The Universe is an extremely big place. As astronomers looked farther into space over the centuries, and deeper into the past, they came to understand just how small and insignificant our planet and our species seem by comparison. At the same time, ongoing investigations into electromagnetism and distant stars led scientists to deduce what the the speed of light is – and that it is the fastest speed obtainable.
As such, astronomers have taken to using the the distance light travels within a single year (aka. a light year) to measure distances on the interstellar and intergalactic scale. But how far does light travel in a year? Basically, it moves at a speed of 299,792,458 meters per second (1080 million km/hour; 671 million mph), which works out to about 9,460.5 trillion km (5,878.5 trillion miles) per year.
The Speed of Light:
Calculating the speed of light has been a preoccupation for scientists for many centuries. And prior to the 17th century, there was disagreement over whether the speed of light was finite, or if it moved from one spot to the next instantaneously. In 1676, Danish astronomer Ole Romer settled the argument when his observations of the apparent motion of Jupiter’s moon Io revealed that the speed of light was finite.
From his observations, famed Dutch astronomer Christiaan Huygens calculated the speed of light at 220,000 km/s (136,701 mi/s). Over the course of the nest two centuries, the speed of light was refined further and further, producing estimates that ranged from about 299,000 to 315,000 km/s (185,790 to 195,732 mi/s).
This was followed by James Clerk Maxwell, who proposed in 1865 that light was an electromagnetic wave. In his theory of electromagnetism, the speed of light was represented as c. And then in 1905, Albert Einstein proposed his theory of Special Relativity, which postulated that the speed of light (c) was constant, regardless of the inertial reference frame of the observer or the motion of the light source.
By 1975, after centuries of refined measurements, the speed of light in a vacuum was calculated at 299,792,458 meters per second. Ongoing research also revealed that light travels at different wavelengths and is made up of subatomic particles known as photons, which have no mass and behave as both particles and waves.
Light-Year:
As already noted, the speed of light (expressed in meters per second) means that light travels a distance of 9,460,528,000,000 km (or 5,878,499,817,000 miles) in a single year. This distance is known as a “light year”, and is used to measure objects in the Universe that are at a considerable distances from us.
For example, the nearest star to Earth (Proxima Centauri) is roughly 4.22 light-years distant. The center of the Milky Way Galaxy is 26,000 light-years away, while the nearest large galaxy (Andromeda) is 2.5 million light-years away. To date, the candidate for the farthest galaxy from Earth is MACS0647-JD, which is located approximately 13.3 billion light years away.
And the Cosmic Microwave Background, the relic radiation which is believed to be leftover from the Big Bang, is located some 13.8 billion light years away. The discovery of this radiation not only bolstered the Big Bang Theory, but also gave astronomers an accurate assessment of the age of the Universe. This brings up another important point about measuring cosmic distances in light years, which is the fact that space and time are intertwined.
You see, when we see the light coming from a distant object, we’re actually looking back in time. When we see the light from a star located 400 light-years away, we’re actually seeing light that was emitted from the star 400 years ago. Hence, we’re seeing the star as it looked 400 years ago, not as it appears today. As a result, looking at objects billions of light-years from Earth is to see billions of light-years back in time.
Yes, light travels at an extremely fast speed. But given the sheer size and scale of the Universe, it can still take billions of years from certain points in the Universe to reach us here on Earth. Hence why knowing how long it takes for light to travel a single year is so useful to scientists. Not only does it allow us to comprehend the scale of the Universe, it also allows us to chart the process of cosmic evolution.
Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at Orion’s Nebula’s “little brother”, the De Marian’s Nebula!
During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.
One of these objects is the elliptical galaxy known as Messier 49 (aka. NGC 4472). Located in the southern skies in the constellation of Virgo, this galaxy is one several members of the Virgo Cluster of galaxies and is located 55.9 million light years from Earth. On a clear night, and allowing for good light conditions, it can be seen with binoculars or a small telescope, and will appear as a hazy patch in the sky.
Description:
Messier 49 is the brightest of the Virgo Cluster member galaxies, which is pretty accurate considering it’s only about 60 million light years away and may span an area as large as 160,000 light years. It is a huge system of globular clusters, much less concentrated than Virgo cluster member M87 – but a giant none the less. As Stephen E. Zep (et al) wrote in a 2000 study:
“We present new radial velocities for 87 globular clusters around the elliptical galaxy NGC 4472 and combine these with our previously published data to create a data set of velocities for 144 globular clusters around NGC 4472. We utilize this data set to analyze the kinematics of the NGC 4472 globular cluster system. The new data confirm our previous discovery that the metal-poor clusters have significantly higher velocity dispersion than the metal-rich clusters in NGC 4472. The very small angular momentum in the metal-rich population requires efficient angular momentum transport during the formation of this population, which is spatially concentrated and chemically enriched. Such angular momentum transfer can be provided by galaxy mergers, but it has not been achieved in other extant models of elliptical galaxy formation that include dark matter halos. We also calculate the velocity dispersion as a function of radius and show that it is consistent with roughly isotropic orbits for the clusters and the mass distribution of NGC 4472 inferred from X-ray observations of the hot gas around the galaxy.”
However, there was something going on in the mass structure of M49 that astronomers were curious about… Something they couldn’t quite explain. Was it dark matter? As M. Lowenstein wrote in a 1992 study:
“An attempt to constrain the total mass distribution of the well-observed giant elliptical galaxy NGC 4472 is realized by constructing simultaneous equilibrium models for the gas and stars using all available relevant optical and X-ray data. The value of <?>, the emission-weighted average value of kT, derived from the Ginga spectrum, <?> = 1.9 ± 0.2 keV, can be reproduced only in hydrostatic models where nonluminous matter comprises at least 90% of the total mass. However, in general, these mass models are not consistent with observed projected stellar and globular cluster velocity dispersions at moderate radii.”
The next thing you know, nuclear outburst were discovered – the product of interaction with a neighboring galaxy. As B. Biller (et al) indicated in a 2004 study:
“We present the analysis of the Chandra ACIS observations of the giant elliptical galaxy NGC 4472. The Chandra Observatory’s arcsec resolution reveals a number of new features. Specifically: 1) an ~8 arc min streamer or arm (this corresponds to a linear size of 36 kpc) extending southwest of the galaxy and an assymetrical, somewhat truncated streamer to the northeast. Smaller, morphologically similar structures are observed in NGC 4636 and are explained as shocks from a nuclear outburst in the recent past. The larger size of the NGC 4472 streamers requires a correspondingly higher energy input compared to the NGC 4636 case. The asymmetry of the streamers may be due to the interaction of NGC 4472 with the ambient Virgo cluster gas. 2) A string of small, extended sources south of the nucleus. These sources may stem from an interaction of NGC 4472 with the galaxy UGC 7637. 3) X-ray cavities corresponding to radio lobes, where expanding radio plasma has evacuated the X-ray emitting gas. We also present a luminosity function for the X-ray point sources detected within NGC 4472 which we compare to that for other early type galaxies.”
But the very best was yet to come… the discovery of a black hole! According to NASA, the results from NASA’s Chandra X-ray Observatory, combined with new theoretical calculations, provide one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The images on the left show 4 out of the 9 large galaxies included in the Chandra study, each containing a supermassive black hole in its center.
The Chandra images show pairs of huge bubbles, or cavities, in the hot gaseous atmospheres of the galaxies, created in each case by jets produced by a central supermassive black hole. Studying these cavities allows the power output of the jets to be calculated. This sets constraints on the spin of the black holes when combined with theoretical models. The Chandra images were also used to estimate how much fuel is available for each supermassive black hole, using a simple model for the way matter falls towards such an object.
The artist’s impression on the right side of the main graphic shows gas within a “sphere of influence” falling straight inwards towards a black hole before joining a rapidly spinning disk of matter near the center. Most of the material in this disk is swallowed by the black hole, but some of it is swept outwards in jets (colored blue) by quickly spinning magnetic fields close to the black hole.
Previous work with these Chandra data showed that the higher the rate at which matter falls towards these supermassive black holes, the higher their power output is in jets. However, without detailed theory the implications of this result for black hole behavior were unclear. The new study uses these Chandra results combined with leading theoretical models for the production of jets, plus general relativity, to show that the supermassive black holes in these galaxies must be spinning at close to the maximum rate. If black holes are spinning at this limit, material can be dragged around them at close to the speed of light, the speed limit from Einstein’s theory of relativity.
History of Observation:
According to SEDS, M49 was the first member of the Virgo cluster of galaxies to be discovered, by Charles Messier, who cataloged it on February 19th, 1771. As he recorded in his notes at the time:
“Nebula discovered near the star Rho Virginis. One cannot see it without difficulty with an ordinary telescope of 3.5-feet [FL]. The Comet of 1779 was compared by M. Messier with this nebula on April 22 and 23: The comet and the nebula had the same light. M. Messier has reported this nebula on the chart of the route of the comet, which appeared in the volume of the Academy of the same year 1779. Seen again on April 10, 1781.” Eight years later, on April 22, 1779, on the occasion of following the comet of that year, and on the hunt for finding more nebulous objects in competition to other observers, Barnabas Oriani independently rediscovered this ‘nebula’: “Very pale and looking exactly like the comet [1779 Bode, C/1779 A1].”
In his Bedford Catalogue of 1844, Admiral William H. Smyth confused this finding with Messier’s discovery:
“A bright, round, and well-defined nebula, on the Virgin’s left shoulder; exactly on the line between Delta Virginis and Beta Leonis, 8deg, or less than half-way, from the former star. With an eyepiece magnifying 93 times, there are only two telescopic stars in the field, one of which is in the sp and the other in the sf quadrant; and the nebula has a very pearly aspect. This object was discovered by Oriani in 1771 [this is wrong: it was Messier who discovered it that year; Oriani found it only in 1779], and registered by Messier as a “faint nebula, not seen without difficulty,” with a telescope of 3 1/2 feet in length. It is a pity that this active and very assiduous astronomer could not have been furnished with one of the giant telescopes of the present days. Had he possessed efficient means, there can be no doubt of the augmentation of his useful and, in its day, unique Catalogue: a collection of objects for which sidereal astronomy must ever remain indebted to him.” This error was repeated by John Herschel in his General Catalogue of 1864 (GC), who also erroneously assigned this object to “1771 Oriani,” and also found its way into J.L.E. Dreyer’s NGC.
Let’s hope you don’t mistake it with the many other galaxies nearby!
Locating Messier 49:
Galaxy hopping isn’t an easy chore and it takes some practice. Starting looking for M49 about halfway between Epsilon and Beta Virginis. Use Gamma to help triangulate your position. At near magnitude 8, Messier 49 is quite binocular possible and would show under dark sky conditions as a faint, very small egg shaped fog. However, it will not show in a finderscope of a telescope – but the nearby stars will.
Use their patterns to help guide you there. Because galaxies require dark skies, M49 cannot be found under urban conditions or during moonlit nights. In telescopes as small as 70mm, it will appear as a nebulous egg shape and become brighter – but no more resolved to larger instruments. To assist in location, begin with lowest magnification and increase magnification once found to darken background field.
And here are the quick facts to help you get started!
Object Name: Messier 49 Alternative Designations: M49, NGC 4472 Object Type: Elliptical Galaxy Constellation: Virgo Right Ascension: 12 : 29.8 (h:m) Declination: +08 : 00 (deg:m) Distance: 60000 (kly) Visual Brightness: 8.4 (mag) Apparent Dimension: 9×7.5 (arc min)
The Solar Planets are a nice mixed bag of what is possible when it comes to planetary formation. Within the inner Solar System, you have the terrestrial planets – bodies that are composed primarily of silicate minerals and metals. And in the outer Solar System, you have the gas giants and bodies that are composed primarily of ice that lie just beyond in the Trans-Neptunian region.
Of these, the question of which planet is the smallest has been the subject of some controversy. Until recently, the smallest planet was considered to be Pluto. But with the 2006 IAU Resolution that put constraints on what the definition of a planet entails, that status has since passed to Mercury. So in addition to being the closest planet to the Sun, Mercury is also the smallest.
Size and Mass:
With a mean radius of 2440 km, Mercury is the smallest planet in our Solar System, equivalent in size to 0.38 Earths. And given that it has its experiences no flattening at the poles – like Venus, which means it is an almost perfectly spherical body – its radius is the same at the poles as it is the equator.
And while it is smaller than the largest natural satellites in our Solar System – such as Ganymede and Titan – it is more massive. At 3.3011×1023 kg in mass (33 trillion trillion metric tons; 36.3 trillion trillion US tons), it is equivalent to 0.055 Earths in terms of mass.
Density, Volume:
On top of that, Mercury is significantly more dense than bodies its size. In fact, Mercury’s density (at 5.427 g/cm3) is the second highest in the Solar System, only slightly less than Earth’s (5.515 g/cm3). The result of this is a gravitational force of 3.7 m/s2, which is 0.38 times that of Earth (0.38 g). In essence, this means that if you could stand on the surface of Mercury, you would weight 38% as much as you do on Earth.
In terms of volume, Mercury once again becomes a bit diminutive, at least by Earth standards. Basically, Mercury has a volume of 6.083×1010 km³ (60 billion cubic km; 14.39 trillion cubic miles) which works out to 0.056 times the volume of the Earth. In other words, you could fit Mercury inside Earth almost twenty times over.
Structure and Composition:
Like Earth, Venus and Mars, Mercury is a terrestrial planet, meaning that is primarily composed of silicate minerals and metals that are differentiated between a metallic core and a silicate mantle and crust. But in Mercury’s case, the core is oversized compared to the other terrestrial planets, measuring some 1,800 km (approx. 1,118.5 mi) in radius, and therefore occupying 42% of the planet’s volume (compared to Earth’s 17%).
Another interesting feature about Mercury’s core is the fact that it has a higher iron content than that of any other major planet in the Solar System. Several theories have been proposed to explain this, the most widely-accepted being that Mercury was once a larger planet that was struck by a planetesimal that stripped away much of the original crust and mantle, leaving behind the core as a major component.
Beyond the core is a mantle that measures 500 – 700 km (310 – 435 mi) in thickness and is composed primarily of silicate material. The outermost layer is Mercury’s crust, which is composed of silicate material that is believed to be 100 – 300 km thick.
Yes, Mercury is a pretty small customer when compared to its brothers, sisters and distant cousins in the Solar System. However, it is also one of the densest, hottest and most irradiated. So while small, no one would ever accuse this planet of not being really tough!
An angry monster lurks in the shoulder of the Hunter. We’re talking about the red giant star Betelgeuse, also known as Alpha Orionis in the constellation Orion. Recently, the Atacama Large Millimeter Array (ALMA) gave us an amazing view of Betelgeuse, one of the very few stars that is large enough to be resolved as anything more than a point of light.
Located 650 light years distant, Betelgeuse is destined to live fast, and die young. The star is only eight million years old – young as stars go. Consider, for instance, our own Sun, which has been shining as a Main Sequence star for more than 500 times longer at 4.6 billion years – and already, the star is destined to go supernova at anytime in the next few thousand years or so, again, in a cosmic blink of an eye.
An estimated 12 times as massive as Sol, Betelgeuse is perhaps a staggering 6 AU or half a billion miles in diameter; plop it down in the center of our solar system, and the star might extend out past the orbit of Jupiter.
As with many astronomical images, the wow factor comes from knowing just what you’re seeing. The orange blob in the image is the hot roiling chromosphere of Betelgeuse, as viewed via ALMA at sub-millimeter wavelengths. Though massive, the star only appears 50 milliarcseconds across as seen from the Earth. To give you some idea just how small a milliarcsecond is, there’s a thousand of them in an arc second, and 60 arc seconds in an arc minute. The average Full Moon is 30 arc minutes across, or 1.8 million milliarcseconds in apparent diameter. Betelgeuse has one of the largest apparent diameters of any star in our night sky, exceeded only by R Doradus at 57 milliarcseconds.
The apparent diameter of Betelgeuse was first measured by Albert Michelson using the Mount Wilson 100-inch in 1920, who obtained an initial value of 240 million miles in diameter, about half the present accepted value, not a bad first attempt.
You can see hints of an asymmetrical bubble roiling across the surface of Betelgeuse in the ALMA image. Betelgeuse rotates once every 8.4 years. What’s going on under that uneasy surface? Infrared surveys show that the star is enveloped in an enormous bow-shock, a powder-keg of a star that will one day provide the Earth with an amazing light show.
Thankfully, Betelgeuse is well out of the supernova “kill zone” of 25 to 100 light years (depending on the study). Along with Spica at 250 light years distant in the constellation Virgo, both are prime nearby supernovae candidates that will on day give astronomers a chance to study the anatomy of a supernova explosion up close. Riding high to the south in the northern hemisphere nighttime sky in the wintertime, +0.5 magnitude Betelgeuse would most likely flare up to negative magnitudes and would easily be visible in the daytime if it popped off in the Spring or Fall. This time of year in June would be the worst, as Alpha Orionis only lies 15 degrees from the Sun!
Of course, this cosmic spectacle could kick off tomorrow… or thousands of years from now. Maybe, the light of Betelgeuse gone supernova is already on its way now, traversing the 650 light years of open space. Ironically, the last naked eye supernova in our galaxy – Kepler’s Star in the constellation Ophiuchus in 1604 – kicked off just before Galileo first turned his crude telescope towards the heavens in 1610.
Astronomers have known about the Kuiper Belt for decades, and were postulating about its existence long before it was even observed. Since that time, many discoveries have been made in this region of space – ranging from numerous minor planets to the fact that the orbital planes of Kuiper Belt Objects (KBOs) are widely dispersed – that have led to new theoretical models of the formation and evolution of the Solar System.
For instance, while conducting measurements of the mean plane of minor planets and KBOs, a team from the Lunar and Planetary Laboratory (LPL) at The University of Arizona discovered a warp in orbits of certain, highly-distant KBOs. According to their study, this warp could be an indication of a planetary-mass object in the area, one which orbits our Sun even closer than the theoretical “Planet 9“.
The study – “The Curiously Warped Mean Plane of the Kuiper Belt” which is scheduled to be published in the Astronomical Journal – was produced by Kathryn Volk and Renu Malhotra (two astronomers with the LPL). As they stated in their study, the presence of this planet was confirmed by examining the orbits of icy bodies in the very outer reaches of the Solar System.
Whereas most KBOs – which are leftover material from the formation of the Solar System – orbit the Sun close to the mean plane of the Solar System itself, the most distant objects do not. To determine why, the researchers analyzed the tilt angles of the orbital planes of more than 600 KBOs to determine the direction of their precession – i.e. the direction in which these rotating objects experience a change in their orientation.
As Malhotra – a Louise Foucar Marshall Science Research Professor and Regents’ Professor of Planetary Sciences at LPL – illustrated, KBOs operate in a way that is analogous to spinning tops:
“Imagine you have lots and lots of fast-spinning tops, and you give each one a slight nudge. If you then take a snapshot of them, you will find that their spin axes will be at different orientations, but on average, they will be pointing to the local gravitational field of Earth… We expect each of the KBOs’ orbital tilt angle to be at a different orientation, but on average, they will be pointing perpendicular to the plane determined by the Sun and the big planets.”
What they found was that the average plane of these objects was tilted away from the solar plane by about eight degrees, which suggests that a powerful gravitational force in the outer Solar System is tugging on them. “The most likely explanation for our results is that there is some unseen mass,” said Volk in UA News press release. “According to our calculations, something as massive as Mars would be needed to cause the warp that we measured.”
According to their calculations, this Mars-size body would likely orbit the Sun at a distance of roughly 60 AU, and with an orbital inclination that was tilted eight degrees to the average plane of the known planets (i.e. the same tilt as the “warped” KBOs). Within these parameters, a planet of this size would have sufficient gravitational influence to warp the orbital plane of the distant KBOs to within 10 AU on either side of it.
In other words, a Mars-sized planet in the outer Kuiper Belt would be able to influence the orbital inclination of KBOs that are between 50 and 70 AUs from the Sun. This is certainly consistent with what we know about the Kuiper Belt, who’s orbital inclination appears to be consistently flat (i.e. consistent with the rest of the Solar System) past a distance of about 50 AU – but changes between a distance of 50 and 80 AU.
As Volk indicated, there is a possibility that this warping could be the result of a statistical fluke. But in the end, their calculations indicated that this is highly unlikely, and that the behavior of distant KBOs is consistent with the existence of a as-yet-unseen gravitational influence:
“But going further out from 50 to 80 AU, we found that the average plane actually warps away from the invariable plane. There is a range of uncertainties for the measured warp, but there is not more than 1 or 2 percent chance that this warp is merely a statistical fluke of the limited observational sample of KBOs… The observed distant KBOs are concentrated in a ring about 30 AU wide and would feel the gravity of such a planetary mass object over time, so hypothesizing one planetary mass to cause the observed warp is not unreasonable across that distance.”
Another possibility is that another object entirely could have disturbed the plane of the outer Kuiper Belt – for instance, a star passing through the outer Solar System. But as Malhotra explained, this explanation is also a highly unlikely, as any disturbance caused by a passing star would only be temporary and would have manifested itself differently.
“A passing star would draw all the ‘spinning tops’ in one direction,” he said. “Once the star is gone, all the KBOs will go back to precessing around their previous plane. That would have required an extremely close passage at about 100 AU, and the warp would be erased within 10 million years, so we don’t consider this a likely scenario.”
Moreover, the tilt of these objects could not be attributed to the existence of Planet 9, who’s existence has also been suggested based on the extreme eccentricity of certain populations of KBOs. Compared to this Mars-sized planet that is thought to orbit at 60 AUs from the Sun, Planet 9 is predicted to be much more massive (at around 10 Earth masses) and is believed to orbit at a distance of 500 to 700 AU.
Naturally, one has to ask why this planetary-mass body has not been found yet. According to Volk and Malhotra, the reason has to do with the fact that astronomers have not yet searched the entire sky for distant for Solar System objects. Beyond that, there’s also the likely position of the object (within the galactic plane), which is so densely packed with stars that surveys would have a hard time spotting it.
However, with the construction of instruments like the Large Synoptic Survey Telescope (LSST) in Chile nearly complete, opportunities to spot it may be coming sooner other than later. This wide-field survey reflecting telescope, which is run by a consortium that includes the University of Arizona, is expected to provide some of the deepest and widest views of the Universe to date (which will begin in 2020).
In the meantime, and in response to any possible controversies regarding the so-called “Planet Debate”, it is worth noting that this body (if it exists) is currently being referred to as “planetary-mass object”. This is because, by definition, a body needs to have cleared its orbit in order to be called a planet. What’s more, the study does not rule out the possibility that the warp could be the result of more than one planetary mass object in the area.
Therefore, it would premature to state that astronomers – having not yet even confirmed the existence of Planet 9 – are now talking about the existence of a possible “Planet 10”. In the coming years, more news and information will become available, which will hopefully help us put the debate to rest and agree on just how many planets there are out there!
Welcome back to Messier Monday! We continue our tribute to our dear friend, Tammy Plotner, by looking at the open star cluster of Messier 48. Enjoy!
In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects in the night sky. In time, he would come to compile a list of approximately 100 of these objects, with the purpose of making sure that astronomers did not mistake them for comets. However, this list – known as the Messier Catalog – would go on to serve a more important function.
One of these is the open star cluster known as Messier 48 (aka. NGC 2548). Located approximately 1,500 light years from Earth in the direction of the Hydra constellation, Charles Messier actually got the position of this cluster wrong, a mistake which was corrected by Caroline Herschel in 1783 (hence why she is sometimes credited with its discovery). This object is visible to the naked eye on a clear night, providing light conditions are favorable.
Description:
At a modest 300 million years old, this group of about 50 easily visible stars and 80 total members spans an area of space which covers 23 light years. By studying proper motion over time with an astrograph telescope, astronomers have determined it is roughly 1500 light years away from our solar system. But how are determinations like this made? By long term studies and painstaking photographic plates, which address which stars are moving, at what speeds, and in what direction.
As Z. Y. Wu of the Shanghai Astronomical Observatory indicated in a 2001 study:
“Absolute proper motions, their corresponding errors and membership probabilities of 501 stars in the intermediate-age open cluster NGC 2548 region are determined from MAMA measurements of 10 photographic plates. The plates have the maximum epoch difference of 82 years and they were taken with the double astrograph. The average proper motion precision is 1.18 mas yr -1. These proper motions are used to determine the membership probabilities of stars in the region. The number of stars with membership probabilities higher than 0.7 is 165.”
So now we understand how to determine distance, but how do astronomers determine age? As M. Hancock (et al) indicated in their 2008 study:
“We present an empirical assessment of the use of broad-band optical colours as age indicators for unresolved extragalactic clusters and investigate stochastic sampling effects on integrated colours. We use the integrated properties of Galactic open clusters (OCs) as models for unresolved extragalactic clusters. The population synthesis code Starburst99 (SB99) and four optical colours were used to estimate how well we can recover the ages of 62 well-studied Galactic OCs with published ages. We provide a method for estimating the ages of unresolved clusters and for reliably determining the uncertainties in the age estimates. Our results support earlier conclusions based on comparisons to synthetic clusters, namely the (U?B) colour is critical to the estimation of the ages of star-forming regions. We compare the observed optical colours with those obtained from SB99 using the published ages and get good agreement.”
History of Observation:
According the SEDS, this open cluster was discovered by Charles Messier and cataloged by him on February 19, 1771. “Cluster of very small [faint] stars, without nebulosity; this cluster is at a short distance from the three stars that form the beginning of the Unicorn’s tail.”
However, as he did an error in data reduction, he gave a wrong position in his catalog so that the object was missing until Oswald Thomas identified it in 1934, and independently T.F. Morris in 1959. The identification of M48 by Oswald Thomas was confused by some historians, who have claimed erroneously instead that he had identified M47.
As M48 was lost, two independent rediscoveries occurred: First, Johann Elert Bode apparently found it in or before 1782, and second, Caroline Herschel independently rediscovered it in 1783; “March 8th [17]83. At an equal distance from 29 [Zeta] and 30 Monocerotis, making an equilateral triangle with those two stars is a nebulous spot. By the telescope it appears to be a cluster of scattered stars. It is not in Messier catalogue.”
This latter discovery was published by Caroline’s famous brother, William Herschel, who included it in his catalog as H VI.22 on February 1, 1786. “A beautiful Cluster of much compressed stars, considerably rich. 10 or 12′ diameter. Caroline Herschel discovered it in 1783.”
John Herschel would visit Messier 48 often in his NGC cataloging efforts, describing it as, “A superb cluster which fills the whole field; stars of 9th and 10th to the 13th magnitude – and none below, but the whole ground of the sky on which it stands is singularly dotted over with infinitely minute points [stars]. Place that of a bright star, the southern of two which point into the concavity of an arc.”
Once again, Messier’s mistake would be missed when it was re-observed by Admiral Smyth, who described this object as follows:
“A neat but minute double star, in a tolerably compressed cluster on the Unicorn’s flank, and lying 14deg south-east of Procyon. A 9 1/2 [mag], and B 10, both white. This object is in the middle of a splendid group, in a rich splashy region of stragglers, which fills the field of view, and has several small pairs, chiefly of the 9th magnitude. It was discovered by Miss Herschel in 1783, and was classed by WH [William Herschel] in February, 1783.”
Thanks to careful research done by Owen Gingerich in 1960, we now know exactly what happened:
“Although the circumstances of M48 are not so obvious, only one cluster of the size and brightness likely to be recorded by Messier is found in the region near “the three stars that form the beginning of the unicorn’s tail” (Zeta, 27, and 28 Monocerotis). Dr. Morris has pointed out that this cluster, NGC 2548, has the same right ascension as the position given for M48. (Allowance must, of course, be made for precession in comparing Messier’s figures with modern positions). The declination disagrees by about 5 degrees. Since no conspicuous star is located 2 1/2 degrees away in declination, we cannot account for this position by another error in sign. It seems unlikely that the comparison star was misidentified, since the right ascension is probably correct. Messier did not publish the name of the star used, and his original records are apparently no longer extant. Thus, a careful survey of the region described by Messier leads to the conclusion that NGC 2548 is the cluster the French observer intended as his 48th object, for lack of any cluster nearby that fits the description.”
May you find it a bit easier!!
Locating Messier 48:
The diamond-bright stars of winter help make locating M48 a little easier, as it is located just a little less than a hand span southeast of Procyon (Alpha Canis Minor) – or about 3 degrees southeast of Zeta Monocerotis. Like M44 in Cancer, M48 lies within the limits of unaided sight. It is quite large and will show several dozen stars easily to almost all binoculars and be well resolved in telescopes of any aperture. Be sure to use low magnification to see it best! Because Messier 48 is bright, it makes a fine object for urban sky conditions and moonlit nights.
And here are the quick facts on this Messier Object to help you get started:
Object Name: Messier 48 Alternative Designations: M48, NGC 2548 Object Type: Open Galactic Star Cluster Constellation: Hydra Right Ascension: 08 : 13.8 (h:m) Declination: -05 : 48 (deg:m) Distance: 1.5 (kly) Visual Brightness: 5.5 (mag) Apparent Dimension: 54.0 (arc min)
Human space exploration is going to kick into high gear in the coming decades. Within the inner Solar System alone, missions are being planned that will see robotic explorers and crews sent to Near Earth Objects (NEOs), back to the Moon, and even on to Mars. Beyond that, there are even plans to send robotic missions to Europa, Enceladus, Titan, and other “ocean worlds” to look for signs of life.
In all cases, questions natural arise as to what kinds of missions will be most suited to them. In the case of places like Titan (which have low gravity and dense atmospheres) aerial drones are considered the best bet. But when it comes to rocky place like asteroids, the Moon and Mars, the best candidate may be robot snakes, which could find their way through tight spaces and travel underground.
This concept was proposed three years ago by the Foundation for Scientific and Industrial Research (SINTEF), the largest independent research organization in Scandinavia. As part of a project commissioned by the ESA – known as SERPEX – they began studying how robots designed to mimic the movements of snakes could assist astronauts aboard the International Space Station.
But as Aksel Transeth, a senior research scientist at SINTEF, explained in a recent press statement, the possibilities go far beyond the ISS:
“More ambitious applications include potential activities on comets and the Moon. [A] Snake Robot that can assist ISS astronauts in maintaining their equipment is perhaps a solution which can be possible to realize on a more short term.”
Compared to other robotic explorers, the main selling point of a robot snake is that it offers better mobility. For two decades now, NASA has been exploring the Red Planet with robotic rovers, starting with Pathfinder and Sojourner in 1997, Spirit and Opportunity in 2003, and then Curiosity in 2012. And in a little over two years, they will be sending the Mars 2020 rover.
In all cases, these robots get around on six wheels and conduct experiments using instruments on robotic arms. But as the missions teams behind these rovers have learned, mobility can be a challenge. For instance, after five years on the Martian surface, the Spirit rover became stuck in soft soil, where its mission ended. And as successful as these missions have been at conducting research, there are locations that they simply can’t get to.
The SINTEF researchers decided to tackle these issues through biomimicry – i.e. robots that mimic the functions of living creatures. By combining a rover that can navigate over large distances with a snake robot that can crawl along the ground and get into inaccessible places, they believe that future missions would be able to go places and collect samples in ways that other missions could not.
As Transeth explained back in 2013, this pairing would open up all kinds of possibilities. “We are looking at several alternatives to enable a rover and a robot to work together,” he said. “Since the rover has a powerful energy source, it can provide the snake robot with power through a cable extending between the rover and the robot. If the robot had to use its own batteries, it would run out of power and we would lose it.”
In the configuration Transeth and his colleagues are envisioning, the rover would handle the task of traveling over long distances and then be able to dispatch the snake to crawl into tight inaccessible areas. They would be connected by a cable that would provide electricity, communication signals and would be used to pull the snake back in. In this sense, the snake would act like one of the rover’s arms, but would have the ability to travel autonomously.
“We believe that we can design a robot that can hold on, roll itself up and then extend its body in order to reach new contact points,” said Transeth. “Moreover, we believe that it can creep in among equipment components on the ISS and use equipment surfaces to gain traction in order to keep moving forward – much in the same way as real snakes do in the wild.”
On Mars, sample collection is crucial to many space agency’s research. For the Curiosity rover, the presence of hydrated minerals and clays in soil samples confirmed that Mars once had a warmer, wetter climate. And in the future, scientists hope to find biomakers in Martian soil that could indicate the presence (past or present) of biological life. In this respect, a snake robot would prove very useful since it could access underground recesses the rover cannot.
On the Moon, snake robots could be especially useful in helping the ESA establish it’s proposed “Moon Village” – a permanent base for scientific activity, tourism and mining that would also act as a successor to the ISS. The most likely location for this base could be within stable lava tubes or subterranean tunnels, which would provide natural shielding from meteors, solar radiation and cosmic rays.
But before such construction of this base can take place, these tunnels and lava tubes will have to be inspected to ensure that they are safe for human habitation. The ESA has also been committed to studying comets in recent years, which included sending the Rosetta space probe and Philae lander to rendezvous with the comet 67P/Tsjurjumov–Gerasimenko in 2014.
Unfortunately, the lander experienced problems when its system of harpoons (designed to hold it in place) failed to deploy. As a result, it was forced to make another soft landing which left it in a position and location that was not optimal for research. In the future, the ESA could get avoid this by sending a probe to the surface that would deploy the snakes to the surface, which could then burrow into the comet’s interior.
But in the meantime, operations aboard the ISS remain the most realistic and likely application for these robots. Here, astronauts are engaged in ongoing scientific experiments, but are also responsible for maintaining the station and all of its equipment. In this latter respect, the SERPEX project could certainly prove useful, providing them with robot helpers that could help with the regular maintenance.
“It’s possible that a robot could carry out some of the routine inspection and maintenance work,” said Transeth. “The experiments are stacked in the shelf sections, behind which corrosion can occur. To find this out, inspections have to be made. A snake robot could creep behind the sections, carry out an inspection, and perhaps even perform small maintenance tasks.”
Some of the concepts developed by SINTEF so far include the Aiko robot, which was developed to produce a portable system for experimenting with snake robot locomotion. The robot consists of several identical joint modules with two motorized degrees of freedom each. As you can see from the video above, it is propelled by contact forces between the robot and the obstacles in its way.
And then there’s the Wheeko robot, which was developed by SINTEF in conjunction with the Center for Interdisciplinary Research in Space (CIRiS), and the Norwegian Space Center (NSC). Much like Aiko, this experimental robot was designed to study snake robot locomotion across flat surfaces. It consists of ten identical joint modules with two motorized degrees of freedom each.
But of course, developing snake robots that can handle various tasks while working in different environments – ranging from working in micro-gravity aboard the ISS to snaking their way through tunnels on a body with gravity – presents many challenges. And in the coming years, Transeth and his colleagues will be looking for ways to address all of them.
“We want to find out what specifications a snake robot system requires,” he said. “For example, what kind of sensors does the robot need to obtain an adequate understand its surroundings? What technologies are available to help us meet these needs, and what new technologies will have to be developed? What uncertainties are involved in terms to what it may be possible to achieve?”
Already, astronauts aboard the ISS have robotic helpers in the form of the Synchronized Position Hold Engage and Reorient Experimental Satellite (SPHERES). These free flying satellites serve as test beds for a diverse range of hardware and software, all of which is critical for future space missions that use distributed spacecraft architecture.
Soon enough, they will be replaced by a drone called Astrobee – a robotic cube packed with sensors, cameras, computers, and a propulsion system. The brainchild of the Ames Research Center’s Intelligent Robotics Group, this drone will be flying around the ISS and making inspections.
Some of the technology used by Astrobee will be similar to what Transeth and his colleague are hoping to apply to their snake robot system. As such, they hope to learn much from this drone’s time aboard the ISS and incorporate the lessons that are learned from it.
Thanks to recent improvements in space-based and ground-based telescopes, astronomers have been able to probe deeper into the Universe than ever before. By looking billions of years back in time, we are able to test our theories about the history of galactic formation and evolution. Unfortunately, studying the very early Universe is a daunting task, and one that is beyond the capabilities of our current instruments.
But by combining the power of the Hubble Space Telescope with a technique known as gravitational lensing, a team of astronomers made the first discovery of a compact galaxy that stopped making stars just a few billion years after the Big Bang. The discovery of such a galaxy existing so early in the Universe is unprecedented and represents a major challenge to \theories of how massive galaxies form and evolve.
Their findings were reported in a study titled “A Massive, Dead Disk Galaxy in the Early Universe“, which appeared in the June 22 issue of the journal Nature. As is indicated in the study, the team relied on data from Hubble which they combined with gravitational lensing – where a massive cluster of galaxies magnifies and stretches images of more distant galaxies beyond them – to study the distant galaxy known as MACS 2129-1.
What they found was completely unexpected. Given the age of the galaxy – dated to just three billion years after the Big Bang – they expected to see a chaotic ball of stars that were forming due to early galaxies merging. Instead, they noticed that the galaxy, which was disk-shaped (like the Milky Way), was effectively dead – meaning that star formation had already ceased within it.
This was a surprise, seeing as how astronomers did not expect to see this so early in the Universe. What’s more, it was the first time that direct evidence has been obtained that shows how at least some of the earliest “dead” galaxies in the Universe evolved from disk-shaped objects to become the giant elliptical galaxies that we regularly see in the Universe today.
As Sune Toft – a researcher from the Dark Cosmology Center at the Niels Bohr Institute and the lead author on the study – explained, this may force a rethink of how galaxies evolved in the early Universe:
“This new insight may force us to rethink the whole cosmological context of how galaxies burn out early on and evolve into local elliptical-shaped galaxies, Perhaps we have been blind to the fact that early “dead” galaxies could in fact be disks, simply because we haven’t been able to resolve them.”
In previous studies, it was assumed that distant dead galaxies were similar in structure to the local elliptical galaxies they eventually evolved into. Prior to this study, confirmation of this hypothesis was not possible since current instruments are not powerful enough to see that far into space. But by combining the power of gravitational lensing with Hubble’s high resolution, Toft and his team were able to see this dead galaxy clearly.
Combining rotational velocity measurements from the ESO’s Very Large Telescope (VLT) with archival data from the Cluster Lensing And Supernova survey with Hubble (CLASH), they were able to determine the size of the galaxy, mass, and age as well as its (defunct) rate of star formation. Ultimately, they found that the remote galaxy is three times as massive as the Milky Way, though only half its size, and is spinning more than twice as fast.
Why this galaxy stopped forming stars is still unknown, and will require follow-up surveys using more sophisticated instruments. But in the meantime, there are some possible theories. For instance, it could be the result of an active galactic nucleus, where a supermassive black hole at the center of MACS 2129-1 inhibited star formation by heating the galaxy’s gas and expelling it from the galaxy.
Or it may be the result of cold gas being streamed into the galaxy’s center where it was rapidly heated and compressed, thereby preventing it from cooling and forming star-forming clouds. But when it comes to how these types of early, dead galaxies could have led to the elliptical galaxies we see today, Toft and his colleagues think they know the answer. As he explained, it could be through mergers:
“If these galaxies grow through merging with minor companions, and these minor companions come in large numbers and from all sorts of different angles onto the galaxy, this would eventually randomize the orbits of stars in the galaxies. You could also imagine major mergers. This would definitely also destroy the ordered motion of the stars.”
In the coming years, Toft and his team hope to take advantage of the James Webb Telescope (which will be launching in 2018) to search for more early dead galaxies, in the hopes that it can shed light on the unresolved questions this discover raises. And with the ability to probe deeper into space, astronomers anticipate that a great deal more will be revealed about the early Universe.
The discovery of gravitational waves by the LIGO experiment in 2015 sent ripples through the scientific community. Originally predicted by Einstein’s Theory of General Relativity, the confirmation of these waves (and two subsequent detections) solved a long-standing cosmological mystery. In addition to bending the fabric of space-time, it is now known that gravity can also create perturbations that can be detected billions of light-years away.
Seeking to capitalize on these discoveries and conduct new and exciting research into gravitational waves, the European Space Agency (ESA) recently green-lighted the Laser Interferometer Space Antenna (LISA) mission. Consisting of three satellites that will measure gravitational waves directly through laser interferometry, this mission will be the first space-based gravitational wave detector.
This decision was announced yesterday (Tuesday, June 20th) during a meeting of ESA’s Science Program Committee (SPC). It’s implementation is part of the ESA’s Cosmic Vision plan – the current cycle of the agency’s long-term planning for space science missions – which began in 2015 and will be running until 2025. It is also in keeping with the ESA’s desire to study the “invisible universe“, a policy that was adopted in 2013.
To accomplish this, the three satellites that make up the LISA constellation will be deployed into orbit around Earth. Once there, they will assume a triangular formation – spaced 2.5 million km (1.55 million mi) apart – and follow Earth’s orbit around the Sun. Here, isolated from all external influences but Earth’s gravity, they will then connect to each other by laser and begin looking for minute perturbations in the fabric of space-time.
Much like how the LIGO experiment and other gravitational wave detectors work, the LISA mission will rely on laser interferometry. This process consists of a beam of electromagnetic energy (in this case, a laser) being split in two and then recombined to look for patterns of interference. In LISA’s case, two satellites play the role of reflectors while the remaining one is the both source of the lasers and the observer of the laser beam.
When a gravitational wave passes through the triangle established by the three satellites, the lengths of the two laser beams will vary due to the space-time distortions caused by the wave. By comparing the laser beam frequency in the return beam to the frequency of the sent beam, LISA will be able to measure the level of distortion.
These measurements will have to be extremely precise, since the distortions they are looking for affect the fabric of space-time on the most minuscule of levels – a few millionths of a millionth of a meter over a distance of a million kilometers. Luckily, the technology to detect these waves has already been tested by the LISA Pathfinder mission, which deployed in 2015 and will conclude its mission at the end of the month.
In the coming weeks and months, the ESA will be looking over the design of the LISA mission and completing a cost assessment. If all goes as planned, the mission will be proposed for “adoption” before construction begins and it is expected to be launched by 2034. In the same meeting, the ESA also adopted another important mission that will be searching for exoplanets in the coming years.
This mission is known as the PLAnetary Transits and Oscillations of stars, or PLATO, mission. Like Kepler, this mission will monitor stars within a large sections of the sky to look for small dips in their brightness, which are caused by planets passing between the star and the observer (i.e. the transit method). Originally selected in February of 2014, this mission is now moving from the blueprint phase into construction and will launch in 2026.
It’s an exciting time for the European Space Agency. In recent years, it has committed itself to multiple endeavors in the hope of maintaining Europe’s commitment to and continued presence in space. These include studying the “invisible universe”, mounting missions to the Moon and Mars, maintaining a commitment to the International Space Station, and even building a successor to the ISS on the Moon!
It isn’t every day we get a new moon added to the list of solar system satellites. The combined observational power of three observatories — Kepler, Herschel and Hubble — led an astronomical detective tale to its climatic conclusion: distant Kuiper Belt Object 2007 OR10has a tiny moon.
The dwarf planet itself is an enigma wrapped in a mystery: with a long orbit taking it out to a distant aphelion 101 astronomical units (AU) from the Sun, back into the environs of Neptune and Pluto for a perihelion 33 AU from the Sun once every 549 years, 2007 OR10 was discovered by Caltech astronomers Megan Schwamb and Mike Brown in 2007. Nicknamed “Snow White” by Mike Brown for its presumed high albedo, 2007 OR10 was 85 AU distant in the constellation Aquarius at the time of discovery and outbound towards aphelion in 2135. 2007 OR10 is about 1,500 kilometers in diameter, the third largest body known beyond Neptune in our solar system next to Pluto and Eris (nee Xena).
Enter the Kepler Space Telescope, which imaged 2007 OR10 crossing the constellation Aquarius as part of its extended K2 exoplanet survey along the ecliptic plane. Though Kepler looks for transiting exoplanets — worlds around other stars that betray their presence by tiny dips in the brightness of their host as they pass along our line of sight — it also picks up lots of other things that flicker, including variable stars and distant Kuiper Belt Objects. But the slow 45 hour rotational period of 2007 OR10 noted by Kepler immediately grabbed astronomers interest: could an unseen moon be lurking nearby, dragging on the KBO like a car brake?
“Typical rotation periods for Kuiper Belt Objects are under 24 hours,” says Csaba Kiss (Konkoly Observatory) in a recent press release. “We looked in the Hubble archive because the slower rotation period could have been caused by the gravitational tug of a moon.”
And sure enough, digging back through archival data from the Hubble Space Telescope taken during a survey of KBOs, astronomers turned up two images of the faint moon from 2009 and 2010. Infrared observations of 2007 OR10 and its moon by the European Space Agency’s Herschel Space Telescope cinched the discovery, and noted an albedo of 19% (similar to wet sand) for 2007 OR10, much darker than expected. The moon is about 200 miles (320 kilometers) in diameter, in a roughly 9,300 mile (15,000 kilometer) orbit.
The discovery was announced at an AAS meeting just last year, and even now, we’re still puzzling out what little we know about these distant worlds. Just what 2007 OR10 and its moon looks like is any guess. New Horizons gave us our first look at Pluto and Charon two short summers ago in 2015, and will give us a fleeting glimpse of 2014 MU69 on New Year’s Day 2019. All of these objects beg for proper names, especially pre-2019 New Horizons flyby.
This also comes on the heels of two new moons for Jupiter, recently announced last month S/2017 J1 and J2.
What would the skies from the tiny moon look like? Well, ancient 2007 OR10 must loom large in its sky, though Sol would only shine as a bright -15th magnitude star, (a little brighter than a Full Moon) its illumination dimmed down to 1/7,000th the brightness enjoyed here on sunny Earth, which would be lost in its glare.
And looking at the strange elliptical orbits of these outer worldlets, we can only surmise that something else must be out there. Will the discovery of Planet 9 be made before the close of the decade?
One thing’s for sure: this isn’t your parent’s tidy solar system with “Excellent Mothers” serving “Nine Pizzas.”