon reaches New phase on Wednesday, September 20th at 5:31 UT/1:31 AM EDT, marking the start of lunation 1172. Can you spy the razor thin Moon Wednesday evening low to the west? Sighting opportunities improve on Thursday night.

Don’t miss this weekend’s dance of the planets in the early dawn sky, a great reason to rise early.

Read about conjunctions, occultations, tales of astronomy and more in our free guide to the Top 101 Astronomical Events for 2017 from Universe Today.

Galaxies Swell due to Explosive Action of New Stars

Artist’s impression of a disk galaxy transforming in to an elliptical galaxy. Stars are actively formed in the massive reservoir of dust and gas at the center of the galaxy. Credit: NAOJ

In 1926, famed astronomer Edwin Hubble developed his morphological classification scheme for galaxies. This method divided galaxies into three basic groups – Elliptical, Spiral and Lenticular – based on their shapes. Since then, astronomers have devoted considerable time and effort in an attempt to determine how galaxies have evolved over the course of billions of years to become these shapes.

One of th most widely-accepted theories is that galaxies changed by merging, where smaller clouds of stars – bound by mutual gravity – came together, altering the size and shape of a galaxy over time. However, a new study by an international team of researchers has revealed that galaxies could actually assumed their modern shapes through the formation of new stars within their centers.

The study, titled “Rotating Starburst Cores in Massive Galaxies at z = 2.5“, was recently published in the Astrophysical Journal Letters. Led by Ken-ichi Tadaki – a postdoctoral researcher with the Max Planck Institute for Extraterrestrial Physics and the National Astronomical Observatory of Japan (NAOJ) – the team conducted observations of distant galaxies in order to get a better understanding of galactic metamorphosis.

Evolution diagram of a galaxy. First the galaxy is dominated by the disk component (left) but active star formation occurs in the huge dust and gas cloud at the center of the galaxy (center). Then the galaxy is dominated by the stellar bulge and becomes an elliptical (or lenticular) galaxy. Credit: NAOJ

This involved using ground-based telescopes to study 25 galaxies that were at a distance of about 11 billion light-years from Earth. At this distance, the team was seeing what these galaxies looked like 11 billion years ago, or roughly 3 billion years after the Big Bang. This early epoch coincides with a period of peak galaxy formation in the Universe, when the foundations of most galaxies were being formed. As Dr. Tadaki indicated in a NAOJ press release:

“Massive elliptical galaxies are believed to be formed from collisions of disk galaxies. But, it is uncertain whether all the elliptical galaxies have experienced galaxy collision. There may be an alternative path.”

Capturing the faint light of these distant galaxies was no easy task and the team needed three ground-based telescopes to resolve them properly. They began by using the NAOJ’s 8.2-m Subaru Telescope in Hawaii to pick out the 25 galaxies in this epoch. Then they targeted them for observations with the NASA/ESA Hubble Space Telescope (HST) and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile.

Whereas the HST captured light from stars to discern the shape of the galaxies (as they existed 11 billion years ago), the ALMA array observed submillimeter waves  emitted by the cold clouds of dust and gas – where new stars are being formed. By combining the two, they were able to complete a detailed picture of how these galaxies looked 11 billion years ago when their shapes were still evolving.

Observation images of a galaxy 11 billion light-years away. Credit: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope, Tadaki et al.

What they found was rather telling. The HST images indicated that early galaxies were dominated by a disk component, as opposed to the central bulge feature we’ve come to associate with spiral and lenticular galaxies. Meanwhile, the ALMA images showed that there were massive reservoirs of gas and dust near the centers of these galaxies, which coincided with a very high rate of star formation.

To rule out alternate possibility that this intense star formation was being caused by mergers, the team also used data from the European Southern Observatory’s Very Large Telescope (VLT) – located at the Paranal Observatory in Chile – to confirm that there were no indications of massive galaxy collisions taking place at the time. As Dr. Tadaki explained:

“Here, we obtained firm evidence that dense galactic cores can be formed without galaxy collisions. They can also be formed by intense star formation in the heart of the galaxy.”

These findings could lead astronomers to rethink their current theories about galactic evolution and howthey came to adopt features like a central bulge and spiral arms. It could also lead to a rethink of our models regarding cosmic evolution, not to mention the history of own galaxy. Who knows? It might even cause astronomers to rethink what might happen in a few billion years, when the Milky Way is set to collide with the Andromeda Galaxy.

As always, the further we probe into the Universe, the more it reveals. With every revelation that does not fit our expectations, our hypotheses are forced to undergo revision.

Further Reading: ALMAAstrophysical Journal Letters

Unexpected Solar Flare is Also the Largest in Twelve Years

An X9.3 class solar flare flashes in the middle of the Sun on Sept. 6, 2017. Credit:NASA/GSFC/SDO

The past summer has been a pretty terrible time in terms of weather. In addition to raging fires in Canada’s western province of British Columbia, the south-eastern United States has been pounded by successive storms and hurricanes – i.e. Tropical Storm Emily and Hurricanes Franklin, Gert, Harvey and Irma. As if that wasn’t enough, solar activity has also been picking up lately, which could have a serious impact on space weather.

This past week, researchers from the University of Sheffield in the UK and Queen’s University Belfast detected the largest solar flare in 12 years. This massive burst of radiation took place on Wednesday, September 6th, and was one of three observed over a 48-hour period. While this latest solar flare is harmless to humans, it could pose a significant hazard to communications and GPS satellites.

The flare was also the eighth-largest detected since solar flare activity began to be monitored back in 1996. Like the two previous flares which took place during the same 48-hour period, this latest burst was an X-Class flare – the largest type of flare known to scientists. It occurred at 13:00 GMT (06:00 PDT; 09:00 EST) and was measured to have an energy level of X9.3.

Essentially, it erupted with the force of one billion thermonuclear bombs and drove plasma away from the surface at speeds of up to 2000 km/s (1243 mi/s). This phenomena, known as Coronal Mass Ejections (CMEs), are known to play havoc with electronics in Low Earth Orbit (LEO). And while Earth’s magnetosphere offers protection from these events, electronic systems on the planets surface are sometimes affected as well.

The event was witnessed by a team from a consortium of Universities, which included the University of Sheffield and Queen’s University Belfast. With the support of the Science and Technology Facilities Council, they conducted their observations using the Institute for Solar Physics‘ (ISP) 1-meter Swedish Solar Telescope, which is located at the Roque de los Muchachos Observatory – operated by the Instituto de Astrofisica de Canarias.

As Professor Mihalis Mathioudakis, who led the project at Queen’s University Belfast, indicated in a recent University of Sheffield press statement:

“Solar flares are the most energetic events in our solar system and can have a major impact on earth. The dedication and perseverance of our early career scientists who planned and executed these observations led to the capture of this unique event and have helped to advance our knowledge in this area.”

The team was able to capture the opening moments of a solar flare’s life. This was extremely fortunate, since one of the biggest challenges of observing solar flares from ground-based telescopes is the short time-scales over which they erupt and evolve. In the case of X-class flares, they are capable of forming and reaching peak intensity in just about five minutes.

A powerful X2-class flare from sunspot region 2297 glows fiery yellow in this photo taken by NASA’s Solar Dynamics Observatory on March 11, 2015. Credit: NASA

In other words, observers – who only see a small part of the sun at any one moment – must act very quickly to ensure they catch the crucial opening moments of a flare’s evolution. As Dr Chris Nelson, from the Solar Physics and Space Plasma Research Centre (SP2RC) – who was one of the observers at the telescope – explained:

“It’s very unusual to observe the opening minutes of a flare’s life. We can only observe about 1/250th of the solar surface at any one time using the Swedish Solar Telescope, so to be in the right place at the right time requires a lot of luck. To observe the rise phases of three X-classes over two days is just unheard of.”

Another interesting thing about this flare, and the two that preceded it, was the timing. At present, astronomers expected that we were in a period of diminished solar activity. But as Dr Aaron Reid, a research fellow at at Queen’s University Belfast’s Astrophysics Research Center and a co-author on the paper, explained:

“The Sun is currently in what we call solar minimum. The number of Active Regions, where flares occur, is low, so to have X-class flares so close together is very usual. These observations can tell us how and why these flares formed so we can better predict them in the future.”

Professor Robertus von Fáy-Siebenbürgen, who leads the SP2RC, was also very enthused about the research team’s accomplishment. “We at SP2RC are very proud to have such talented scientists who can make true discoveries,” he said. “These observations are very difficult and will require hard work to fully understand what exactly has happened on the Sun.”

Predicting when and how solar flares will occur will also aid in the development of early warning and preventative measures. The is part of growing industry that seeks to protect satellites and orbital missions from harmful electromagnetic disruption. And with humanity’s presence in LEO expended to grow considerably in the coming decades, this industry is expected to become worth several billion dollars.

Yes, with everything from small satellites, space planes, commercial habitats and more space stations being deployed to space, Low Earth Orbit is expected to get pretty crowded in the coming decades. The last thing we need is for vast swaths of this machinery or – heaven forbid! – crewed spacecraft, stations and habitats to become inoperative thanks to solar flare activity.

If human beings are to truly become a space-faring race, we need to know how to predict space weather the same we do the weather here on Earth. And just like the wind, the rain, and other meteorological phenomena, we need to know when to batten down the hatches and adjust the sails.

Further Reading: University of Sheffield

Gravitational Waves will let us see Inside Stars as Supernovae Happen

Artistic representation of the material around the supernova 1987A. Credit: ESO/L. Calçada

On February 11th, 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) announced the first detection of gravitational waves. This development, which confirmed a prediction made by Einstein’s Theory of General Relativity a century ago, has opened up new avenues of research for cosmologists and astrophysicists. Since that time, more detections have been made, all of which were said to be the result of black holes merging.

However, according to a team of astronomers from Glasgow and Arizona, astronomers need not limit themselves to detecting waves caused by massive gravitational mergers. According to a study they recently produced, the Advanced LIGO, GEO 600, and Virgo gravitational-wave detector network could also detect the gravitational waves created by supernova. In so doing, astronomers will able to see inside the hearts of collapsing stars for the first time.

The study, titled “Inferring the Core-Collapse Supernova Explosion Mechanism with Three-Dimensional Gravitational-Wave Simulations“, recently appeared online. Led by Jade Powell, who recently finished her PhD at the Institute for Gravitational Research at the University of Glasgow, the team argue that current gravitational wave experiments should be able to detect the waves created by Core Collapse Supernovae (CSNe).

Otherwise known as Type II supernovae, CCSNe are what happens when a massive star reaches the end of its lifespan and experiences rapid collapse. This triggers a massive explosion that blows off the outer layers of the star, leaving behind a remnant neutron star that may eventually become a black hole. In order for a star to undergo such collapse, it must be at least 8 times (but no more than 40 to 50 times) the mass of the Sun.

When these types of supernovae take place, it is believed that neutrinos produced in the core transfer gravitational energy released by core collapse to the cooler outer regions of the star. Dr. Powell and her colleagues believe that this gravitational energy could be detected using current and future instruments. As they explain in their study:

“Although no CCSNe have currently been detected by gravitational-wave detectors, previous studies indicate that an advanced detector network may be sensitive to these sources out to the Large Magellanic Cloud (LMC). A CCSN would be an ideal multi-messenger source for aLIGO and AdV, as neutrino and electromagnetic counterparts to the signal would be expected. The gravitational waves are emitted from deep inside the core of CCSNe, which may allow astrophysical parameters, such as the equation of state (EOS), to be measured from the reconstruction of the gravitational-wave signal.”

Dr. Powell and her also outline a procedure in their study that could be implemented using the Supernova model Evidence Extractor (SMEE). The team then conducted simulations using the latest three-dimensional models of gravitational-wave core collapse supernovae to determine if background noise could be eliminated and proper detection of CCSNe signals made.

As Dr. Powell explained to Universe Today via email:

“The Supernova Model Evidence Extractor (SMEE) is an algorithm that we use to determine how supernovae get the huge amount of energy they need to explode. It uses Bayesian statistics to distinguish between different possible explosion models. The first model we consider in the paper is that the explosion energy comes from the neutrinos emitted by the star. In the second model the explosion energy comes from rapid rotation and extremely strong magnetic fields.”

From this, the team concluded that in a three-detector network researchers could correctly determine the explosion mechanics for rapidly-rotating supernovae, depending on their distance. At a distance of 10 kiloparsecs (32,615 light-years) they would be able to detect signals of CCSNe with 100% accuracy, and signals at 2 kiloparsecs (6,523 light-years) with 95% accuracy.

In other words, if and when a supernova takes place in the local galaxy, the global network formed by the Advanced LIGO, Virgo and GEO 600 gravitational wave detectors would have an excellent chance of picking up on it. The detection of these signals would also allow for some groundbreaking science, enabling scientists to “see” inside of exploding stars for the first time. As Dr. Powell explained:

“The gravitational waves are emitted from deep inside the core of the star where no electromagnetic radiation can escape. This allows a gravitational wave detection to tell us information about the explosion mechanism that can not be determined with other methods. We may also be able to determine other parameters such as how rapidly the star is rotating.”

Illustration showing the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other. Credit: LIGO/T. Pyle

Dr. Powell, having recently completed work on her PhD will also be taking up a postdoc position with the RC Centre of Excellence for Gravitational Wave Discovery (OzGrav), the gravitational wave program hosted by the University of Swinburne in Australia. In the meantime, she and her colleagues will be conducting targeted searchers for supernovae that occurred during the first and seconds advanced detector observing runs.

While there are no guarantees at this point that they will find the sought-after signals that would demonstrate that supernovae are detectable, the team has high hopes. And given the possibilities that this research holds for astrophysics and astronomy, they are hardly alone!

Further Reading: arXiv

Messier 56 – the NGC 6779

Messier 56 and Messier 57 (the Ring Nebula). Credit: Wikisky

Welcome back to Messier Monday! We continue our tribute to our dear friend, Tammy Plotner, by looking at the the globular star cluster known as Messier 56. Enjoy!

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects in the night sky. In time, he would come to compile a list of approximately 100 of these objects, with the purpose of making sure that astronomers did not mistake them for comets. However, this list – known as the Messier Catalog – would go on to serve a more important function.

One of these objects is Messier 56, a globular star cluster located in the small northern constellation of Lyra, roughly 32,900 light years from Earth. Measuring roughly 84 light-years in diameter, this cluster has an estimated age of 13.70 billion years. It is also relatively easy to spot because of its proximity to well-known asterisms like the celestial Swan, the Northern Cross, and the bright star Vega.

Description:

Spanning about 85 light years in diameter, this incredible ball of stars is moving towards planet Earth at a speed of 145 kilometers per second… yet still remains about 32,900 light-years away. As one of the less dense of the Milky Way’s halo globulars, it is also less dense in variable stars – containing only perhaps a dozen. But out of that twelve, there a very special one… a Cepheid bright enough to be followed with amateur instruments. However, astronomers never stopped looking for the curious – and they found what they were looking for!

NASA/ESA Hubble image of the globular star cluster known as Messier 56. Credit: NASA/ESA/HST/Gilles Chapdelaine

The CURiuos Variables Experiment (CURVE) was performed on M56 in 2008. As P. Pietrukowicz (et al) wrote of the cluster in the accompanying study:

“We surveyed a 6.5’×6.5′ field centered on the globular cluster M56 (NGC 6779) in a search for variable stars detecting seven variables, among which two objects are new identifications. One of the new variables is an RRLyrae star, the third star of that type in M56. Comparison of the new observations and old photometric data for an RV Tauri variable V6 indicates a likely period change in the star. Its slow and negative rate of -0.005±0.003 d/yr would disagree with post-AGB evolution, however this could be a result of blue-loop evolution and/or random fluctuations of the period.”

But could other things exist inside M56? Events, perhaps, like nova? As astronomer Tim O’Brien wrote:

“Classical nova outbursts are the result of thermonuclear explosions on the surface of a white dwarf star in a close binary system. Material from the other star in the system (one not unlike our own sun) falls onto the surface of the white dwarf over thousands of years. The pressure at the base of this layer of accreted material builds up until thermonuclear reactions begin explosively. An Earth’s mass or more of material is ejected from the surface of the white dwarf at speeds of a few hundred to a few thousand kilometres per second. Old novae are therefore surrounded by shells of ejected matter illuminated by the light from the central binary system.”

And as M.E.L. Hopwood (et al.) wrote in a 2000 study:

“We report the possible detection of diffuse X-ray emission in the environment of NGC 6779, and find the emission to be well aligned with the proper motion of the cluster. The position of the emission suggests we are observing heated ISM in the wake of the cluster that could be the result of an interaction between the intracluster medium and the halo gas surrounding it.”

Globular cluster Messier 56 in Lyra. Credit: Wikipedia Commons/Hewholooks

History of Observation:

Charles Messier first discovered M56 on January 23rd, 1779. As he wrote of his discovery at the time:

“Nebula without stars, having little light; M. Messier discovered it on the same day as he found the comet of 1779, January 19. On the 23rd, he determined its position by comparing it with the star 2 Cygni, according to Flamsteed: it is near the Milky Way; and close to it is a star of 10th magnitude. M. Messier reported it on the chart of the comet of 1779.”

However, it would be Sir William Herschel who revealed its true nature in 1807. In his private notes he writes: “The 56th of the Connoiss. is a globular cluster of very compressed and very small stars. They are gradually more compressed towards the centre.” His son John would go on to observe it many times, even after cataloging it! His best description reads: “Large; round; very gradually brighter toward the middle. I see the stars which are very small and of different sizes. It fades gradually away to the borders.”

As always, it would be Admiral Smyth who would be perhaps a bit more descriptive when he included in his observing notes:

“A globular cluster, in a splendid field, between the eastern joke of Lyra’s frame and the Swan’s head: it is 5 1/4 deg distant from Beta Lyrae, on the south-east line leading to Beta Cygni, which is about 3 1/2 deg further. This object was first registered by M. Messier in 1778, and, from his imperfect means, described as a nebula of feeble light, without a star. In 1784, it was resolved by Sir William Herschel, who, on gauging, considered its profundity to be of the 344th order.”

Messier 56 location. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 56:

Finding M56 isn’t too hard since it’s located about half-way between Beta Cygni (Albireo) and Gamma Lyrae. In both binoculars and finder scope, you will see a triangle of stars when progressing from Gamma towards the southeast that will almost point directly at it! Because M56 isn’t particularly large or bright, it does require dark skies – but makes a great object for both binoculars and small telescopes.

Enjoy this pincushion of stars! And here are the quick facts on this Messier Object to help you get started”

Object Name: Messier 56
Alternative Designations: M56, NGC 6779
Object Type: Class X Globular Cluster
Constellation: Lyra
Right Ascension: 19 : 16.6 (h:m)
Declination: +30 : 11 (deg:m)
Distance: 32.9 (kly)
Visual Brightness: 8.3 (mag)
Apparent Dimension: 8.8 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier ObjectsM1 – The Crab Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Exoplanet-Hunting Aliens Could Be Looking at Earth Right Now!

Artist's impression of an extra-solar planet transiting its star. Credit: QUB Astrophysics Research Center

In the past few decades, the search for extra-solar planets has turned up a wealth of discoveries. Between the many direct and indirect methods used by exoplanet-hunters, thousands of gas giants, rocky planets and other bodies have been found orbiting distant stars. Aside from learning more about the Universe we inhabit, one of the main driving forces behind these efforts has been the desire to find evidence of Extra-Terrestrial Intelligence (ETI).

But suppose there are ETIs out there that are are also looking for signs of intelligence other than their own? How likely would they be to spot Earth? According to a new study by a team of astrophysicists from Queen’s University Belfast and the Max Planck Institute for Solar System Research in Germany, Earth would be detectable (using existing technology) from several star systems in our galaxy.

This study, titled “Transit Visibility Zones of the Solar System Planet“, was recently published in the Monthly Notices of the Royal Astronomical Society. Led by Robert Wells, a PhD student at the Astrophysics Research Center at Queen’s University Belfast, the team considered whether or not Earth would be detectable from other star systems using the Transit Method.

Diagram of a planet (e.g. the Earth, blue) transiting in front of its host star (e.g. the Sun, yellow). The lower black curve shows the brightness of the star noticeably dimming over the transit event, when the planet is blocking some of the light from the star. Credit: R. Wells.

This method consists of astronomers observing stars for periodic dips in brightness, which are attributed to planets passing (i.e. transiting) between them and the observer. For the sake of their study, Wells and his colleagues reversed the concept in order to determine if Earth would be visible to any species conducting observations from vantage points beyond our Solar System.

To answer this question, the team looked for parts of the sky from which one planet would be visible crossing the face of the Sun – aka. “transit zones”. Interestingly enough, they determined that the terrestrial planets that are closer to the Sun (Mercury, Venus, Earth and Mars) would easier to detect than the gas and ice giants – i.e.  Jupiter, Saturn, Uranus and Neptune.

While considerably larger, the gas/ice giants would be more difficult to detect using the transit method because of their long-period orbits. From Jupiter to Neptune, these planets take about 12 to 165 years to complete a single orbit! But more important than that is the fact that they orbit the Sun at much greater distances than the terrestrial planets. As Robert Wells indicated in a Royal Astronomical Society press statement:

”Larger planets would naturally block out more light as they pass in front of their star. However the more important factor is actually how close the planet is to its parent star – since the terrestrial planets are much closer to the Sun than the gas giants, they’ll be more likely to be seen in transit.”

How the transit zone of a Solar System planet is projected out from the Sun. The observer on the green exoplanet is situated in the transit zone and can therefore see transits of the Earth. Credit: R. Wells

Ultimately, what the team found was that at most, three planets could be observed from anywhere outside of the Solar System, and that not all combinations of these three planets was possible. For the most part, an observer would see only planet making a transit, and it would most likely be a rocky one. As Katja Poppenhaeger, a lecturer at the School of Mathematics and Physics at Queen’s University Belfast and a co-author of the study, explained:

“We estimate that a randomly positioned observer would have roughly a 1 in 40 chance of observing at least one planet. The probability of detecting at least two planets would be about ten times lower, and to detect three would be a further ten times smaller than this.”

What’s more, the team identified sixty-eight worlds where observers would be able to see one or more of the Solar planets making transits in front of the Sun. Nine of these planets are ideally situated to observe transits of the Earth, though none of them have been deemed to be habitable. These planets include HATS-11 b, 1RXS 1609 b, LKCA 15 b, WASP-68 b, WD 1145+017 b, and four planets in the WASP-47 system (b, c, d, e).

On top of that, they estimated (based on statistical analysis) that there could be as many as ten undiscovered and potentially habitable worlds in our galaxy which would be favorably located to detect Earth using our current level of technology. This last part is encouraging since, to date, not a single potentially habitable planet has been discovered where Earth could be seen making transits in front of the Sun.

Image showing where transits of our Solar System planets can be observed. Each line represents where one of the planets could be seen to transit, with the blue line representing Earth; an observer located here could detect us. Credit: 2MASS/A. Mellinger/R. Wells.

The team also indicated that further discoveries made by the Kepler and K2 missions will reveal additional exoplanets that have “a favorable geometric perspective to allow transit detections in the Solar System”. In the future, Wells and his team plan to study these transit zones to search for exoplanets, which will hopefully reveal some that could also be habitable.

One of the defining characteristics in the Search for Extra-Terrestrial Intelligence (SETI) has been the act of guessing about what we don’t know based on what we do. In this respect, scientists are forced to consider what extra-terrestrial civilizations would be capable of based on what humans are currently capable of. This is similar to how our search for potentially habitable planets is limited since we know of only one where life exists (i.e. Earth).

While it might seem a bit anthropocentric, it’s actually in keeping with our current frame of reference. Assuming that intelligent species could be looking at Earth using the same methods we do is like looking for planets that orbit within their star’s habitable zones, have atmospheres and liquid water on the surfaces.

In other words, it’s the “low-hanging fruit” approach. But thanks to ongoing studies and new discoveries, our reach is slowly extending further!

Further Reading: RAS, MNRAS

X-ray Study Shows Older Stars May be More Supportive to Life

A study using data from NASA's Chandra X-ray Observatory and ESA's XMM-Newton suggests X-rays emitted by a planet's host star may provide critical clues to how hospitable a star system could be. Credit: NASA/CXC/M.Weiss

Astronomers have long understood that there is a link between a star’s magnetic activity and the amount of X-rays it emits. When stars are young, they are magnetically active, due to the fact that they undergo rapid rotation. But over time, the stars lose rotational energy and their magnetic fields weaken. Concurrently, their associated X-ray emissions also begin to drop.

Interestingly, this relationship between a star’s magnetic activity and X-ray emissions could be a means for finding potentially-habitable star systems. Hence why an international team led by researchers from Queen’s University Belfast conducted a study where they cataloged the X-ray activity of 24 Sun-like stars. In so doing, they were able to determine just how hospitable these star systems could be to life.

This study, titled “An Improved Age-Activity Relationship for Cool Stars Older than a Gigayear“, recently appeared in the Monthly Notices of the Royal Astronomical Society. Led by Rachel Booth, a PhD student from the Astrophysics Research Center at Queen’s University Belfast, the team used data from NASA’s Chandra X-ray Observatory and the ESA’s XMM-Newton to examine how the X-ray brightness of 24 Sun-like stars changed over time.

This artist’s impression shows the magnetar in the very rich and young star cluster Westerlund 1. Credit: ESO/L. Calçada

To understand how stellar magnetic activity (and hence, X-ray activity) changes over time, astronomers require accurate age assessments for many different stars. This has been difficult in the past, but thanks to mission like NASA’s Kepler Space Observatory and the ESA’s Convection, Rotation and planetary Transits (CoRoT) mission, new and precise age estimates have become available in recent years.

Using these age estimates, Booth and her colleagues relied on data from the Chandra X-ray observatory and the XMM-Newton obervatory to examine 24 nearby stars. These stars were all similar in mass to our Sun (a main sequence G-type yellow dwarf star) and at least 1 billion years of age. From this, they determined that there was a clear link between the star’s age and their X-ray emissions. As they state in their study:

“We find 14 stars with detectable X-ray luminosities and use these to calibrate the age-activity relationship. We find a relationship between stellar X-ray luminosity, normalized by stellar surface area, and age that is steeper than the relationships found for younger stars…”

In short, of the 24 stars in their sample, the team found that 14 had X-ray emissions that were discernible. From these, they were able to calculate the star’s ages and determine that there was a relationship between their longevity and luminosity. Ultimately, this demonstrated that stars like our Sun are likely to emit less high-energy radiation as they exceed 1 billion years in age.

And while the reason for this is not entirely clear, astronomers are currently exploring various possible causes. One possibility is that for older stars, the reduction in spin rate happens more quickly than it does for younger stars. Another possibility is that the X-ray brightness declines more quickly for older, more slowly-rotating stars than it does for younger, faster ones.

Regardless of the cause, the relationship between a star’s age and its X-ray emissions could provide astronomers and exoplanet hunters with another tool for gauging the possible habitability of a system. Wherever a G-type or K-type star is to be found, knowing the age of the star could help place constraints on the potential habitability of any planets that orbit it.

Further Reading: Chandra, MNRAS

New Study Claims that TRAPPIST-1 Could Also Have Gas Giants

Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech
Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

In February of 2017, NASA scientists announced the existence of seven terrestrial (i.e. rocky) planets within the TRAPPIST-1 star system. Since that time, the system has been the focal point of intense research to determine whether or not any of these planets could be habitable. At the same time, astronomers have been wondering if all of the system’s planets are actually accounted for.

For instance, could this system have gas giants lurking in its outer reaches, as many other systems with rocky planets (for instance, ours) do? That was the question that a team of scientists, led by researchers from the Carnegie Institute of Science, sought to address in a recent study. According to their findings, TRAPPIST-1 may be orbited by gas giants at a much-greater distance than its seven rocky planets.

Continue reading “New Study Claims that TRAPPIST-1 Could Also Have Gas Giants”

Detection of Mineral on Mars Bolsters Argument that Mars was Once Habitable

Mosaic image of the Curiosity rover on Mars, which recently turned up more evidence that supports the idea that the planet was once habitability. Credit: NASA/JPL-Caltech/MSSS.

It has become a well-known scientific fact that billions of years ago, Mars once had a thicker atmosphere and liquid water on its surface. Scientists have also discovered that it was the gradual loss of this atmosphere, between 4.2 and 3.7 billion years ago, that caused Mars to go from being a warmer, wetter environment to the dry, freezing environment it is today.

Despite the existence of both a thicker atmosphere and water, questions remain as to whether or not Mars was truly habitable in the past. According to a new study from a team of researchers from the Los Alamos National Laboratory (LANL), the discovery of a specific mineral (boron) has added weight to the argument that Mars was once a potentially life-bearing world.

The study, titled “In situ detection of boron by ChemCam on Mars“, was recently published in the scientific journal Geophysical Research Letters. For the sake of this study, the LANL research team consulted data collected by the  Chemistry and Camera (ChemCam) instrument aboard the Curiosity rover, which showed evidence of boron on the surface of Mars.

Mars, as it may have looked 4.2 billion years ago (left) and today (right). Credit: Kevin Gill

Boron, an element which is created by cosmic rays and is relatively rare in the Solar System, is necessary for the creation of ribonucleic acid – which is present in all forms of modern life. Essentially, RNA requires a key ingredient to form, which is a sugar called ribose. Like all sugars, ribose is highly unstable and decomposes quickly in water. As such, it needs another element to stabilize it, which is where boron comes into play.

As Patrick Gasda, a postdoctoral researcher at the Los Alamos National Laboratory and lead author on the paper, explained in a LANL press statement:

“Because borates may play an important role in making RNA – one of the building blocks of life – finding boron on Mars further opens the possibility that life could have once arisen on the planet. Borates are one possible bridge from simple organic molecules to RNA. Without RNA, you have no life. The presence of boron tells us that, if organics were present on Mars, these chemical reactions could have occurred.”

When boron is dissolved in water (which, as noted, Mars once had in abundance) it becomes borate. This compound (when combined with ribose) would act as a stabilizing agent, keeping the sugar together long enough so that RNA can form. As Gasda explained, “We detected borates in a crater on Mars that’s 3.8 billion years old, younger than the likely formation of life on Earth.”

Artist rendition of how the “lake” at Gale Crater on Mars may have looked millions of years ago. Credit and copyright: Kevin Gill.

The boron was detected by Curiosity’s laser-shooting ChemCam instrument, which was developed by the LANL in conjunction with France’s space agency, the National Center of Space Studies (CNES). It detected the element in veins of calcium sulfate minerals located in the Gale Crater, which means that boron was present in Mars’ groundwater and was preserved with other minerals when the water dissolved, leaving behind rich mineral veins.

This provides further evidence that the lake that is now known to have once filled the Gale Crater could have had life in it. During the time period in question, this lake would have experienced temperatures ranging from from 0 to 60 ° C (32 to 140 °F) and had a pH level that would have been neutral-to-alkaline. It also means that on ancient Mars, the conditions necessary for life would have existed, and independent of Earth to boot.

This is just one of many findings Curiosity has made related to the composition of Martian rocks. Since it touched down in the Gale Crater in 2012, the rover has been gathering chemical evidence of the ancient lake that once existed there, as well as geological evidence that has been preserved by sedimentary deposits. As the rover began to scale the slope of Mount Sharp, the composition of the surface began to change.

Whereas samples taken from the crater floor tended to contain more in the way of clays, samples collected higher up Mount Sharp contained more boron. These and other chemical traces are indications of how conditions under which sediments were deposited changed over time. Analysis conducted of the mountain’s layers has also showed how the movement of groundwater through these layers of sediment altered and transported elements (like boron).

MRO image of Gale Crater illustrating the landing location and trek of the Rover Curiosity. Credits: NASA/JPL, illustration, T.Reyes

All of this is providing a picture of how Mars’ environment changed over the course of billions of years and affected the planet’s potential favorability for microbial life. And while scientists have a general picture of how Mars underwent a very significant transition billions of years ago, whether or not Martian life ever existed remains unknown.

The main goal of the Curiosity mission was to determine whether the area ever offered a habitable environment. Thanks to evidence of past water and the discovery of minerals like boron, this has been confirmed. In the coming years, the deployment of the Mars 2020 rover is expected to follow-up on these findings and shed more light on Mars’ case for past habitability.

Once it reaches the surface, the Mars 2020 rover – which relies on much of the same technology as Curiosity – will use an instrument called the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC). Also developed by the LANL, this “SuperCam” instrument will use spectrometers, a laser and a camera to search for organics and minerals that could indicate the existence of past microbial life.

If there is still preserved evidence of life to be found on Mars or – fingers crossed! – microbial life still exists there today, we can expect to find it before long. If that should be the case, human beings will finally know with certainty that life evolved on a planet other than Earth, and perhaps independent of it!

Further Reading: LANL, Geophysical Research Letters