NASA Announces 10, That’s Right 10! New Planets in Their Star’s Habitable Zone

Artist's impression of rocky exoplanets orbiting Gliese 832, a red dwarf star just 16 light-years from Earth. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

The Kepler space telescope is surely the gift that keeps on giving. After being deployed in 2009, it went on to detect a total of 2,335 confirmed exoplanets and 582 multi-planet systems. Even after two of its reaction wheels failed, it carried on with its K2 mission, which has discovered an additional 520 candidates, 148 of which have been confirmed. And with yet another extension, which will last beyond 2018, it shows no signs of stopping!

In the most recent catalog to be released by the Kepler mission, an additional 219 new planet candidates have been added to its database. More significantly, 10 of these planets were found to be terrestrial (i.e. rocky), of comparable in size to Earth and orbited within their star’s habitable zone – the distance where surface temperatures would be warm enough to support liquid water.

These findings were presented at a news conference on Monday, June 19th, at NASA’s Ames Research Center. Of all the catalogs of Kepler candidates that have been released to date, this one is the most comprehensive and detailed. The eighth in a series of Kepler exoplanet catalogs, this one is based on data that was obtained from the first four years of the mission and is the final catalog that covers the spacecraft’s observations of the Cygnus constellation.

 Credits: NASA/Wendy Stenzel

Since 2014, Kepler has ceased looking at a set starfield in the Cygnus constellation and has been collecting data on its second mission – observing fields on the plane of the ecliptic of the Milky Way Galaxy. With the release of this catalog, there are now 4,034 planet candidates that have been identified by Kepler – of which 2,335 have been verified.

An important aspect of this catalog were the methods that were used for producing it, which were the most sophisticated to date. As with all planets detected by Kepler, the latest finds were all made using the transit method. This consists of monitoring stars for occasional dips in brightness, which is used to confirm the presence of planets transiting between the star and the observer.

To ensure that the detections in this latest catalog were real, the team relied on two approaches to eliminate false positives. This consisted of introducing simulated transits into the dataset to make sure the dips that Kepler detected were consistent with planets. Then, they added false signals to see how often the analysis mistook these for planet transits. From this, they were able to tell which planets were overcounted and which were undercounted.

This led to another exciting find, which was the indication that for all of the smaller exoplanets discovered by Kepler, most fell within one of two distinct groupings. Essentially, half the planets that we know of in the galaxy are either rocky in nature and larger than Earth (i.e. Super-Earth’s), or are gas giants that are comparable in size to Neptune (i.e. smaller gas giants).

This conclusion was reached by a team of researchers who used the W.M. Keck Observatory to measure the sizes of 1,300 stars in the Kepler field of view. From this, they were able to determine the radii of 2,000 Kepler planets with extreme precision, and found that there was a clear division between rocky, Earth-sized planets and gaseous planets smaller than Neptune – with few in between.

As Benjamin Fulton, a doctoral candidate at the University of Hawaii in Manoa and the lead author of this study, explained:

“We like to think of this study as classifying planets in the same way that biologists identify new species of animals. Finding two distinct groups of exoplanets is like discovering mammals and lizards make up distinct branches of a family tree.”

These results are sure to have drastic implications when it comes to knowing the frequency of different types of planets in our galaxy, as well as the study of planet formation. For instance, they noted that most rocky planets discovered by Kepler are up to 75% larger than Earth. And for reasons that are not yet clear, about half of them take on hydrogen and helium, which swells their size to the point that they become almost Neptune-sized.

Histogram shows the number of planets per 100 stars as a function of planet size relative to Earth. Credits: NASA/Ames Research Center/CalTech/University of Hawaii/B.J. Fulton

These findings could similarly have significant implications in the search for habitable planets and extra-terrestrial life. As Mario Perez, Kepler program scientist in the Astrophysics Division of NASA’s Science Mission Directorate, said during the presentation:

“The Kepler data set is unique, as it is the only one containing a population of these near Earth-analogs – planets with roughly the same size and orbit as Earth. Understanding their frequency in the galaxy will help inform the design of future NASA missions to directly image another Earth.”

From this information, scientists will be able to know with a greater degree of certainty just how many “Earth-like” planets exist within our galaxy. The most recent estimates place the number of planets in the Milky Way at about 100 billion. And based on this data, it would seem that many of these are similar in composition to Earth, albeit larger.

Combined with a statistical models of how many of these can be found within a circumstellar habitable zone, we should have a better idea of just how many potentially-life-bearing worlds are out there. If nothing else, this should simplify some of the math in the Drake Equation!

In the meantime, the Kepler space telescope will continue to make observations of nearby star systems in order to learn more about their exoplanets. This includes the TRAPPIST-1 system and its seven Earth-sized, rocky planets. Its a safe bet that before it is finally retired after 2018, it will have some more surprises in store for us!

Further Reading: NASA, NASA Kepler and K2

Messier 47 – the NGC 2422 Open Star Cluster

The open star clusters of Messier 46 and Messier 47, located in the southern skies in the Puppis constellation. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at Orion’s Nebula’s “little brother”, the De Marian’s Nebula!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the open star cluster known as Messier 47 (NGC 2422), which is located in the constellation of Puppis roughly 1,600 light-years from Earth. Located in proximity to Messier 46, this star cluster is estimated to be 78 million years in age. It is also particularly bright, containing about 50 stars and occupying a region that is about the same size as that of the full Moon.

Description:

Spanning across about 12 light years of space, this clump of around 50 stars began their life around 78 million years ago. Now cruising through space some 1600 light years away from Earth, the group continues to distance itself from our solar system at a speed of 9 kilometers per second. For the most part, Messier 47 is a whole lot like the Pleiades star cluster – its brightest member shining just around magnitude 6 and holding a spectral class B2.

But, here you will also find two orange K giants with luminosity of about 200 times that of the Sun. At M47’s center you’ll find binary star, Sigma 1121, with components of magnitude 7.9 both and separated by 7.4 arc seconds. How do we know that M47 is a lot like the Pleiades? Let’s try X-ray sources and the advances of looking at open clusters far more differently than in optical wavelengths. As M. Barbera (et al) said in a 2002 study:

“We present the results of a ROSAT study of NGC 2422, a southern open cluster at a distance of about 470 pc, with an age close to the Pleiades. Source detection was performed on two observations, a 10-ks PSPC and a 40-ks HRI pointing, with a detection algorithm based on wavelet transforms, particularly suited to detecting faint sources in crowded fields. We have detected 78 sources, 13 of which were detected only with the HRI, and 37 detected only with the PSPC. For each source, we have computed the 0.2-2.0 keV X-ray flux. Using optical data from the literature and our own low-dispersion spectroscopic observations, we find candidate optical counterparts for 62 X-ray sources, with more than 80% of these counterparts being late type stars. The number of sources (38 of 62) with high membership probability counterparts is consistent with that expected for Galactic plane observations at our sensitivity. We have computed maximum likelihood X-ray luminosity functions (XLF) for F and early-G type stars with high membership probability. Heavy data censoring due to our limited sensitivity permits determination of only the high-luminosity tails of the XLFs; the distributions are indistinguishable from those of the nearly coeval Pleiades cluster.”

What else might be hiding inside Messier 47? Try new debris disk candidates. As Nadya Gorlova (et al) indicated in a 2004 study:

“Sixty-three members of the 100 Myr old open cluster M47 (NGC 2422) have been detected with the Spitzer Space Telescope. The Be star V 378 Pup shows an excess both in the near-infrared, probably due to free-free emission from the gaseous envelope. Seven other early-type stars show smaller excesses. Among late-type stars, two show large excesses. P1121 is the first known main-sequence star showing an excess comparable to that of Beta Pic, which may indicate the presence of an exceptionally massive debris disk. It is possible that a major planetesimal collision has occurred in this system, consistent with the few hundred Myr timescales estimated for the clearing of the solar system.”

Iof the star cluster Messier 47 taken by the Wide Field Imager camera on the 2.2-metre telescope at ESO’s La Silla Observatory in Chile. Credit: ESO

History of Observation:

Messier 47 was originally discovered before 1654 by Hodierna who described it as:

“[A] Nebulosa between the two dogs”… but it was an observation that wasn’t known about until long after Charles Messier independently recovered it on February 19, 1771. “Cluster of stars, little distant from the preceding; the stars are greater; the middle of the cluster was compared with the same star, 2 Navis. The cluster contains no nebulosity.”

However, it was one of those very rare circumstances when Messier actually made a mistake in his position calculations. Despite this error, the cluster was observed by Caroline Herschel and identified as M47 at least twice in early 1783.

As a consequence of Messier’s position mistake, Sir William Herschel also independently rediscovered it on February 4, 1785, and gave it the number H VIII.38. “A cluster of pretty compressed large [bright] and small [faint] stars. Round. Above [more than] 15′ diameter.” It would be John Herschel, on December 16, 1827, who would be the first to resolve Sigma 1121: “The chief star of a large, pretty rich, straggling cluster. It [the star] is double.”

Atlas Image mosaic obtained of Messier 47 as part of the Two Micron All Sky Survey (2MASS). Credit: UMass/IPAC/Caltech/NASA/NSF

The “Messy” mistake would haunt star catalogs – including both Herschel’s and Dreyer’s for years, until the whole clerical error was cleared up by Owen Gingerich in 1960:

“More explicit reasons for this identification [of M47 with NGC 2422] were given independently in 1959 by T.F. Morris, a member of the Messier Club of the Royal Astronomical Society of Canada’s Montreal Centre. Dr. Morris suggested that an error in signs in the difference between M47 and the comparison star could account for the position. Messier determined the declination of a nebula or cluster by measuring the difference between the object and a comparison star of known declination. The right ascension could be found by recording the times at which the object and the star drifted across a central wire in his telescope’s field; the time interval gives the difference in right ascension. The differences between Messier’s 1770 [actually 1771] position for M47 and his stated comparison star, 2 Navis (now 2 Puppis), if applied with opposite signs, leads to NGC 2422. Clearly, Messier made a mistake in computation!”

May you have Caroline Herschel’s luck finding it!

Locating Messier 47:

There is no simple way of finding Messier 47 in the finderscope of a telescope, but it’s not too hard with binoculars. Begin your hunt a little more than a fist width east/northeast of bright Sirius (Alpha Canis Majoris)… or about 5 degrees (3 finger widths) south of Alpha Monoceros. (It can sometimes by seen with the unaided eye under good conditions as a dim nebulosity.)  There you will find two open clusters that will usually appear in the same average binocular field of view.

Messier 47 location. Image: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

M47 is the westernmost of the pair. It will appear slightly brighter and the stars will be more fewer and more clearly visible. In the finderscope it will appear as if it is resolving, while neighboring eastern M46 will just look like a foggy patch. Because M47’s stars are brighter, it is better suited to less than perfect sky conditions, showing as a compression that begins to resolve in binoculars and will resolves almost fully even a small telescope.

And here are the quick facts on this Messier Object to help you get started:

Object Name: Messier 47
Alternative Designations: M47, NGC 2422
Object Type: Open Galactic Star Cluster
Constellation: Puppis
Right Ascension: 07 : 36.6 (h:m)
Declination: -14 : 30 (deg:m)
Distance: 1.6 (kly)
Visual Brightness: 5.2 (mag)
Apparent Dimension: 30.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Gravitational Astronomy? How Detecting Gravitational Waves Changes Everything

Is This The Future?
Is This The Future?


Just a couple of weeks ago, astronomers from Caltech announced their third detection of gravitational waves from the Laser Interferometer Gravitational-Wave Observatory or LIGO.

As with the previous two detections, astronomers have determined that the waves were generated when two intermediate-mass black holes slammed into each other, sending out ripples of distorted spacetime.

One black hole had 31.2 times the mass of the Sun, while the other had 19.4 solar masses. The two spiraled inward towards each other, until they merged into a single black hole with 48.7 solar masses. And if you do the math, twice the mass of the Sun was converted into gravitational waves as the black holes merged.

On January 4th, 2017, LIGO detected two black holes merging into one. Courtesy Caltech/MIT/LIGO Laboratory

These gravitational waves traveled outward from the colossal collision at the speed of light, stretching and compressing spacetime like a tsunami wave crossing the ocean until they reached Earth, located about 2.9 billion light-years away.

The waves swept past each of the two LIGO facilities, located in different parts of the United States, stretching the length of carefully calibrated laser measurements. And from this, researchers were able to detect the direction, distance and strength of the original merger.

Seriously, if this isn’t one of the coolest things you’ve ever heard, I’m clearly easily impressed.

Now that the third detection has been made, I think it’s safe to say we’re entering a brand new field of gravitational astronomy. In the coming decades, astronomers will use gravitational waves to peer into regions they could never see before.

Being able to perceive gravitational waves is like getting a whole new sense. It’s like having eyes and then suddenly getting the ability to perceive sound.

This whole new science will take decades to unlock, and we’re just getting started.

As Einstein predicted, any mass moving through space generates ripples in spacetime. When you’re just walking along, you’re actually generating tiny ripples. If you can detect these ripples, you can work backwards to figure out what size of mass made the ripples, what direction it was moving, etc.

Even in places that you couldn’t see in any other way. Let me give you a couple of examples.

Black holes, obviously, are the low hanging fruit. When they’re not actively feeding, they’re completely invisible, only detectable by how they gravitational attract objects or bend light from objects passing behind them.

But seen in gravitational waves, they’re like ships moving across the ocean, leaving ripples of distorted spacetime behind them.

With our current capabilities through LIGO, astronomers can only detect the most massive objects moving at a significant portion of the speed of light. A regular black hole merger doesn’t do the trick – there’s not enough mass. Even a supermassive black hole merger isn’t detectable yet because these mergers seem to happen too slowly.

LIGO has already significantly increased the number of black holes with known masses. The observatory has definitively detected two sets of black hole mergers (bright blue). For each event, LIGO determined the individual masses of the black holes before they merged, as well as the mass of the black hole produced by the merger. The black holes shown with a dotted border represent a LIGO candidate event that was too weak to be conclusively claimed as a detection. Credit: LIGO/Caltech/Sonoma State (Aurore Simonnet)

This is why all the detections so far have been intermediate-mass black holes with dozens of times the mass of our Sun. And we can only detect them at the moment that they’re merging together, when they’re generating the most intense gravitational waves.

If we can boost the sensitivity of our gravitational wave detectors, we should be able to spot mergers of less and more massive black holes.

But merging isn’t the only thing they do. Black holes are born when stars with many more times the mass of our Sun collapse in on themselves and explode as supernovae. Some stars, we’ve now learned just implode as black holes, never generating the supernovae, so this process happens entirely hidden from us.

Is there a singularity at the center of a black hole event horizon, or is there something there, some kind of object smaller than a neutron star, but bigger than an infinitely small point? As black holes merge together, we could see beyond the event horizon with gravitational waves, mapping out the invisible region within to get a sense of what’s going on down there.

This illustration shows the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other. In reality, the area near the black holes would appear highly warped, and the gravitational waves would be difficult to see directly. Credit: LIGO/T. Pyle

We want to know about even less massive objects like neutron stars, which can also form from a supernova explosion. These neutron stars can orbit one another and merge generating some of the most powerful explosions in the Universe: gamma ray bursts. But do neutron stars have surface features? Different densities? Could we detect a wobble in the gravitational waves in the last moments before a merger?

And not everything needs to merge. Sensitive gravitational wave detectors could sense binary objects with a large imbalance, like a black hole or neutron star orbiting around a main sequence star. We could detect future mergers by their gravitational waves.

Are gravitational waves a momentary distortion of spacetime, or do they leave some kind of permanent dent on the Universe that we could trace back? Will we see echoes of gravity from gravitational waves reflecting and refracting through the fabric of the cosmos?

Perhaps the greatest challenge will be using gravitational waves to see beyond the Cosmic Microwave Background Radiation. This region shows us the Universe 380,000 years after the Big Bang, when everything was cool enough for light to move freely through the Universe.

But there was mass there, before that moment. Moving, merging mass that would have generated gravitational waves. As we explained in a previous article, astronomers are working to find the imprint of these gravitational waves on the Cosmic Microwave Background, like an echo, or a shadow. Perhaps there’s a deeper Cosmic Gravitational Background Radiation out there, one which will let us see right to the beginning of time, just moments after the Big Bang.

And as always, there will be the surprises. The discoveries in this new field that nobody ever saw coming. The “that’s funny” moments that take researchers down into whole new fields of discovery, and new insights into how the Universe works.

The Laser Interferometer Gravitational-Wave Observatory (LIGO)facility in Livingston, Louisiana. The other facility is located in Hanford, Washington. Image: LIGO
The Laser Interferometer Gravitational-Wave Observatory (LIGO) facility in Livingston, Louisiana. The other facility is located in Hanford, Washington. Image: LIGO

The LIGO project was begun back in 1994, and the first iteration operated from 2002 to 2012 without a single gravitational wave detection. It was clear that the facility wasn’t sensitive enough, so researchers went back and made massive improvements.

In 2008, they started improving the facility, and in 2015, Advanced LIGO came online with much more sensitivity. With the increased capabilities, Advanced LIGO made its first discovery in 2016, and now two more discoveries have been added.

LIGO can currently only detect the general hemisphere of the sky where a gravitational wave was emitted. And so, LIGO’s next improvement will be to add another facility in India, called INDIGO. In addition to improving the sensitivity of LIGO, this will give astronomers three observations of each event, to precisely detect the origin of the gravitational waves. Then visual astronomers could do follow up observations, to map the event to anything in other wavelengths.

Current operating facilities in the global network include the twin LIGO detectors—in Hanford, Washington, and Livingston, Louisiana—and GEO600 in Germany. The Virgo detector in Italy and the Kamioka Gravitational Wave Detector (KAGRA) in Japan are undergoing upgrades and are expected to begin operations in 2016 and 2018, respectively. A sixth observatory is being planned in India. Having more gravitational-wave observatories around the globe helps scientists pin down the locations and sources of gravitational waves coming from space. Image made in February 2016. Credit: Caltech/MIT/LIGO Lab

A European experiment known as Virgo has been operating for a few years as well, agreeing to collaborate with the LIGO team if any detections are made. So far, the Virgo experiment hasn’t found anything, but it’s being upgraded with 10 times the sensitivity, which should be fully operational by 2018.

A Japanese experiment called the Kamioka Gravitational Wave Detector, or KAGRA, will come online in 2018 as well, and be able to contribute to the observations. It should be capable of detecting binary neutron star mergers out to nearly a billion light-years away.

Just with visual astronomy, there are a set of next generation supergravitational wave telescopes in the works, which should come online in the next few decades.

The Europeans are building the Einstein Telescope, which will have detection arms 10 km long, compared to 4 km for LIGO. That’s like, 6 more km.

There’s the European Space Agency’s space-based Laser Interferometer Space Antenna, or LISA, which could launch in 2030. This will consist of a fleet of 3 spacecraft which will maintain a precise distance of 2.5 million km from each other. Compare that to the Earth-based detection distances, and you can see why the future of observations will come from space.

The Laser Interferometer Space Antenna (LISA) consists of three spacecraft orbiting the sun in a triangular configuration. Credit: NASA

And that last idea, looking right back to the beginning of time could be a possibility with the Big Bang Observer mission, which will have a fleet of 12 spacecraft flying in formation. This is still all in the proposal stage, so no concrete date for if or when they’ll actually fly.

Gravitational wave astronomy is one of the most exciting fields of astronomy. This entirely new sense is pushing out our understanding of the cosmos in entirely new directions, allowing us to see regions we could never even imagine exploring before. I can’t wait to see what happens next.

The Corona Borealis Constellation

Alphecca is the brightest star in a C-shaped pattern of stars: the constellation Corona Borealis. It’s near the bright star Arcturus on the sky’s dome. Credit: EarthSky

Welcome to another edition of Constellation Friday! Today, in honor of the late and great Tammy Plotner, we take a look at the “Northern Crown” – the Corona Borealis constellation. Enjoy!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these constellations was Corona Borealis, otherwise known as the “Northern Crown”. This small, faint constellation is the counterpart to Corona Australis – aka. the “Southern Crown”. It is bordered by the constellations of Hercules, Boötes and Serpens Caput, and has gone on to become one of the 88 modern constellations recognized by the International Astronomical Union.

Name and Meaning:

In mythology, Corona Borealis was supposed to represent the crown worn by Ariadne – a present from Dionysus. In Celtic lore, it was known as Caer Arianrhod, or the “Castle of the Silver Circle”, home to the Lady Arianrhod. Oddly enough, it was also known to the Native Americans as well, who referred to it as the “Camp Circle” – a heavenly rendition of their celestial ancestors.

Hercules and Corona Borealis, as depicted in Urania’s Mirror (c.?1825). Credit: Library of Congress

History of Observation:

Corona Borealis was one of the original 48 constellations mentioned in the Almagest by Ptolemy. To the medieval Arab astronomers, the constellation was known as al-Fakkah,  which means “separated” or “broken up” a reference to the resemblance of the constellation’s stars to a loose string of jewels (sometimes portrayed as a broken dish). The name was later Latinized as Alphecca, which was later given to Alpha Coronae Borealis. In 1920, it was adopted by the International Astronomical Union (IAU) as one of the 88 modern constellations.

Notable Objects:

Corona Borealis has no bright stars, 6 main stars and 24 stellar members with Bayer/Flamsteed designations. It’s brightest star – Alpha Coronae Borealis (Alphecca) – is an eclipsing binary located about 75 light years away. The primary components is a white main sequence star that is believed to have a large disc around it (as evidenced by the amount of infrared radiation it emits), and may even have a planetary or proto-planetary system.

The second brightest star, Beta Coronae Borealis (Nusakan), is a spectroscopic binary that is located 114 light years away. It is an Alpha-2 Canum Venaticorum (ACV) type star, a class of variable (named after a star in the constellation Canes Venatici) that are main sequence stars that are chemically peculiar and have strong magnetic fields. Its traditional name, Nusakan, comes from the Arabic an-nasaqan which means “the (two) series.”

Corona Borealis Galaxy Cluster – Abell 2065. Credit: NASA (Wikisky)

Corona Borealis contains few Deep Sky Objects that would be visible to amateur astronomers. The most notable is the Corona Borealis Galaxy Cluster (aka. Abell 2065), a densely-populated cluster located between 1 and 1.5 billion years from Earth. It lies about one degree southwest of Beta Coronae Borealis, in the southwest corner of the constellation. The cluster contains more than 400 galaxies in an area spanning about one degree in the sky.

Corona Borealis also has five stars that have confirmed exoplanets orbiting them, most of which were detected using the radial velocity method. These include the the orange giant Epsilon Coronae Borealis, which has a Super-Jupiter (6.7 Jupiter masses) that orbits it at a distance of 1.3 AU and with a period of 418 days.

There’s also Kappa Coronae Borealis, an orange subgiant that is orbited by both a debris disk and a gas giant. This planet is 2.5 times as massive as Jupiter and orbits the star with a period of 3.4 years. Omicron Coronae Borealis is a clump giant (a type of red giant) with one confirmed exoplanet – a gas giant with 0.83 Jupiter masses that orbits its star every 187 days.

HD 145457 is an orange giant that has one confirmed planet of 2.9 Jupiter masses that takes 176 days to complete an orbit. XO-1 is a yellow main-sequence star located approximately 560 light-years away with a hot Jupiter (roughly the same size as Jupiter) exoplanet. This planet was discovered using the transit method and completes an orbit around its star every three days.

Artist’s concept of “hot Jupiter” orbiting a distant star. Credit: NASA/JPL-Caltech

Finding Corona Borealis:

Corona Borealis is visible at latitudes between +90° and -50° and is best seen at culmination during the month of July. Using binoculars, let’s start with Alpha Coronae Borealis. It’s name is Gemma, or on some star charts – Alphecca. At 75 light years away, we have a nice binary star system whose companion star produces a very faint eclipse every 17.3599 days. Even though Gemma is quite some distance in relative sky terms from Ursa Major, you might be surprised to know that it’s actually part of the Ursa Major moving star group!

Shift your attention to Beta Coronae Borealis. It’s traditional name Nusakan. Again, it looks like one star, but it’s actually two. Nusakan is a double star that’s about 114 light-years and the primary is a variable star that changes every so slightly about every 41 days. The two components are separated by about 0.25 arc seconds – way too close for amateur telescopes – but that’s not all. In 1944 F.J. Neubauer found a small variation in the radial velocity of Nusakan which may lead to a third orbiting body about 10 times the size of Jupiter.

Now have a look at Gamma. Again, we have a binary star that’s just too darn close to split with anything but a large telescope. Struve 1967 is a close binary with an orbit of 91 years. The position angle is 265º and separation about 0.2″. Instead, try focusing your attention on Zeta 1 and Zeta 2. Known as Struve 1965, this pair is a pretty blue white and they are well spaced at 7.03″ and about one stellar magnitude in difference. Nu1 and Nu2 are also very pretty in binoculars. Here we have an optic double star. Although they aren’t physically related, this widely seperated pair of orange giant stars is a pleasing sight in binoculars!

The location of the Corona Borealis Constellation. Credit: IAU/Sky&Telescope magazine

Out of all the singular stars here, you definitely have to take a look at R Coronae Borelis – known as R Cor Bor. Discovered nearly 200 years ago by English amateur, Edward Pigot, R Coronae Borealis is the prototype star of the R Coronae Borealis (RCB) type variables. They are very unusual type of variable star – one where the variability is caused by the formation of a cloud of carbon dust in the line of sight. Near the stellar photosphere, a cloud is formed – dimming the star’s visual brightness by several magnitudes.

Then the cloud dissipates as it moves away from the star. All RCB types are hydrogen-poor, carbon- and helium-rich, and high-luminosity. They are simultaneously eruptive and pulsating. They could fade anywhere from 1 to 9 magnitudes in a month… Or in a hundred days. It’s normally magnitude 6… But it could be magnitude 14. No wonder it has the nickname “Fade-Out star,” or “Reverse Nova”!

Unfortunately, Corona Borealis contains no bright deep sky objects, but it does have one claim to fame – the highly concentrated galaxy cluster, Abell 2065. For observers with larger telescope, many members of this fascinating 1-1.5 billion light years distant group are visible. This rich cluster of galaxies is located slightly more than a degree southwest of Beta Cor Bor and covers about a full degree of sky! Not for the faint of heart… Some of these galaxies list at magnitude 18….

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

This is Kind of Sad. Astronomers Find a Failed Star Orbiting a Dead Star

Artist's impression of a brown dwarf orbiting a white dwarf star. Credit: ESO

Death is simply a part of life, and this is no less the case where stars and other astronomical objects are concerned. Sure, the timelines are much, much greater where these are concerned, but the basic rule is the same. Much like all living organism, stars eventually reach old age and become white dwarfs. And some are not even fortunate enough to be born, instead becoming a class of failed stars known as brown dwarfs.

Despite being familiar with these objects, astronomers were certainly not expecting to find examples of both in a single star system! And yet, according to a new study, that is precisely what an international team of astronomers discovered when looked at WD 1202-024. Using data from the Kepler space telescope, they spotted a binary system consisting of a failed star (a brown dwarf) and the remnant of a star (a white dwarf).

Continue reading “This is Kind of Sad. Astronomers Find a Failed Star Orbiting a Dead Star”

The Sun Probably Lost a Binary Twin Billions of Years Ago

Stardust in the Perseus Molecular Cloud, a star-forming region in the Perseus constellation. Credit & Copyright: Lorand Fenyes

For us Earthlings, life under a single Sun is just the way it is. But with the development of modern astronomy, we’ve become aware of the fact that the Universe is filled with binary and even triple star systems. Hence, if life does exist on planets beyond our Solar System, much of it could be accustomed to growing up under two or even three suns. For centuries, astronomers have wondered why this difference exists and how star systems came to be.

Whereas some astronomers argue that individual stars formed and acquired companions over time, others have suggested that systems began with multiple stars and lost their companions over time. According to a new study by a team from UC Berkeley and the Harvard-Smithsonian Center for Astrophysics (CfA), it appears that the Solar System (and other Sun-like stars) may have started out as binary system billions of years ago.

This study, titled “Embedded Binaries and Their Dense Cores“, was recently accepted for publication in the Monthly Notices of the Royal Astronomical Society. In it, Sarah I. Sadavoy – a radio astronomer from the Max Planck Institute for Astronomy and the CfA – and Steven W. Stahler (a theoretical physicist from UC Berkeley) explain how a radio surveys of a star nursery led them to conclude that most Sun-like stars began as binaries.

The dark molecular cloud, Barnard 68, is a stellar nursery that can only be studied using radio astronomy. Credit: FORS Team, 8.2-meter VLT Antu, ESO

They began by examining the results of the first radio survey of the giant molecular cloud located about 600 light-years from Earth in the Perseus constellation – aka. the Perseus Molecular Cloud. This survey, known as the VLA/ALMA Nascent Disk and Multiplicity (VANDAM) survey, relied the Very Large Array in New Mexico and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to conduct the first survey of the young stars (<4 million years old) in this star-forming region.

For several decades, astronomers have known that stars are born inside “stellar nurseries”, which are the dense cores that exist within immense clouds of dust and cold, molecular hydrogen. These clouds look like holes in the star field when viewed through an optical telescope, thanks to all the dust grains that obscure light coming from the stars forming within them and from background stars.

Radio surveys are the only way to probe these star-forming regions, since the dust grains emit radio transmissions and also do not block them. For years, Stahler has been attempting to get radio astronomers to examine molecular clouds in the hope of gathering information on the formation of young stars inside them. To this end, he approached Sarah Sadavoy – a member of the VANDAM team – and proposed a collaboration.

The two began their work together by conducting new observations of both single and binary stars within the dense core regions of the Perseus cloud. As Sadavoy explained in a Berkeley News press release, the duo were looking for clues as to whether young stars formed as individuals or in pairs:

“The idea that many stars form with a companion has been suggested before, but the question is: how many? Based on our simple model, we say that nearly all stars form with a companion. The Perseus cloud is generally considered a typical low-mass star-forming region, but our model needs to be checked in other clouds.”

Infrared image from the Hubble Space Telescope, showing a bright, fan-shaped object (lower right quadrant) thought to be a binary star that emits light pulses as the two stars interact. Credit: NASA/ESA/ J. Muzerolle (STScI)

Their observations of the Perseus cloud revealed a series of Class 0 and Class I stars – those that are <500,000 old and 500,000 to 1 million years old, respectively – that were surrounded by egg-shaped cocoons. These observations were then combined with the results from VANDAM and other surveys of star forming regions – including the Gould Belt Survey and data gathered by SCUBA-2 instrument on the James Clerk Maxwell Telescope in Hawaii.

From this, they created a census of stars within the Perseus cloud, which included 55 young stars in 24 multiple-star systems (all but five of them binary) and 45 single-star systems. What they observed was that all of the widely separated binary systems – separated by more than 500 AU – were very young systems containing two Class 0 stars  that tended to be aligned with the long axis of their egg-shaped dense cores.

Meanwhile, the slightly older Class I binary stars were closer together (separated by about 200 AU) and did not have the same tendency as far as their alignment was concerned. From this, the study’s authors began mathematically modelling multiple scenarios to explain this distribution, and concluded that all stars with masses comparable to our Sun start off as wide Class 0 binaries. They further concluded that 60% of these split up over time while the rest shrink to form tight binaries.

“As the egg contracts, the densest part of the egg will be toward the middle, and that forms two concentrations of density along the middle axis,” said Stahler. “These centers of higher density at some point collapse in on themselves because of their self-gravity to form Class 0 stars. “Within our picture, single low-mass, sunlike stars are not primordial. They are the result of the breakup of binaries. ”

The two brightest stars of the Centaurus constellation, the binary star system of Alpha Centauri. Credit: Wikipedia Commons/Skatebiker

Findings of this nature have never before been seen or tested. They also imply that each dense core within a stellar nursery (i.e. the egg-shaped cocoons, which typically comprise a few solar masses) converts twice as much material into stars as was previously thought. As Stahler remarked:

“The key here is that no one looked before in a systematic way at the relation of real young stars to the clouds that spawn them. Our work is a step forward in understanding both how binaries form and also the role that binaries play in early stellar evolution. We now believe that most stars, which are quite similar to our own sun, form as binaries. I think we have the strongest evidence to date for such an assertion.”

This new data could also be the start of a new trend, where astronomers rely on radio telescopes to examine dense star-forming regions with the hopes of witnessing more in the way of stellar formations. With the recent upgrades to the VLA and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the ongoing data provided by the SCUBA-2 survey in Hawaii, these studies may be coming sooner other than later.

Another interesting implication of the study has to do with something known as the “Nemesis hypothesis”. In the past, astronomers have conjectured that a companion star named “Nemesis” existed within our Solar System. This star was so-named because the theory held that it was responsible for kicking the asteroid which caused the extinction of the dinosaurs into Earth’s orbit. Alas, all attempts to find Nemesis ended in failure.

Artist’s impression of the binary star system of Sirius, a white dwarf star in orbit around Sirius (a white supergiant). Credit: NASA, ESA and G. Bacon (STScI)

As Steven Stahler indicated, these findings could be interpreted as a new take on the Nemesis theory:

“We are saying, yes, there probably was a Nemesis, a long time ago. We ran a series of statistical models to see if we could account for the relative populations of young single stars and binaries of all separations in the Perseus molecular cloud, and the only model that could reproduce the data was one in which all stars form initially as wide binaries. These systems then either shrink or break apart within a million years.”

So while their results do not point towards a star being around for the extinction of the dinosaurs, it is possible (and even highly plausible) that billions of years ago, the Solar planets orbited around two stars. One can only imagine what implications this could have for the early history of the Solar System and how it might have affected planetary formation. But that will be the subject of future studies, no doubt!

Further Reading: Berkeley News, arXiv

The WOW Signal Probably Didn’t Come from Aliens, or Comets as You Recently Heard

A new study from the Center for Planetary Science claims that a comet may be responsible fr the famous Wow! Signal. Credit: NASA/JPL-Caltech

On August 15th, 1977, astronomers using the Big Ear radio telescope at Ohio State University detected a 72-second radio signal coming from space. This powerful signal, which quickly earned the nickname the “Wow! signal”, appeared to be coming from the direction of the Sagittarius Constellation, and some went so far as to suggest that it might be extra-terrestrial in origin.

Since then, the Wow! signal has been an ongoing source of controversy among SETI researchers and astronomers. While some have maintained that it is evidence of extra-terrestrial intelligence (ETI), others have sought to find a natural explanation for it. And thanks a team of researchers from the Center of Planetary Science (CPS), a natural explanation may finally have been found.

In the past, possible explanations have ranged from asteroids and exoplanets to stars and even signals from Earth – but these have all been ruled out. And then in 2016, the Center for Planetary Science – a Florida-based non-profit scientific and astronomical organization – proposed a hypothesis arguing that a comet and/or its hydrogen cloud could be the cause.

This was based on the fact that the Wow! signal was transmitting at a frequency of 1,420 MHz, which happens to be the same frequency as hydrogen. This explanation was also appealing because the movement of the comet served as a possible explanation for why the signal has not been detected since. To validate this hypothesis, the CPS team reportedly conducted 200 observations using a 10-meter radio telescope.

This telescope, they claim, was equipped with a spectrometer and a custom feed horn designed to collect a radio signal centered at 1420.25 MHz. Between Nov. 27th, 2016, and Feb. 24th, 2017, they monitored the area of space where the Wow! signal was detected, and found that a pair of Solar comets (which had not been discovered in 1977) happened to conform to their observations, and could therefore have been the source.

Spectra obtained from these comets – P/2008 Y2(Gibbs) and 266/P Christensen – indicated that they were emitting a radio frequency that was consistent with the Wow! signal. As Antonio Paris (a professor at the CPS), described in a recent paper that appeared in the Journal of the Washington Academy of Sciences:

“The investigation discovered that comet 266/P Christensen emitted a radio signal at 1420.25 MHz. All radio emissions detected were within 1° (60 arcminutes) of the known celestial coordinates of the comet as it transited the neighborhood of the ‘Wow!’ Signal. During observations of the comet, a series of experiments determined that known celestial sources at 1420 MHz (i.e., pulsars and/or active galactic nuclei) were not within 15° of comet 266/P Christensen.”

The Wow! signal represented as “6EQUJ5”. Credit: Big Ear Radio Observatory/NAAPO

The team also examined three other comets to see if they emitted similar radio signals. These comets – P/2013 EW90 (Tenagra), P/2016 J1-A (PANSTARRS), and 237P/LINEAR – were selected randomly from the JPL Small Bodies database, and were confirmed to emit a radio signal at 1420 MHz. Therefore, the results of this investigation conclude that the 1977 “Wow!” Signal was a natural phenomenon from a Solar System body.

However, not everyone is convinced. In response to the paper, Yvette Cendes – a PhD student with the Dunlap Institute at the University of Toronto – wrote a lengthy response on reddit as to why it fails to properly address the Wow! signal. For starters, she cites how the research team measured the signal strength in terms of decibels:

“I have never, ever, EVER used dB in a paper, nor have I ever read a paper in radio astronomy that measured signal strength in dB (except perhaps in the context of an instrumentation paper describing the systems of a radio telescope, i.e. not science but engineering.) We use a different unit in astronomy for flux density, the Jansky (Jy), where 1 Jy= ?230 dBm/(m2·Hz). (dB is a log scale, and Janskys are not.)”

Another point of criticism is the lack of detail in the paper, which would make reproducing the results very difficult – a central requirement where scientific research is concerned. Specifically, they do not indicate where the 10-meter radio telescope they used came from – i.e. which observatory of facility it belonged to, or even if it belonged to one at all – and are rather vague about its technical specification.

Spectra obtained from an area in the direction of the Sagittarius constellation. Credit: The Center for Planetary Science

Last, but not least, there is the matter of the environment in which the observations took place, which are not specified. This is also very important for radio astronomy, as it raised the issue of interference. As Cendes put it:

“This might sound pedantic, but this is insanely important in radio astronomy, where most signals we ever search for are a tiny fraction of the man-made ones, which can be millions of times brighter than an astronomical signal. (A cell phone on the moon would be one of the brighter radio astronomy sources in the sky, to give you an idea!) Radio Frequency Interference (RFI) is super important for the field, so much that people can spend their careers on it (I’ve written a chapter on my thesis on this myself), and the “radio environment” of an observatory can be worth a paper in itself.”

Beyond these apparent incongruities, Cendes also states that the hypothesis for the experiment was flawed. Essentially, the Big Ear searched for the same signal for a period of 22 years, but found nothing. If the comet hypothesis held true, there should be an explanation as to why no trace of the signal was found until this time. Alas, one is lacking, as far as this most recent study is concerned.

“And now you likely have an idea on why one-off events are so hard to prove in science,” she claims. “But then, this is really the major reason the Wow! signal is unsolved to this day- without a plausible explanation, [without] additional data, we just will never know.”

Though it may be hard to accept, it is entirely possible that we may never know what the Wow! signal truly was – whether it was a one-off event, a naturally-occurring phenomena, or something else entirely. And if the comet hypothesis should prove to be unverifiable, then that is certainly good news for the SETI enthusiasts!

While the elimination of natural explanations doesn’t prove that things like Wow! signal are proof of alien civilizations, it at least indicates that this possibility cannot be ruled out just yet. And for those hopeful that evidence of intelligent life will be someday found, that’s really the best we can hope for… for now!

Further Reading: Journal of the Washington Academy of Sciences, Astronomer Here!

We’d Like One of These For Here on Earth. NASA’s New Mobile Mars Laboratory Concept Rover

The Mars Rover Concept Vehicle, unveiled on June 5th to kick off NASA's Summer of Mars. Credit: NASA/Kim Shiflett

When it comes time to explore Mars with crewed missions, a number of challenges will present themselves. Aside from the dangers that come with long-duration missions to distant bodies, there’s also the issue of the hazards presented by the Martian landscape. It’s desiccated and cold, it gets exposed to a lot of radiation, and its pretty rugged to boot! So astronauts will need a way to get around and conduct research in comfort and safety.

To meet this challenge, NASA created a vehicle that looks like it could give the Batmobile a run for its money! It’s known as the Mars Rover Concept Vehicle (MRCV) a working vehicle/mobile laboratory that was unveiled last week (June 5th, 2017) to kick off NASA’s Summer of Mars. Those who attended the event at the Kennedy Space Center Visitor Complex were fortunate to be the first to see the new Mars explorer vehicle up close.

Running from June 5th to September 4th, 2017, the Summer of Mars showcases the planning, components and technologies that will make NASA’s proposed “Journey to Mars” happen by the 2030s. According to Rebecca Shireman, the assistant manager of public relations for the Kennedy Visitor Complex, the program will also provide a survey of NASA’s studies of the Red Planet.

NASA’s Summer of Mars. which is running until Sept. 4th, will showcase all the planning that will go into NASA’s Journey to Mars. Credit: NASA

As she said in a NASA press statement:

“It’s an all-encompassing effort to review the history of our efforts to explore Mars and look ahead to what is being planned. We hope this will encourage young people to want to learn more about being a part of the effort to go to Mars.”

Astronaut Scott Kelly was also on hand to help unveil the vehicle, which could prove to be the prototype for future off-world transportation.  Kelly also took the occasion to tell audiences about the year he spent aboard the ISS – which lasted from March 27th, 2015, to Feb. 3rd, 2016 – and the vital research he took part in. But in the end, the MRCV was the main attraction of the event.

Measuring 8.5 meters (28 feet) long, 3.65 m (14 feet) wide, and 3.35 m (11 feet) tall, this vehicle is equipped with massive wheels that are designed to handle dunes, rocks and craters – all of which are very common on Mars. It also has a mobile lab attached to the rear, which is capable of being detached for the sake of conducting autonomous research in-situ.

The front end, meanwhile, is designed for scouting, and features life support, navigation and communication systems provided by the Global Positioning System. Rather than relying on gasoline or a Multi-Mission Radioisotope Thermoelectric Generator (MMRTP) like the Curiosity rover, the MRCV relies on an electric motor which is powered by solar panels and a 700-volt battery.

The building of the Mars Rover Concept Vehicle. Credit: Parker Brothers Concepts

While it is not likely to be seeing the red sands of Mars in its lifetime, it is hoped that future generations of astronauts (including those who make the journey in the 2030s) will rely on mobile research labs like this one in order to explore the Martian surface, and use the mobile laboratory to conduct research whenever and wherever its called for.

To the casual observer, this vehicle may look a little Batman-esque. Not surprising, considering that the vehicle was built by the same people who built a replica the Batmobile featured in the Christopher Nolan remakes – Parker Brothers Concepts of Port Canaveral. To build the MRCV, they incorporated input from NASA experts to ensure that it was built with the conditions and resources of Mars in mind.

Between mid-July and August, NASA will be conducting a tour along the eastern seaboard, showcasing the MRCV in several major cities. But before it ships out, people will have a chance to see it at the Kennedy Space Center Visitor Complex for a few more weeks. After the tour is complete, the rover will return to the visitor complex to be part of the new Astronaut Training Experience (ATX) attraction opening this coming fall.

For a full list of the attractions and events taking place at the Kennedy Space Center during the Summer of Mars (or to book tickets online) be sure to check out their website.

The Kennedy Space Center’s Rocket Garden at sunset. Credit: NASA

I do wonder, would it be too much to hope that NASA will start working on a civilian model of this vehicle? I can imagine plenty of people around the world would be willing to pay good money to have something like this in their garage! And who doesn’t like the idea of being able to do a little off-roading followed by some in-situ research?

Further Reading: NASA, Kennedy Space Center

 

Messier 46 – the NGC 2437 Open Star Cluster

The open star clusters of Messier 46 and Messier 47, located in the southern skies in the Puppis constellation. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at Orion’s Nebula’s “little brother”, the De Marian’s Nebula!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the open star cluster known as Messier 46, which is located about 5,500 light years away in the southern Puppis constellation. Located in close proximity to another open cluster (Messier 47), this bright, rich cluster is about 300 million years old and is home to many stars – an estimated 500 – and some impressive nebulae too.

Description:

Crammed into about 30 light years of space, around 150 resolvable stars and up to 500 possible stellar members all took off together on a journey through space some 300 million years ago. At this point in time, they are about 5,400 light years away from our solar system, but they aren’t standing still. They’re pulling away from us at a speed of 41.4 kilometers per second.

The Messier 46 open star cluster. Credit: Jose Luis Martinez

If you notice something just a bit different about one of the stars along the northern edge – then you’ve caught on to one of the most famous features of Messier 46 – its resident planetary nebula. While radial velocities show it probably isn’t a true member of the cluster, it’s still a cool feature!

But, is there more to this cluster than that? You bet. Messier 46 has also been highly studied for its core properties. As Saurabh Sharma (et al) indicated in a 2006 study:

“The study of Galactic open clusters is of great interest in several astrophysical aspects. Young open clusters provide information about current star formation processes and are key objects for clarifying questions of Galactic structure, while observations of old and intermediate-age open clusters play an important role in studying the theories of stellar and Galactic evolution. A detailed analysis of the structure of coronae of open clusters is needed to understand the effects of external environments, like the Galactic tidal field and impulsive encounters with interstellar clouds, etc., on dynamical evolution of open clusters. Extensive studies of the coronal regions of clusters have not been carried out so far mainly because of unavailability of photometry in a large field around open star clusters. The ability to obtain improved photometry of thousands of stars means that large-scale studies of open clusters can be conducted to study the spatial structure and stability of Galactic open clusters. With the addition of photometry of a nearby field region it is possible to construct luminosity functions (LFs) and MFs, which are useful for understanding cluster-formation processes and the theory of star formation in open clusters.”

History of Observation:

Messier 46 is an original discovery of Charles Messier, caught on February 19, 1771, just after he released his first catalog of entries. In his journal, he wrote:

“A cluster of very small stars, between the head of the Great Dog and the two hind feet of the Unicorn, [its position] determined by comparing this cluster with the star 2 Navis, of 6th-magnitude, according to Flamsteed; one cannot see these stars but with a good refractor; the cluster contains a bit of nebulosity.”

Messier 46 and NGC 2437. Credit: NASA

At the time of its discovery, Messier had not published his findings quite as immediately as we do today, so another astronomer also independently discovered this cluster as well… Caroline Herschel. “March 4th, [17]83. 1 deg S following the nebula near the 2nd Navis… a Nebula the figure is done by memory. My Brother observed it with 227 and found it to be, an astonishing number of stars. it is not in Mess. catalogue.”

It would be John Herschel in 1833 who would discover the planetary nebula while cataloging it: “The brightest part of a very fine rich cluster; stars of 10th magnitude; which fills the field. Within the cluster at its northern edge is a fine planetary nebula.”

But, as always, Admiral Symth has a way with words and observations. As he wrote of the object:

“A very delicate double star in a fine cluster, outlying the Galaxy, over Argo’s poop. A 8 1/2 [mag], and B 11, both pale white.A noble though rather loose assemblage of stars from the 8th to the 13th magnitude, more than filling the field, especially in length, with power 93; the most compressed part trending sf [south following, SE] and np [north preceding, NW]. Among the larger [brighter] stars on the northern verge is an extremely faint planetary nebula, which is 39 H. IV. [NGC 2438], and 464 of his son’s Catalogue. This was discovered by Messier in 1769, who considered it as being “rather enveloped in nebulous matter;” this opinion, however, must have arisen from the splendid glow of mass, for judging from his own remark, it is not likely that he perceived the planetary nebula on the north. WH [William Herschel], who observed it in 1786, expressly says, “no connexion with the cluster, which is free from nebulosity.” Such is my own view of attentively gazing; but the impression left on the senses, is that of awful vastness and bewildering distance, – yet including the opinion, that those bodies bespangled the vastness of space, may differ in magnitude and other attributes.”

Pretty amazing considering these gentlemen did all of their observations visually and knew nothing about today’s parallaxes, radial velocities or any other type of thing. May your own observations be as talented…

Locating Messier 46:

There is no simple way of finding Messier 46 in the finderscope of a telescope, but it’s not too hard with binoculars. Begin your hunt a little more than a fistwidth east/northeast of bright Sirius (Alpha Canis Majoris)… or about 5 degrees (3 finger widths) south of Alpha Monoceros. There you will find two open clusters that will usually appear in the same average binocular field of view. M46 is the easternmost of the pair.

Messier 46 location. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

It will appear slightly dimmer and the stars will be more concentrated. In the finderscope it will appear as a slightly foggy patch, while neighboring western M47 will try to begin resolution. Because M46’s stars are fainter, it is better suited to darker sky conditions, showing as a compression in binoculars and will resolve fairly well with even a small telescope. However, you will need at least a 6″ telescope to perceive the planetary nebula.

And here are the quick facts on this Messier Object to help you get started:

Object Name: Messier 46
Alternative Designations: M46, NGC 2437
Object Type: Open Galactic Star Cluster
Constellation: Puppis
Right Ascension: 07 : 41.8 (h:m)
Declination: -14 : 49 (deg:m)
Distance: 5.4 (kly)
Visual Brightness: 6.0 (mag)
Apparent Dimension: 27.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

These 25 Billion Galaxies are Definitely Living in a Simulation

A section of the virtual universe, a billion light years across, showing how dark matter is distributed in space, with dark matter halos the yellow clumps, interconnected by dark filaments. Cosmic void, shown as the white areas, are the lowest density regions in the Universe. Credit: Joachim Stadel, UZH

Understanding the Universe and how it has evolved over the course of billions of years is a rather daunting task. On the one hand, it involves painstakingly looking billions of light years into deep space (and thus, billions of years back in time) to see how its large-scale structure changed over time. Then, massive amounts of computing power are needed to simulate what it should look like (based on known physics) and seeing if they match up.

That is what a team of astrophysicists from the University of Zurich (UZH) did using the “Piz Daint” supercomputer. With this sophisticated machine, they simulated the formation of our entire Universe and produced a catalog of about 25 billion virtual galaxies. This catalog will be launched aboard the ESA’s Euclid mission in 2020, which will spend six years probing the Universe for the sake of investigating dark matter.

The team’s work was detailed in a study that appeared recently in the journal Computational Astrophysics and Cosmology. Led by Douglas Potter, the team spent the past three years developing an optimized code to describe (with unprecedented accuracy) the dynamics of dark matter as well as the formation of large-scale structures in the Universe.

The code, known as PKDGRAV3, was specifically designed to optimally use the available memory and processing power of modern super-computing architectures. After being executed on the “Piz Daint” supercomputer – located at the Swiss National Computing Center (CSCS) – for a period of only 80 hours, it managed to generate a virtual Universe of two trillion macro-particles, from which a catalogue of 25 billion virtual galaxies was extracted.

Intrinsic to their calculations was the way in which dark matter fluid would have evolved under its own gravity, thus leading to the formation of small concentrations known as “dark matter halos”. It is within these halos – a theoretical component that is thought to extend well beyond the visible extent of a galaxy – that galaxies like the Milky Way are believed to have formed.

Naturally, this presented quite the challenge. It required not only a precise calculation of how the structure of dark matter evolves, but also required that they consider how this would influence every other part of the Universe. As Joachim Stadel, a professor with the Center for Theoretical Astrophysics and Cosmology at UZH and a co-author on the paper, told Universe Today via email:

“We simulated 2 trillion such dark matter “pieces”, the largest calculation of this type that has ever been performed. To do this we had to use a computation technique known as the “fast multipole method” and use one of the fastest computers in the world, “Piz Daint” at the Swiss National Supercomputing Centre, which among other things has very fast graphics processing units (GPUs) which allow an enormous speed-up of the floating point calculations needed in the simulation. The dark matter clusters into dark matter “halos” which in turn harbor the galaxies. Our calculation accurately produces the distribution and properties of the dark matter, including the halos, but the galaxies, with all of their properties, must be placed within these halos using a model. This part of the task was performed by our colleagues at Barcelona under the direction of Pablo Fossalba and Francisco Castander. These galaxies then have the expected colors, spatial distribution and the emission lines (important for the spectra observed by Euclid) and can be used to test and calibrate various systematics and random errors within the entire instrument pipeline of Euclid.”

Artist impression of the Euclid probe, which is set to launch in 2020. Credit: ESA

Thanks to the high precision of their calculations, the team was able to turn out a catalog that met the requirements of the European Space Agency’s Euclid mission, whose main objective is to explore the “dark universe”. This kind of research is essential to understanding the Universe on the largest of scales, mainly because the vast majority of the Universe is dark.

Between the 23% of the Universe which is made up of dark matter and the 72% that consists of dark energy, only one-twentieth of the Universe is actually made up of matter that we can see with normal instruments (aka. “luminous” or baryonic matter). Despite being proposed during the 1960s and 1990s respectively, dark matter and dark energy remain two of the greatest cosmological mysteries.

Given that their existence is required in order for our current cosmological models to work, their existence has only ever been inferred through indirect observation. This is precisely what the Euclid mission will do over the course of its six year mission, which will consist of it capturing light from billions of galaxies and measuring it for subtle distortions caused by the presence of mass in the foreground.

Much in the same way that measuring background light can be distorted by the presence of a gravitational field between it and the observer (i.e. a time-honored test for General Relativity), the presence of dark matter will exert a gravitational influence on the light. As Stadel explained, their simulated Universe will play an important role in this Euclid mission – providing a framework that will be used during and after the mission.

Diagram showing the Lambda-CBR universe, from the Big Bang to the the current era. Credit: Alex Mittelmann/Coldcreation

“In order to forecast how well the current components will be able to make a given measurement, a Universe populated with galaxies as close as possible to the real observed Universe must be created,” he said. “This ‘mock’ catalogue of galaxies is what was generated from the simulation and will be now used in this way. However, in the future when Euclid begins taking data, we will also need to use simulations like this to solve the inverse problem. We will then need to be able to take the observed Universe and determine the fundamental parameters of cosmology; a connection which currently can only be made at a sufficient precision by large simulations like the one we have just performed. This is a second important aspect of how such simulation work [and] is central to the Euclid mission.”

From the Euclid data, researchers hope to obtain new information on the nature of dark matter, but also to discover new physics that goes beyond the Standard Model of particle physics – i.e. a modified version of general relativity or a new type of particle. As Stadel explained, the best outcome for the mission would be one in which the results do not conform to expectations.

“While it will certainly make the most accurate measurements of fundamental cosmological parameters (such as the amount of dark matter and energy in the Universe) far more exciting would be to measure something that conflicts or, at the very least, is in tension with the current ‘standard lambda cold dark matter‘ (LCDM) model,” he said. “One of the biggest questions is whether the so called ‘dark energy’ of this model is actually a form of energy, or whether it is more correctly described by a modification to Einstein’s general theory of relativity. While we may just begin to scratch the surface of such questions, they are very important and have the potential to change physics at a very fundamental level.”

In the future, Stadel and his colleagues hope to be running simulations on cosmic evolution that take into account both dark matter and dark energy. Someday, these exotic aspects of nature could form the pillars of a new cosmology, one which reaches beyond the physics of the Standard Model. In the meantime, astrophysicists from around the world will likely be waiting for the first batch of results from the Euclid mission with baited breath.

Euclid is one of several missions that is currently engaged in the hunt for dark matter and the study of how it shaped our Universe. Others include the Alpha Magnetic Spectrometer (AMS-02) experiment aboard the ISS, the ESO’s Kilo Degree Survey (KiDS), and CERN’s Large Hardon Collider. With luck, these experiments will reveal pieces to the cosmological puzzle that have remained elusive for decades.

Further Reading: UZH, Computational Astrophysics and Cosmology