Into The Submillimeter: The Early Universe’s Formation

A new study looked at 52 submillimeter galaxies to help us understand the early ages of our Universe. Image: University of Nottingham/Omar Almaini
A new study looked at 52 submillimeter galaxies to help us understand the early ages of our Universe. Image: University of Nottingham/Omar Almaini

In order to make sense of our Universe, astronomers have to work hard, and they have to push observing technology to the limit. Some of that hard work revolves around what are called sub-millimeter galaxies (SMGs.) SMGs are galaxies that can only be observed in the submillimeter range of the electromagnetic spectrum.

The sub-millimeter range is the waveband between the far-infrared and microwave wavebands. (It’s also called Terahertz radiation.) We’ve only had the capability to observe in the sub-millimeter range for a couple decades. We’ve also increased the angular resolution of telescopes, which helps us discern separate objects.

The submillimter wavelength is also called Terahertz Radiation, and is between Infrared and Microwave Radiation on the spectrum. Image: By Tatoute, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6884073
The submillimter wavelength is also called Terahertz Radiation, and is between Infrared and Microwave Radiation on the spectrum. Image: By Tatoute, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6884073

SMGs themselves are dim in other wavelengths, because they’re obscured by dust. The optical light is blocked by the dust, and absorbed and re-emitted in the sub-millimeter range. In the sub-millimeter, SMGs are highly luminous; trillions of times more luminous than the Sun, in fact.

This is because they are extremely active star-forming regions. SMGs are forming stars at a rate hundreds of times greater than the Milky Way. They are also generally older, more distant galaxies, so they’re red-shifted. Studying them helps us understand galaxy and star formation in the early universe.

ALMA is an array of dishes located at the Atacama Desert in Chile. Image: ALMA (ESO/NAOJ/NRAO), O. Dessibourg

A new study, led by James Simpson of the University of Edinburgh and Durham University, has examined 52 of these galaxies. In the past, it was difficult to know the exact location of SMGs. In this study, the team relied on the power of the Atacama Large Millimeter/submillimeter array (ALMA) to get a much more precise measurement of their location. These 52 galaxies were first identified by the Submillimeter Common-User Bolometer Array (SCUBA-2) in the UKIDSS Ultra Deep Survey.

There are four major results of the study:

  1. 48 of the SMGs are non-lensed, meaning that there is no object of sufficient mass between us and them to distort their light. Of these, the team was able to constrain the red-shift (z) for 35 of them to a median range of z-2.65. When it comes to extra-galactic observations like this, the higher the red-shift, the further away the object is. (For comparison, the highest red-shift object we know of is a galaxy called GN-z11, at z=11.1, which corresponds to about 400 million years after the Big Bang.
  2. Another type of galaxy, the Ultra-Luminous Infrared Galaxy (ULIRG) were thought to be evolved versions of SMGs. But this study showed that SMGs are larger and cooler than ULIRGs, which means that any evolutionary link between the two is unlikely.
  3. The team calculated estimates of dust mass in these galaxies. Their estimates suggest that effectively all of the optical-to-near-infrared light from co-located stars is obscured by dust. They conclude that a common method in astronomy used to characterize astronomical light sources, called Spectral Energy Distribution (SED), may not be reliable when it comes to SMGs.
  4. The fourth result is related to the evolution of galaxies. According to their analysis, it seems unlikely that SMGs can evolve into spiral or lenticular galaxies (a lenticular galaxy is midway between a spiral and an elliptical galaxy.) Rather, it appears that SMGs are the progenitors of elliptical galaxies.
The Pinwheel Galaxy (M101, NGC 5457) is a stunning example of a spiral galaxy. This study determines that there likely is no evolutionary link between sub-millimeter galaxies and spiral galaxies. Image: European Space Agency & NASA. CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=36216331

This study was a pilot study that the team hopes to extend to many other SMGs in the future.

Join Fraser and Friends for a COSMOS Marathon on Monday

Viking Lander
In 1976, two Viking spacecraft landed on Mars. The image is of a model of the Viking lander, along with astronomer and pioneering astrobiologist Carl Sagan. Each lander was equipped with life detection experiments designed to detect life based on its metabolic activities. Credits: NASA/Jet Propulsion Laboratory, Caltech

Click here on Monday, April 24th at 12:00 pm PST to join the livestream.

Remember COSMOS, with Carl Sagan? Of course you do. If you’re fascinated with space and astronomy like me, then the original COSMOS must have had a pivotal impact on your enthusiasm for all things space. And not just space, but all things science. I don’t think it’s an understatement to say that Carl Sagan completely changed the paradigm for what it means to be a science communicator. He revealed the discoveries made by astronomers, and made them accessible to a general audience – and he took a lot of heat for it.

Carl Sagan
Carl Sagan
Unfortunately, Carl Sagan died of cancer in 1996, years too early. He changed the world, but he never got to stick around and see his impact echoing through the Internet as it has today. When I started Universe Today in 1999, it was because the ideas in Pale Blue Dot resonated so deeply with me. I wanted to dedicate my life to understanding and teaching the world about space. And I’m always sad that I never got a chance to meet with him, and tell him how much of an influence he had on my career. Demon Haunted World taught me to be a skeptic.

I’ve had an idea kicking around for years now. I’ve always wanted to watch the entire COSMOS series with a bunch of my space friends, and do a live commentary. Partly to update the science, partly to reflect on Sagan’s influence, and partly to just hang out with a bunch of friends and be silly. But I could never figure out how I could navigate the copyright issues to be able to broadcast something based on COSMOS. And Ann Druyan would kill me.

Well, my friends at Twitch.tv have decided to grant my wish, and they’re going to be running a COSMOS marathon on Monday, April 24, 2017 at 12:00 pm PST. Not only that, but they’re encouraging other livestreamers to co-stream the show, and do exactly what I’ve always wanted to do – provide a commentary.

Carl Sagan
Carl Sagan. 1934-1996
The challenge is that it’s a marathon, which means they’re going to run all 13 episodes back to back. 13 hours of watching COSMOS with my friends, chatting about the show, answering questions, and having fun. I’m up for it. But then, I’m a glutton for punishment.

So, if you’re interested in the raw Twitch stream and all the other cool events that Twitch has planned over the next week, check out their announcement.

And if you want to join me for some or all of the COSMOS marathon, follow fcain on Twitch. I’ll be starting up my livestream when the main feed goes live. And in theory, I’ll be sticking around until the whole thing ends 13 hours later.

Over the course of the livestream, I’ll be joined by many of my space and astronomy journalist friends. Like Dr. Ian O’Neill, Morgan Rehnberg, Nancy Atkinson, Dr. Brian Koberlein, and Dr. Paul Matt Sutter.

Hang out with us, ask questions, chat about your memories and experiences with Carl Sagan’s COSMOS.

I’ll see you on Monday!

First Detailed Image Of Accretion Disk Around A Young Star

An illustration of an accretion disk feeding a central young star, or protostar, and the gaseous jet ejected from the protostar. Credit: Yin-Chih Tsai/ASIAA

According to the Nebula Hypothesis, stars and their systems of planets form from giant clouds of dust and gas. After undergoing gravitational collapse at the center (which creates the star), the remaining matter then forms an accretion disk in orbit around it. Over time, this matter is fed to the star – allowing it to become more massive – and also leads to the creation of a system of planets.

And until this week, the Nebula Hypothesis was just that. Given the distance involved, and the fact that the formation of star systems takes billions of years, being able to witness the process at various stages is quite difficult. But thanks to the efforts of team of researchers from the U.S. and Taiwan, astronomers have now captured the first clear image of a young star surrounded by an accretion disk.

As they explained in their paper – “First Detection of Equatorial Dark Dust Lane in a Protostellar Disk at Submillimeter Wavelength“, which was recently published in the journal Science Advances – these disks are difficult to resolve spatially because of their small sizes. However, by using the Atacama Large Millimeter/submillimeter Array (ALMA) – which offers unprecedented resolution – they were able to resolve a star’s disk and study it in detail.

This artist’s concept shows a young stellar object and the whirling accretion disk surrounding it. NASA/JPL-Caltech

The protostellar system in question is known as HH 212, a young star system (40,000 years old) located in the Orion constellation, roughly 1300 light-years from Earth. This star system is noted for its powerful bipolar jet – i.e. the continuous flows of ionized gas from its poles – which is believed to cause it to accrete matter more efficiently. Due to its age and its position relative to Earth, this protostar system has been a popular target for astronomers in the past.

Basically, the fact that it is still in an early phase of formation (and the fact that it can be viewed edge-on) make the star system ideal for studying the evolution of low-mass stars. However, previous searches had a maximum resolution of 200 AU, which meant astronomers were only able to get a hint of a small dusty disk. This disk appeared as a  flattened envelope, spiraling towards the protostar at the center.

But with ALMA’s resolution (8 AU, or 25 times higher), the research team was not only able to detect the accretion disk, but also able to spatially resolve its dust emissions at submillimeter wavelength. As Chin-Fei Lee – a research fellow at the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taiwan and the lead author on the paper – said in an ALMA press release:

“It is so amazing to see such a detailed structure of a very young accretion disk. For many years, astronomers have been searching for accretion disks in the earliest phase of star formation, to determine their structure, how they are formed, and how the accretion process takes place. Now using the ALMA with its full power of resolution, we not only detect an accretion disk but also resolve it, especially its vertical structure, in detail.”

Jet and disk in the HH 212 protostellar system: (a) A composite image of the jet, produced by combining images from different telescopes. (b) Close-up of the center of the dusty disk at 8 AU resolution. (c) An accretion disk model that can reproduce the observed dust emission in the disk. Credit: ALMA (ESO/NAOJ/NRAO)/Lee et al.

What they observed was a disk that has a radius of roughly 60 astronomical units, which is slightly greater than the distance from the Sun and the outer edge of the Kuiper Belt (50 AU). They also noted that the disk was compromised of silicate minerals, iron and other interstellar matter, and consisted of a prominent equatorial dark layer that was sandwiched between two brighter layers.

This contrast between light and dark sections was due to relatively low temperatures and high optical depth near the central plane of the disk. Meanwhile, the layers above and below the central plane showed greater absorption in both the optical and near-infrared light wavelengths. Because of this layered appearance, the research team described it as looking like “a hamburger”.

These observations are exciting news for the astronomical community, and not just because they are a first. In addition, they also represent a new opportunity to study small disks around the youngest protostars. And with the kinds of high-resolution imaging made possibly by ALMA and other next-generation telescopes, astronomers will be able to place new and stronger constraints on theories pertaining to disk formation.

As Zhi-Yun Li from University of Virginia (the co-author on the study) put it:

“In the earliest phase of star formation, there are theoretical difficulties in producing such a disk, because magnetic fields can slow down the rotation of collapsing material, preventing such a disk from forming around a very young protostar. This new finding implies that the retarding effect of magnetic fields in disk formation may not be as efficient as we thought before.”

A chance to watch stars and planetary systems in their earliest phase of formation and a chance to test our theories about how it’s all done? Definitely not something that happens every day!

And be sure to enjoy this video of the observation, courtesy of ALMA and narrated by Dr. Lee:

Further Reading: Science Advances, ALMA

Are Drylanders The Minority On Habitable Worlds?

Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)
Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)

If we want to send spacecraft to exoplanets to search for life, we better get good at building submarines.

A new study by Dr. Fergus Simpson, of the Institute of Cosmos Sciences at the University of Barcelona, shows that our assumptions about exo-planets may be wrong. We kind of assume that exoplanets will have land masses, even though we don’t know that. Dr. Simpson’s study suggests that we can expect lots of oceans on the habitable worlds that we might discover. In fact, ocean coverage of 90% may be the norm.

At the heart of this study is something called ‘Bayesian Statistics’, or ‘Bayesian Probability.’

Normally, we give something a probability of occurring—in this case a habitable world with land masses—based on our data. And we’re more confident in our prediction if we have more data. So if we find 10 exoplanets, and 7 of them have significant land masses, we think there’s a 70% chance that future exoplanets will have significant land masses. If we find 100 exoplanets, and 70 of them have significant land masses, then we’re even more confident in our 70% prediction.

Is Earth in the range of normal when it comes to habitable planets? Or is it an outlier, with both large land masses, and large oceans? Image: Reto Stöckli, Nazmi El Saleous, and Marit Jentoft-Nilsen, NASA GSFC
Is Earth in the range of normal when it comes to habitable planets? Or is it an outlier, with both large land masses, and large oceans? Image: Reto Stöckli, Nazmi El Saleous, and Marit Jentoft-Nilsen, NASA GSFC

But the problem is, even though we’ve discovered lots of exoplanets, we don’t know if they have land masses or not. We kind of assume they will, even though the masses of those planets is lower than we expect. This is where the Bayesian methods used in this study come in. They replace evidence with logic, sort of.

In Bayesian logic, probability is assigned to something based on the state of our knowledge and on reasonable expectations. In this case, is it reasonable to expect that habitable exoplanets will have significant landmasses in the same way that Earth does? Based on our current knowledge, it isn’t a reasonable expectation.

According to Dr. Simpson, the anthropic principle comes into play here. We just assume that Earth is some kind of standard for habitable worlds. But, as the study shows, that may not be the case.

“Based on the Earth’s ocean coverage of 71%, we find substantial evidence supporting the hypothesis that anthropic selection effects are at work.” – Dr. Fergus Simpson.

In fact, Earth may be a very finely balanced planet, where the amount of water is just right for there to be significant land masses. The size of the oceanic basins is in tune with the amount of water that Earth retains over time, which produces the continents that rise above the seas. Is there any reason to assume that other worlds will be as finely balanced?

Dr. Simpson says no, there isn’t. “A scenario in which the Earth holds less water than most other habitable planets would be consistent with results from simulations, and could help explain why some planets have been found to be a bit less dense than we expected.” says Simpson.

Simpson’s statistical model shows that oceans dominate other habitable worlds, with most of them being 90% water by surface area. In fact, Earth is very close to being a water world. The video shows what would happen to Earth’s continents if the amount of water increased. There is only a very narrow window in which Earth can have both large land masses, and large oceans.

Dr. Simpson suggests that the fine balance between land and water on Earth’s surface could be one reason we evolved here. This is based partly on his model, which shows that land masses will have larger deserts the smaller the oceans are. And deserts are not the most hospitable place for life, and neither are they biodiverse. Also, biodiversity on land is about 25 times greater than biodiversity in oceans, at least on Earth.

Simpson says that the fine balance between land mass and ocean coverage on Earth could be an important reason why we are here, and not somewhere else.

“Our understanding of the development of life may be far from complete, but it is not so dire that we must adhere to the conventional approximation that all habitable planets have an equal chance of hosting intelligent life,” Simpson concludes.

Earth Beams From Between Saturn’s Rings in New Cassini Image

Credit: NASA/JPL-Caltech
NASA’s Cassini spacecraft captured the view on April 13, 2017 at 12:41 a.m. CDT. The probe was 870 million miles (1.4 billion km) away from Earth when the image was taken. The part of Earth facing toward Cassini at the time was the southern Atlantic Ocean. Look closely to the left of Earth; that pinprick of light is the Moon. Credit: NASA/JPL Caltech

Look at us. Packed into a gleaming dot. The entire planet nothing more than a point of light between the icy rings of Saturn. The rings visible here are the A ring (top), followed by the Keeler and Encke gaps, and finally the F ring at bottom. During this observation, Cassini was looking toward the backlit rings with the sun blocked by the disk of Saturn.

Cassini first photographed Earth from Saturn in July 2013. Credit: NASA/JPL-Caltech

Seen from Saturn, Earth and the other inner solar system planets always appear close to the sun much like Venus and Mercury do from Earth. All orbit interior to Saturn; even at maximum elongation, they never get far from the Sun. Early this month, as viewed from Saturn, Earth was near maximum elongation east of the sun, thus an “evening star,” making it an ideal time to take a picture.

In this cropped view of the April 13 image, you can better see the Moon, located a short distance to the left of the Earth. Credit: NASA/JPL-Caltech

Opportunities to capture Earth from Saturn have been rare in the 13 years Cassini has spent orbiting the ringed planet. The only other photo I’m aware of was snapped on July 19, 2013. Each is a precious document with a clear message: we are all tiny, please let’s be kind to one another.

This graphic shows Cassini’s flight path during the final two phases of its mission. The 20 Ring-Grazing Orbits are in gray (completed) and the 22 Grand Finale Orbits are in blue. The final partial orbit is colored orange. The first of the Grand Finale orbits begins on April 22 at 10:46 p.m. CDT. Credit: NASA/JPL-Caltech/Space Science Institute

We’ll soon miss the steady stream of artistic images of Saturn, its rings and moons by the Cassini team. The probe will make its final close flyby of the planet’s largest moon, fog-enshrouded Titan, at 1:08 a.m. April 22, at a distance of just 608 miles (979 km). That night at 10:46 p.m. CDT, Cassini will enter the first of its Grand Finale orbits, a series of 22 weekly dives between the planet and the rings. The first ring plane crossing is slated for midnight CDT April 25-26.


Cassini at Saturn and the Grand Finale

The coming week will be a busy one for Cassini. On each orbit, the probe will draw closer and closer to the butterscotch ball of Saturn until it finally tears across the cloud tops and burns up as a spectacular fireball on September 15. Scientists would rather see the craft burn up in Saturn’s atmosphere instead crash into a moon and possibly contaminate it.

Cassini will become a brilliant fireball streaking over Saturn’s cloud tops on the last day of its operation on September 15. Credit: NASA/JPL-Caltech

After nearly 20 years in space, seven of them spent traveling to the ringed planet, Cassini feels like family. It won’t be easy to say goodbye, but thanks to the probe, Saturn’s family album is bursting with remarkable images that will forever remind us the tenacity of this amazing machine and the vision and work of those who kept it operating for so many years.

Is This The Exoplanet Where Life Will First Be Found?

Using data obtained by Kepler and numerous observatories around the world, an international team has found a Super-Earth that orbits its orange dwarf star in just 14 hours. Credit: M. Weiss/CfA

It is good time to be an exoplanet hunter… or just an exoplanet enthusiast for that matter! Every few weeks, it seems, new discoveries are being announced which present more exciting opportunities for scientific research. But even more exciting is the fact that every new find increases the likelihood of locating a potentially habitable planet (and hence, life) outside of our Solar System.

And with the discovery of LHS 1140b – a super-Earth located approximately 39 light years from Earth – exoplanet hunters think they have found the most likely candidate for habitability to date. Not only does this terrestrial (i.e. rocky) planet orbit within its sun’s habitable zone, but examinations of the planet (using the transit method) have revealed that it appears to have a viable atmosphere.

Credit for the discovery goes to a team of international scientists who used the MEarth-South telescope array – a robotic observatory located on Cerro Tololo in Chile – to spot the planet. This project monitors the brightness of thousands of red dwarf stars with the goal of detecting transiting planets. After consulting data obtained by the array, the team noted characteristic dips in the star’s brightness that indicated that a planet was passing in front of it.

The MEarth-South telescope array, located on Cerro Tololo in Chile, searches for planets by monitoring the brightness of nearby, small stars. Credit: Jonathan Irwin

These findings were then followed up using the High Accuracy Radial velocity Planet Searcher (HARPS) instrument at the ESO’s La Silla Observatory, located on the outskirts of Chile’s Atacama Desert. According to the their study – which appeared in the April 20th, 2017, issue of the journal Nature – the team was able to make estimates of the planet’s age, size, mass, distance from its star, and orbital period.

They estimate that the planet is at least five billion years old – about 500 million years older than Earth. It is also slightly larger than Earth – 1.4 times Earth’s diameter – and is considerably more massive, weighing in at a hefty 6.6 Earth masses. Since they were able to view the planet almost edge-on, the team was also able to determine that it orbits its sun at a distance of about 0.1 AU (one-tenth the distance between Earth and the Sun) with a period of 25 days.

However, since its star is a red dwarf, this proximity places it in the middle of the system’s habitable zone. But what was most exciting was the fact that the team was able to look for evidence of an atmosphere since the planet was passing in front of its star – something that has not been possible with many exoplanets. Because of this, they were able to conduct transmission spectroscopy measurements that revealed the presence of an atmosphere.

As Jason Dittmann – of the Harvard-Smithsonian Center for Astrophysics (CfA) and the lead author of the study – said in a CfA press release:

“This is the most exciting exoplanet I’ve seen in the past decade. We could hardly hope for a better target to perform one of the biggest quests in science — searching for evidence of life beyond Earth.”

This artist’s impression shows the exoplanet LHS 1140b, which orbits a red dwarf star 40 light-years from Earth. Credit: ESO/spaceengine.org

Granted, this exoplanet is not as close as Proxima b, which orbits Proxima Centauri – just 4.243 light years away. And it certainly isn’t as robust a find as the TRAPPIST-1 system, with its seven rocky planets, three of which are located within its habitable zone. But compared to these candidates, the researchers were able to place solid constraints on the planet’s mass and density, not to mention the fact that they were able to observe an atmosphere.

The discovery of an exoplanet that orbits a red dwarf star and has an atmosphere is also encouraging in a wider context. Low-mass red dwarf stars are the most common star in the galaxy, accounting for 75% of stars in our cosmic neighborhood alone. They are also long-lived (up to 10 trillion years), and recent research indicates that they are capable of hosting large numbers of planets.

But given their variability and unstable nature,  astronomers have expressed doubts as to whether or not planet orbiting them could retain their atmospheres for very long. Knowing that a terrestrial planet that orbits a red dwarf, is five billion years old, and still has an atmosphere is therefore a very good sign. But of course, simply knowing there is an atmosphere doesn’t mean that it is conducive to life as we know it.

“Right now we’re just making educated guesses about the content of this planet’s atmosphere,” said Dittman. “Future observations might enable us to detect the atmosphere of a potentially habitable planet for the first time. We plan to search for water, and ultimately molecular oxygen.”

This chart shows the location of the faint red star LHS 1140 in the faint constellation of Cetus (The Sea Monster). This star is orbited by a super-Earth exoplanet called LHS 1140b, which may be best place to look for signs of life beyond the Solar System. The star is too faint to be seen in a small telescope.

Hence, additional studies will be needed before this planet can claim the title of “best place to look for signs of life beyond the Solar System”. To that end, future space-based missions like the James Webb Space Telescope (which will launch in 2018), and ground-based instruments like the Giant Magellan Telescope and the ESO’s Extremely Large Telescope,  will be especially well-suited!

In the meantime, the NASA/ESA Hubble Space Telescope will be conducting observations of the star system in the near future. These observations, it is hoped, will indicate exactly how much high-energy radiation LHS 1140b receives from its sun. This too will go a long way towards determining just how habitable the Super-Earth is.

And be sure to enjoy this video of the LHS 1140 star system, courtesy of the European Southern Observatory and spaceengine.org:

Further Reading: ESO, CfA

The Bubbly Streams Of Titan

The appearing and disappearing feature observed in Titan's Lakes was dubbed "Magic Island". Image: NASA/JPL-Caltech/ASI/Cornell
The appearing and disappearing feature observed in Titan's Lakes was dubbed "Magic Island". Image: NASA/JPL-Caltech/ASI/Cornell

Saturn’s largest Moon, Titan, is the only other world in our Solar System that has stable liquid on its surface. That alone, and the fact that the liquid is composed of methane, ethane, and nitrogen, makes it an object of fascination. The bright spot features that Cassini observed in the methane seas that dot the polar regions only deepen the fascination.

A new paper published in Nature Astronomy digs deeper into a phenomenon in Titan’s seas that has been puzzling scientists. In 2013, Cassini noticed a feature that wasn’t there on previous fly-bys of the same region. In subsequent images, the feature had disappeared again. What could it be?

One explanation is that the feature could be a disappearing island, rising and falling in the liquid. This idea took hold, but was only an initial guess. Adding to the mystery was the doubling in size of these potential islands. Others speculated that they could be waves, the first waves observed anywhere other than on Earth. Binding all of these together was the idea that the appearance and disappearance could be caused by seasonal changes on the moon.

Titan's dense, hydrocarbon rich atmosphere remains a focal point of scientific research. Credit: NASA
Titan’s dense, hydrocarbon rich atmosphere remains a focal point of scientific research. Credit: NASA

Now, scientists at NASA’s Jet Propulsion Laboratory (JPL) think they know what’s behind these so-called ‘disappearing islands,’ and it seems like they are related to seasonal changes.

The study was led by Michael Malaska of JPL. The researchers simulated the frigid conditions on Titan, where the temperature is -179.2 Celsius. At that temperature, some interesting things happen to the nitrogen in Titan’s atmosphere.

On Titan, it rains. But the rain is composed of extremely cold methane. As that methane falls to the surface, it absorbs significant amounts of nitrogen from the atmosphere. The rain hits Titan’s surface and collects in the lakes on the moon’s polar regions.

The researchers manipulated the conditions in their experiments to mirror the changes that occur on Titan. They changed the temperature, the pressure, and the methane/ethane composition. As they did so, they found that nitrogen bubbled out of solution.

“Our experiments showed that when methane-rich liquids mix with ethane-rich ones — for example from a heavy rain, or when runoff from a methane river mixes into an ethane-rich lake — the nitrogen is less able to stay in solution,” said Michael Malaska of JPL. This release of nitrogen is called exsolution. It can occur when the seasons change on Titan, and the seas of methane and ethane experience a slight warming.

“Thanks to this work on nitrogen’s solubility, we’re now confident that bubbles could indeed form in the seas, and in fact may be more abundant than we’d expected,” said Jason Hofgartner of JPL, a co-author of the study who also works on Cassini’s radar team. These nitrogen bubbles would be very reflective, which explains why Cassini was able to see them.

The first-ever images of the surface of a new moon or planet are always exciting. The Huygens probe was launched from Cassini to the surface of Titan, but was not able investigate the lakes and seas on the surface. Image Credit: ESA/NASA/JPL/University of Arizona
The first-ever images of the surface of a new moon or planet are always exciting. The Huygens probe was launched from Cassini to the surface of Titan, but was not able investigate the lakes and seas on the surface. Image Credit: ESA/NASA/JPL/University of Arizona

The seas on Titan may be what’s called a prebiotic environment, where chemical conditions are hospitable to the appearance of life. Some think that the seas may already be home to life, though there’s no evidence of this, and Cassini wasn’t equipped to investigate that premise. Some experiments have shown that an atmosphere like Titan’s could generate complex molecules, and even the building blocks of life.

NASA and others have talked about different ways to explore Titan, including balloons, a drone, splashdown landers, and even a submarine. The submarine idea even received a NASA grant in 2015, to develop the idea further.

So, mystery solved, probably. Titan’s bright spots are neither islands nor waves, but bubbles.

Cassini’s mission will end soon, and it’ll be quite some time before Titan can be investigated further. The question of whether Titan’s seas are hospitable to the formation of life, or whether there may already be life there, will have to wait. What role the nitrogen bubbles play in Titan’s life question will also have to wait.

Here’s a Plan to Send a Spacecraft to Venus, and Make Venus Pay for It

Artist concept of Venus' surface. Credit: NASA)

In 2005, the Future In-Space Operations Working Group (FISOWG) was established with the help of NASA to assess how advances in spaceflight technologies could be used to facilitate missions back to the Moon and beyond. In 2006, the FISO Working Group also established the FISO Telecon Series to conduct outreach to the public and educate them on issues pertaining to spaceflight technology, engineering, and science.

Every week, the Telecon Series holds a seminar where experts are able to share the latest news and developments from their respective fields. On Wednesday, April 19th, in a seminar titled An Air-Breathing Metal-Combustion Power Plant for Venus in situ Exploration“, NASA engineer Michael Paul presented a novel idea where existing technology could be used to make longer-duration missions to Venus. 

To recap the history of Venus exploration, very few probes have ever been able to explore its atmosphere or surface for long. Not surprising, considering that the atmospheric pressure on Venus is 92 times what it is here on Earth at sea level. Not to mention the fact that Venus is also the hottest planet in the Solar System – with average surface temperatures of 737 K (462 °C; 863.6 °F).

Although similar in size and composition to the Earth, Venus has an extremely dense atmosphere with clouds that produce sulfuric acid rain. Credit: NASA

Hence why those few probes that actually explored the atmosphere and surface in detail – like the Soviet-era Venera probes and landers and NASA’s Pioneer Venus multiprobe – were only able to return data for a matter of hours. All other missions to Venus have either taken the form of orbiters or consisted of spacecraft conducting flybys while en route to other destinations.

Having worked in the fields of space exploration and aerospace engineering for 20 years, Michael Paul is well-versed in the challenges of mounting missions to other planets. During his time with the John Hopkins University Applied Physics Laboratory (JHUAPL), he contributed to NASA’s Contour and Stereo missions, and was also instrumental in the launch and early operations of the MESSENGER mission to Mercury.

However, it was a flagship-level study in 2008 – performed collaboratively between JHUAPL and NASA’s Jet Propulsion laboratory (JPL) – that opened his eyes to the need for missions that took advantage of the process known as In-Situ Resource Utilization (ISRU). As he stated during the seminar:

“That year we actually studied a very large mission to Europa which evolved into the current Europa Clipper mission. And we also studied a flagship mission to the Saturn, to Titan specifically. The Titan-Saturn system mission study was a real eye-opener for me in terms what could be done and why we should be doing a lot of more adventurous and more aggressive exploration of in-situ in certain places.”

The flagship mission to Titan was the subject of Paul’s work since joining Penn Sate’s Applied Research Laboratory in 2009. During his time there, he became a NASA Innovative Advanced Concepts Program (NIAC) Fellow for his co-creation of the Titan Submarine. For this mission, which will explore the methane lakes of Titan, Paul helped to develop underwater power systems that would provide energy for planetary landers that can’t see the Sun.

Having returned to JHUAPL, where he is now the Space Mission Formulation Lead, Paul continues to work on in-situ concepts that could enable missions to locations in the Solar System that present a challenge. In-situ exploration, where local resources are relied upon for various purposes, presents numerous advantages over more traditional concepts, not the least of which is cost-effectiveness.

Consider mission that rely on Multi-Mission Radioisotope Thermoelectric Generators (MMRTG) – where radioactive elements like Plutonium-238 are used to generate electricity. Whereas this type of power system – which was used by the Viking 1 and 2 landers (sent to Mars in 1979) and the more recent Curiosity rover – provides unparalleled energy density, the cost of such missions is prohibitive.

What’s more, in-situ missions could also function in places where conventional solar cells would not work. These include not only locations in the outer Solar System (i.e. Europa, Titan and Enceladus) but also places closer to home. The South Pole-Aitken Basin, for example, is a permanently shadowed location on the Moon that NASA and other space agencies are interesting in exploring (and maybe colonizing) due to the abundance of water ice there.

But there’s also the surface Venus, where sunlight is in short supply because of the planet’s dense atmosphere. As Paul explained in the course of the seminar:

“What can you do with other power systems in places where the Sun just doesn’t shine? Okay, so you want to get to the surface of Venus and last more than a couple of hours. And I think that in the last 10 or 15 years, all the missions that [were proposed] to the surface of Venus pretty much had a two-hour timeline. And those were all proposed, none of those missions were actually flown. And that’s in line with the 2 hours that the Russian landers survived when they got there, to the surface of Venus.”

Diagram of a Sterling Engine, part of proposed mission to Europe (“Fire on Europa”). Credit: lpi.usra.edu

The solution to this problem, as Paul sees it, is to employ a Stored-Chemical Energy and Power System (SCEPS), also known as a Sterling engine. This proven technology relies on stored chemical energy to generate electricity, and is typically used in underwater systems. But repurposed for Venus, it could provide a lander mission with a considerable amount of time (compared to previous Venus missions) with which to conduct surface studies.

For the power system Paul and his colleagues are envisioning, the Sterling engine would take solid-metal lithium (or possibly solid iodine), and then liquefy it with a pyrotechnic charge. This resulting liquid would then be fed into another chamber where it would combined with an oxidant. This would produce heat and combustion, which would then be used to boil water, spin turbines, and generate electricity.

Such a system is typically closed and produces no exhaust, which makes it very useful for underwater systems that cannot compromise their buoyancy. On Venus, such a system would allow for electrical production without short-lived batteries, an expensive nuclear fuel cell, and could function in a low solar-energy environment.

An added benefit for such a craft operating on Venus is that the oxidizer would be provided locally, thus removing the need for an heavy component. By simply letting in outside CO2 – which Venus’ atmosphere has in abundance – and combining with the system’s liquified lithium (or iodine), the SCEPS system could provide sustained energy for a period of days.

The Advanced Lithium Ion Venus Explorer (ALIVE), derived from the COMPASS final report (2016). Credit: Oleson, Steven R., and Michael Paul.

With the help of NASA’s Innovative Advanced Concepts (NIAC) and funding from the Hot Operating Temperature Technology (HOTTech) program – which is overseen by NASA’s Planetary Science DivisionPaul and his colleagues were able to test their concept, and found that it was capable of producing sustained heat that was both controllable and tunable.

Further help came from the Glenn Research Center’s COMPASS lab, were engineers from multiple disciplines  performs integrated vehicle systems analyses. From all of this, a mission concept known as the Advanced Lithium Venus Explorer (ALIVE) was developed. With the help of Steven Oleson – the head of GRC’s COMPASS lab – Paul and his team envision a mission where a lander would reach the surface of Venus and study it for 5 to 10 days.

All told, that’s an operational window of between 120 and 240 hours – in other words, 60 to 120 times as long as previous missions. However, how much such a mission would cost remains to be seen. According to Paul, that question became the basis of an ongoing debate between himself and Oleson, who disagreed as to whether it would be part of the Discovery Program or the New Frontiers Program.

As Paul explained, missions belonging to the former were recently capped at the $450 to $500  million level while the latter are capped at $850 million. “I believe that if you did this right, you could get it into a Discovery mission,” he said. “Here at APL, I’ve seen really complicated ideas fit inside a Discovery cost cap. And I believe that the way we crafted this mission, you could do this for a Discovery mission. And it would be really exciting to get that done.”

Artist’s impression of the surface of Venus. Credit: ESA/AOES

From a purely technological standpoint, this not a new idea. But in terms of space exploration, it has never been done before. Granted, there are still many tests which would need to be conducted before any a mission to Venus can be planned. In particular, there are the byproducts created by combusting lithium and CO2 under Venus-like conditions, which already produced some unexpected results during tests.

In addition, there is the problem of nitrogen gas (N2) – also present in Venus’ atmosphere – building up in the system, which would need to be vented in order to prevent a blowout. But the advantages of such a system are evident, and Paul and his colleagues are eager to take additional steps to develop it. This summer, they will be doing another test of a lithium SCEPS under the watchful eye of NAIC.

By this time next year, they hope to have completed their analysis and their design for the system, and begin building one which they hope to test in a controlled temperature environment. This will be the first step in what Paul hopes will be a three-year period of testing and development.

“The first year we’re basically going to do a lot of number crunching to make sure we got it right,” he said. “The second year we’re going to built it, and test it at higher temperatures than room temperature – but not the high temperatures of Venus! And in the third year, we’re going to do the high temperature test.”

Ultimately, the concept could be made to function in any number of high and low temperature conditions, allowing for cost-effective long-duration missions in all kinds of extreme environments. These would include Titan, Europa and Enceladus, but also Venus, the Moon, and perhaps the permanently-shadowed regions on Mercury’s poles as well.

Space exploration is always a challenge. Whenever ideas come along that make it possible to peak into more environments, and on a budget to boot, it is time to start researching and developing them!

To learn more about the results of the SCEPS tests, and for more information on the proposed systems, check out the slideshow and audio recording of this week’s FISO seminar. You can also check out the presentation titled “A Combustion-Driven Power Plant For Venus Surface Exploration“, which Paul and Oleson made during the 48th Lunar and Planetary Conference (which ran from March 20th-24th, 2017).

Further Reading: FISO

2014 JO25 Flies By Earth — See It Tonight

Credit; NASA/JPL-Caltech/GSSR
This composite of 30 images of asteroid 2014 JO25 was generated with radar data collected using NASA’s Goldstone Solar System Radar in California’s Mojave Desert on Tuesday April 18. Credit: NASA/JPL-Caltech/GSSR

Asteroid 2014 JO25, discovered in 2014 by the Catalina Sky Survey in Arizona, was in the spotlight today (April 19) when it flew by Earth at just four times the distance of the Moon. Today’s encounter is the closest the object has come to the Earth in 400 years and will be its closest approach for at least the next 500 years.

Lots of asteroids zip by our planet, and new ones are discovered every week. What makes 2014 JO25 different it’s one of nearly 1,800 PHAs (Potentially Hazardous Asteroids) that are big enough and occasionally pass close enough to Earth to be of concern. PHAs have diameters of at least 100-150 meters (330-490 feet) and pass less than 0.05 a.u (7.5 million km / 4.6 million miles) from our planet. Good thing for earthlings, no known PHA is predicted to impact Earth for at least the next 100 years.

Most of these Earth-approachers are on the small side, only a few to a few dozen meters (yards) across. 2014 JO25 was originally estimated at ~2,000 feet wide, but thanks to radar observations made the past couple days, we now know it’s nearly twice that size. Radar images of asteroid were made early this morning with NASA’s 230-foot (70-meter) radio antenna at Goldstone Deep Space Communications Complex in California. They reveal a peanut-shaped asteroid that rotates about once every 5 hours and show details as small as 25 feet.


NASA radar images and animation of asteroid 2015 JO25

The larger of the two lobes is about 2,000 feet (620 meters) across, making the total length closer to 4,000 feet. That’s similar in size (though not as long) as the Rock of Gibraltar that stands at the southwestern tip of Europe at the tip of the Iberian Peninsula.

“The asteroid has a contact binary structure — two lobes connected by a neck-like region,” said Shantanu Naidu, a scientist from NASA’s Jet Propulsion Laboratory in Pasadena, California, who led the Goldstone observations. “The images show flat facets, concavities and angular topography.” Contact binaries form when two separate asteroids come close enough together to touch and meld as one.

The Goldstone dish dish, based in the Mojave Desert near Barstow, Cal. is used for radar mapping of planets, comets, asteroids and the Moon. Credit: NASA

Radar observations of the asteroid have also been underway at the National Science Foundation’s Arecibo Observatory in Puerto Rico with more observations coming today through the 21st which may show even finer details. The technique of pinging asteroids with radio waves and eking out information based on the returning echoes has been used to observe hundreds of asteroids.

When these relics from the early solar system pass relatively close to Earth, astronomers can glean their sizes, shapes, rotation, surface features, and roughness, as well as determine their orbits with precision.

Because of 2014 JO25’s relatively large size and proximity, it’s bright enough to spot in a small telescope this evening. It will shine around magnitude +10.9 from North America tonight as it travels south-southwest across the dim constellation Coma Berenices behind the tail of Leo the Lion. A good map and 3-inch or larger telescope should show it.

Use the maps at this link to help you find and track the asteroid tonight. The key to spotting it is to allow time to identify and get familiar with the star field the asteroid will pass through 10 to 15 minutes in advance — then lay in wait for the moving object. Don’t be surprised if 2014 JO25 deviates a little from the predicted path depending on your location and late changes to its orbit, so keep watch not only on the path but around it, too. Good luck!

The Orbit of Neptune. How Long is a Year on Neptune?

Neptune from Voyager 2. Image credit: NASA/JPL

Here on Earth, a year lasts roughly 365.25 days, each of which lasts 24 hours long. During the course of a single year, our planet goes through some rather pronounced seasonal changes. This is the product of our orbital period, our rotational period, and our axial tilt. And when it comes to the other planets in our Solar System, much the same is true.

Consider Neptune. As the eight and farthest planet from the Sun, Neptune has an extremely wide orbit and a comparatively slow orbital velocity. As a result, a year on Neptune is very long, lasting the equivalent of almost 165 Earth years. Combined with its extreme axial tilt, this also means that Neptune experiences some rather extreme seasonal changes.

Orbital Period:

Neptune orbits our Sun at an average distance (semi-major axis) of 4,504.45 million km (2,798.656 million mi; 30.11 AU). Because of its orbital eccentricity (0.009456), this distance varies somewhat, ranging from 4,460 million km (2,771 million mi; 29.81 AU) at its closest (perihelion) to 4,540 million km (2,821 million mi; 30.33 AU) at its farthest (aphelion).

The orbit of Neptune and the other outer Solar planets, as well as the ice-rich Kuiper Belt that lies just beyond it. Credit: NASA

With an average orbital speed of 5.43 km/s, it takes Neptune 164.8 Earth years (60,182 Earth days) to complete a single orbital period. This means, in effect, that a year on Neptune lasts as long as about 165 years here on Earth. However, given its rotational period of 0.6713 Earth days (16 hours 6 minutes 36 seconds), a year on Neptune works out to 89,666 Neptunian solar days.

Given that Neptune was discovered in 1846, humanity has only known about its existence for 171 years (at the time of this article’s writing). That means that since its discovery, the planet has only completed a single orbital period (which ended in 2010) and is only seven years into its second. This orbital period will be complete by 2179.

Orbital Resonance:

Because of its location in the outer Solar System, Neptune’s orbit has a profound impact on the neighboring Kuiper Belt. This region, which is similar (but significantly larger) than the Main Asteroid Belt, consists of many small icy worlds and objects that extends from Neptune’s orbit (at 30 AU) to a distance of about 55 AU from the Sun.

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

So much as Jupiter’s gravity has dominated the Asteroid Belt, affecting its structure and occasionally kicking asteroids and planetoids into the inner Solar System, Neptune’s gravity dominates the Kuiper Belt. This has led to the creation of gaps in the belt, empty regions where objects have achieved an orbital resonance with Neptune.

Within these gaps, objects have a 1:2, 2:3 or 3:4 resonance with Neptune, meaning they complete one orbit of the Sun for every two completed by Neptune, two for every three, or three for every four. The over 200 known objects that exist in the 2:3 resonance (the most populous) are known as plutinos, since Pluto is the largest of them.

Although Pluto crosses Neptune’s orbit on a regular basis, their 2:3 orbital resonance ensures they can never collide. On occasion, Neptune’s gravity also causes icy bodies to be kicked out of the Kuiper Belt. Many of these then travel to the Inner Solar System, where they become comets with extremely long orbital periods.

Neptune’s largest satellite, Triton, is believed to have once been a Kuiper Belt Object (KBO) – and Trans-Neptunian Object (TNO) – that was captured by Neptune’s gravity. This is evidenced by its retrograde motion, meaning it orbits the planet in the opposite direction as its other satellites. It also has a number of Trojan Objects occupying its L4 and L5 Lagrange points. These “Neptune Trojans” can be said to be in a stable 1:1 orbital resonance with Neptune.

Seasonal Change:

Much like the other planets of the Solar System, Neptune’s axis is tilted towards the Sun’s ecliptic. In Neptune’s case, it is tilted 28.32° relative to its orbit (whereas Earth is tilted at 23.5°). Because of this, Neptune undergoes seasonal change during the course of a year because one of its hemispheres will be receiving more sunlight than the other. But in Neptune’s case, a single season lasts a whopping 40 years, making it very hard to witness a full cycle.

While much of the heat that powers Neptune’s atmosphere comes from an internal source (which is currently unknown), a study conducted by researchers from Wisconsin-Madison University and NASA’s Jet Propulsion Laboratory revealed that seasonal change is also driven by solar radiation. This consisted of examining images of Neptune taken by the Hubble Space Telescope between 1996 and 2002.

These images revealed that Neptune’s massive southern cloud bands were becoming steadily wider and brighter over the six year period – which coincided with the southern hemisphere beginning its 40-year summer. This growing cloud cover was attributed to increased solar heating, as it appeared to be concentrated in the southern hemisphere and was rather limited at the equator.

Images taken by Hubble, showing seasonal change in its southern hemisphere. Credit: NASA, L. Sromovsky, and P. Fry (University of Wisconsin-Madison)

Neptune remains a planet of mystery in many ways. And yet, ongoing observations of the planet have revealed some familiar and comforting patterns. For instance, while it’s composition is vastly different and its orbit puts it much farther away from the Sun than Earth, its axial tilt and orbital period still result in its hemispheres experiencing seasonal changes.

It’s good to know that no matter how far we venture out into the Solar System, and no matter how different things may seem, there are still some things that stay the same!

We have written many articles about how long year is on the Solar planets here at Universe Today. Here’s The Orbit of the Planets. How Long Is A Year On The Other Planets?, The Orbit of Earth. How Long is a Year on Earth?, The Orbit of Mercury. How Long is a Year on Mercury?, The Orbit of Venus. How Long is a Year on Venus?,  The Orbit of Mars. How Long is a Year on Mars?, The Orbit of Jupiter. How Long is a Year on Jupiter?, The Orbit of Saturn. How Long is a Year on Saturn?, The Orbit of Uranus. How Long is a Year on Uranus?, The Orbit of Pluto. How Long is a Year on Pluto?

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.

Sources: