The Magellenic Clouds Stay Connected By A String Of Stars

This image shows the two "bridges" that connect the Large and Small Magellanic Clouds. The white line traces the bridge of stars that flows between the two dwarf galaxies, and the blue line shows the gas. Image: V. Belokurov, D. Erkal and A. Mellinger
This image shows the two "bridges" that connect the Large and Small Magellanic Clouds. The white line traces the bridge of stars that flows between the two dwarf galaxies, and the blue line shows the gas. Image: V. Belokurov, D. Erkal and A. Mellinger

Astronomers have finally observed something that was predicted but never seen: a stream of stars connecting the two Magellanic Clouds. In doing so, they began to unravel the mystery surrounding the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). And that required the extraordinary power of the European Space Agency’s (ESA) Gaia Observatory to do it.

The Large and Small Magellanic Clouds (LMC and SMC) are dwarf galaxies to the Milky Way. The team of astronomers, led by a group at the University of Cambridge, focused on the clouds and on one particular type of very old star: RR Lyrae. RR Lyrae stars are pulsating stars that have been around since the early days of the Clouds. The Clouds have been difficult to study because they sprawl widely, but Gaia’s unique all-sky view has made this easier.

Small and Large Magellanic Clouds over Paranal Observatory Credit: ESO/J. Colosimo

The Mystery: Mass

The Magellanic Clouds are a bit of a mystery. Astronomers want to know if our conventional theory of galaxy formation applies to them. To find out, they need to know when the Clouds first approached the Milky Way, and what their mass was at that time. The Cambridge team has uncovered some clues to help solve this mystery.

The team used Gaia to detect RR Lyrae stars, which allowed them to trace the extent of the LMC, something that has been difficult to do until Gaia came along. They found a low-luminosity halo around the LMC that stretched as far as 20 degrees. For the LMC to hold onto stars that far away means it would have to be much more massive than previously thought. In fact, the LMC might have as much as 10 percent of the mass that the Milky Way has.

The Large Magellanic Cloud. Image: Public Domain, https://commons.wikimedia.org/w/index.php?curid=57110

The Arrival of the Magellanic Clouds

That helped astronomers answer the mass question, but to really understand the LMC and SMC, they needed to know when the clouds arrived at the Milky Way. But tracking the orbit of a satellite galaxy is impossible. They move so slowly that a human lifetime is a tiny blip compared to them. This makes their orbit essentially unobservable.

But astronomers were able to find the next best thing: the often predicted but never observed stellar stream, or bridge of stars, stretching between the two clouds.

A star stream forms when a satellite galaxy feels the gravitational pull of another body. In this case, the gravitational pull of the LMC allowed individual stars to leave the SMC and be pulled toward the LMC. The stars don’t leave at once, they leave individually over time, forming a stream, or bridge, between the two bodies. This action leaves a luminous tracing of their path over time.

The astronomers behind this study think that the bridge actually has two components: stars stripped from the SMC by the LMC, and stars stripped from the LMC by the Milky Way. This bridge of RR Lyrae stars helps them understand the history of the interactions between all three bodies.

A Bridge of Stars… and Gas

The most recent interaction between the Clouds was about 200 million years ago. At that time, the Clouds passed close by each other. This action formed not one, but two bridges: one of stars and one of gas. By measuring the offset between the star bridge and the gas bridge, they hope to narrow down the density of the corona of gas surrounding the Milky Way.

Mystery #2: The Milky Way’s Corona

The density of the Milky Way’s Galactic Corona is the second mystery that astronomers hope to solve using the Gaia Observatory.

The Galactic Corona is made up of ionised gas at very low density. This makes it very difficult to observe. But astronomers have been scrutinizing it intensely because they think the corona might harbor most of the missing baryonic matter. Everybody has heard of Dark Matter, the matter that makes up 95% of the matter in the universe. Dark Matter is something other than the normal matter that makes up familiar things like stars, planets, and us.

The other 5% of matter is baryonic matter, the familiar atoms that we all learn about. But we can only account for half of the 5% of baryonic matter that we think has to exist. The rest is called the missing baryonic matter, and astronomers think it’s probably in the galactic corona, but they’ve been unable to measure it.

A part of the Small Magellanic Cloud galaxy is dazzling in this image from NASA’s Great Observatories. The Small Magellanic Cloud is about 200,000 light-years way from our own Milky Way spiral galaxy. Credit: NASA.

Understanding the density of the Galactic Corona feeds back into understanding the Magellanic Clouds and their history. That’s because the bridges of stars and gas that formed between the Small and Large Magellanic Clouds initially moved at the same speed. But as they approached the Milky Way’s corona, the corona exerted drag on the stars and the gas. Because the stars are small and dense relative to the gas, they travelled through the corona with no change in their velocity.

But the gas behaved differently. The gas was largely neutral hydrogen, and very diffuse, and its encounter with the Milky Way’s corona slowed it down considerably. This created the offset between the two streams.

Eureka?

The team compared the current locations of the streams of gas and stars. By taking into account the density of the gas, and also how long both Clouds have been in the corona, they could then estimate the density of the corona itself.

When they did so, their results showed that the missing baryonic matter could be accounted for in the corona. Or at least a significant fraction of it could. So what’s the end result of all this work?

It looks like all this work confirms that both the Large and Small Magellanic Clouds conform to our conventional theory of galaxy formation.

Mystery solved. Way to go, science.

Uber Brings In NASA Engineer To Build Flying Cars

Uber recently announced that NASA engineer Mark Moore will be spearheading its plans for an on-demand aviation service, known as Uber Elevate. Credit: Uber

Flying cars have become something of a hot ticket item of late. In the past few years, companies like Terrafugia, Aeromobil and Moller International have all grabbed headlines with their particular designs. And soon enough, international transportation giant Uber could be joining the ranks of those looking to turn a popular staple of science fiction into science fact.

In a move to expand their ride-sharing services to the skies, the company recently hired NASA aerospace engineer Mark D. Moore to spearhead Uber Elevate. For 30 years, Moore has worked for NASA, researching advanced aircraft and technologies and vertical take-off and landing (VTOL) applications. And in 2010, he published a white paper in which detailed a revolutionary new concept for electric flying cars.

In this paper – titled “NASA Puffin Electric Tailsitter VTOL Concept” – Moore presented an outline for equipping  VTOL craft with electronic engines. The benefits of this, he claimed, include zero emissions, a high engine power to weight rating, high efficiency and very little noise or vibrations. On top of that, the technology is scalable, offering the same benefits regardless of size.

Artist’s concept of the NASA X-57 “Maxwell” electronic aircraft. Credit: NASA

This study was the product of Moore’s many years working with the Aeronautics Systems Analysis Branch of NASA’s Langley Research Center, where he specialized in the development of distributed electric propulsion. For the past five years, Moore was the Principle Investigator of the Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) project, a NASA program to create the first manned Distributed Electric Propulsion aircraft.

Prior to this, Moore was also the Principle Investigator of the Leading Edge Asynchronous Propeller Technology/Hybrid-Electric Integrated Systems Testbed (LeapTECH/HEIST) project, a one-year program that developed and tested a electric propulsion wing that used 18 propellers to achieve flight. The fruits of these labors can be seen with the X-57 “Maxwell” (shown above), a convergent electronic propulsion plane that relies on 14 electric motors with uniquely-designed wings to improve efficiency and reduce noise.

Beyond pushing the envelope for advanced aviation and propulsion designs, Moore strongly believes that this technology – which combines the benefits of efficient and lightweight motors with improvements in battery technology and automation – is the solution to the problems of traffic congestion and urban pollution caused by too many automobiles.

Naturally, his white paper garnered a lot of attention, particularly from billionaire entrepreneurs who are at the forefront of technological development. As Bloomberg Businessweek reported in the summer of 2016, Google co-founder Larry Page created two startups (Zee Aero and Kitty Hawk) to develop the technology, apparently in response to reading Moore’s paper.

Maps prepared by Uber to demonstrate the effectiveness of on-demand aviation vs traditional commutes. Credit: Uber

In October of 2016, Uber Technologies Inc. followed suit and announced the creation of Uber Elevate, a subsidiary charged with developing the technology, and has since hired Moore to serve as Elevate’s director of engineering. Shortly after Elevate was announced, Uber released their own white paper – a 99-page document that outlined the company’s vision of what they called “on-demand aviation”. As it says in this paper:

“Just as skyscrapers allowed cities to use limited land more efficiently, urban air transportation will use three-dimensional airspace to alleviate transportation congestion on the ground. A network of small, electric aircraft that take off and land vertically (called VTOL aircraft for Vertical Take-off and Landing, and pronounced vee-tol), will enable rapid, reliable transportation between suburbs and cities and, ultimately, within cities.

Such a plan would not only rely on VTOL network to bypass the usual infrastructure of roads, railways, bridges and tunnels, but would also call for the repurposing of parts of the urban landscape. Basically, Uber’s plan calls for transforming the tops of parking garages, existing helipads, and unused land surrounding highway interchanges to create a network of “vertiports” and “versistops”, complete with charging stations for their vehicles.

Acquiring Moore was certainly a coup de grace, as the NASA engineer was just a year away from retirement. As a result, he will not be eligible for his pension and health benefits. However, the move appears to be motivated in part by Moore’s desire to see the development of the technology become a reality. And these days, it seems that the private sector – and not within federal agencies – is where this is most likely to happen.

As Moore told Universe Today via email:

“Uber’s well suited to lead this because they are the on-demand market leader, with 55 million active monthly users. They’ve solved the multi-modal last mile problem, with incredible access and availability that provides wait times in major urban areas of only 2 to 3 minutes.”

Naturally, one of the biggest questions is whether Uber’s vehicles will be piloted or automated. On the one hand, Uber has launched a series of pilot project to test self-driving cars in various cities across the US. And a little over a week ago (Jan. 31st, 2017), Uber announced that it will be partnering with Daimler to introduce the automaker’s self-driving cars to their network.

These moves are a strong indication that the company is looking to automate in the long-term. And as Moore indicated, there is likely to be a period of transition:

“There will be an evolution from professional human pilots to autonomy over time as the background automation proves itself reliable and not requiring intervention by the human pilot – just as Uber is doing now with autonomous cars on the ground (which is a much harder problem because of how cluttered the ground environment is.”

In addition to Google and Uber, multinational aerospace giant Airbus is also working on its own VTOL car project – known as Project Vahana. As the company announced in November of 2016, Vahana is being run by the company’s Silicon Valley arm (A³, or “a cubed”) with the aim of producing of self-piloted VTOL craft by the early 2020s.

And there’s Joby Aviation, another Silicon Valley-based company that specializes in airframe design and electric motors that is hoping to expand into the VTOL market. Clearly, there is no shortage of entrepreneurs looking to harness the dream of VTOL transportation.

Of course, there are those who would say that these VTOL concepts are not “flying cars” in the strictest sense. Whereas companies like Aeromobil, Terrafugia and Moller International are specializing in vehicles that can both drive on land and fly, Google Airbus and Uber are looking to create vehicles that are more akin to transportation drones or personal helicopters.

But the terminology behind this concept, which has deep roots in science-fiction, has never been entirely accurate. In the end, the term “flying car” has been used rather loosely to refer to vehicles that relied on aerial traffic networks to get people from point A to point B. And with multiple companies looking to make this old promise a reality, the promise of flying cars in the 21st century might finally come true!

Further Reading: Bloomberg, NASA, Uber

Watch Comet 45P Honda-Mrkos-Pajdušáková Fly Past Earth This Week

A recent image of Comet 45P from February 4th. Image credit and copyright: Hisayoshi Kato.
A recent image of Comet 45P from February 4th. Image credit and copyright: Hisayoshi Kato.

Hankering for some cometary action? An interplanetary interloper pays us a visit this weekend, sliding swiftly through the pre-dawn northern hemisphere sky.

If you’ve never caught sight of periodic comet 45/P Honda-Mrkos-Pajdušáková, this week is a good time to try. Currently shining at magnitude +6.5, the comet makes a close 0.08 AU (7.4 million miles or 12.3 million kilometers) pass near the Earth on Saturday, February 11, at 14:44 Universal Time (UT) or 9:44 AM Eastern Standard Time. This is the closest passage of the comet for the remainder of this century, and with the Moon also reaching Full this weekend, the time to track down this comet is now.

The path of Comet 45/P through Monday, February 13th. Credit: Starry Night Edu.

We wrote about the first act for this comet last December, and Bob King also wrote up a preview last month. The comet passed perihelion 0.53 AU (49.3 million miles/ 82.1 million kilometers) from the Sun on New Year’s Eve 2016, reemerging into the dawn sky. It’s now on a swift sprint through the constellation Ophiuchus, and will cross Hercules at closest approach and into Corona Borealis and Boötes in just one week. At its closest, it’ll be moving at a whooping 23 arc minutes per hour, about three-quarters the diameter of a Full Moon!

The position of Comet 45/P as seen from latitude 30 degrees north at 4 AM. Credit: Stellarium.

At closest approach, the comet may just top naked eye brightness under dark skies at +6 magnitude.

Independently discovered by three observers worldwide in late 1948, Comet 45/P Honda-Mrkos-Pajdušáková orbits the Sun once every 5.25 years. The cumbersome name is often abbreviated as “Comet 45P HMP” or sometimes simply “Comet 45P.” The comet actually passed close enough back in 2011 for Arecibo radar to ping it, one of the very few comets to do so.

Not all apparitions of a given comet are equal, and most passages of Comet 45P were and will be uneventful. Dr. P. Clay Sharrod of the Arkansas Sky Observatory recently wrote a great account of the 1974 passage of Comet 45P, hearkening back to the same year when we were all awaiting Comet Kohoutek and Comet West was yet to come. This account might also hint at what could be in store for comet hunters this weekend.

A sketch of Comet 45P from December 10th, 1974. Image credit and copyright: Dr P. Clay Sherrod.

We managed to nab Comet 45P for the first time this AM from central Florida, though its still a tough catch. Shining at magnitude +7.5, we wouldn’t have otherwise noticed it as we swept along with our trusty Canon 15×45 image-stabilized binocs. Star-hopping finally brought us to the comet, a little fuzzy ‘star’ that stubbornly refused to snap into focus.

Comet 45P from early January, post-perihelion. Image credit and copyright: Sharin Ahmad (@shahgazer).

Unfortunately, the Moon reaches Full on Friday night, entering into the dawn sky this weekend. I’d advise hunting for the comet on every clear morning leading up to this weekend as the comet vaults northward into the pre-dawn sky. Friday night’s subtle penumbral eclipse won’t help much by way of dimming the Moon, though you can always place a house or hill between yourself and the Moon in a bid to block it out and aid in your cometary quest. There’s also a great photo op on February 16, when Comet 45P passes less than three degrees from the globular cluster M3.

As close shaves go, this passage of Comet 45P ranks as the 21st closest recorded passage of a comet near the Earth. The record goes to Comet Lexell, which passed just 0.0151 AU (1.4 million miles, or just under six times the distance to the Moon) past the Earth on July 1st, 1770. At its closest, Lexell had a visible coma spanning more than two degrees, more than four times the diameter of a Full Moon. In recent times, the last close passage of a comet other than 45P was Comet IRAS-Araki-Alcock, which zipped 0.063 AU past the Earth on June 12, 1983.

Ah, those were the days… a depiction of the Great Comet of 1769 as seen from Amsterdam, just one year (!) prior to the passage of Lexell’s Comet. Image in the Public Domain.

The gambler’s fallacy would say we’re due for the next big bright comet, though the universe seems to stubbornly refuse to roll the dice. In addition to 45P, 2017 does host a string of binocular comets, including Comet 2P Encke (March), Comet 41P/Tuttle-Giacobini-Kresák (April), Comet C/2015 ER61 PanSTARRS (May), and Comet C/2015 V2 Johnson (June). These are all explored in detail in our free e-book guide to the year, 101 Astronomical Events for 2017 out from Universe Today.

Stay warm on your comet vigil, and let us know of those observational tales of tribulation and triumph.

How Long is a Day on Venus?

A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL

Venus is often referred to as “Earth’s Sister” planet, because of the various things they have in common. For example, both planets reside within our Sun’s habitable zone (aka. “Goldilocks Zone“). In addition, Earth and Venus are also terrestrial planets, meaning they are primarily composed of metals and silicate rock that are differentiated between a metallic core and a silicate mantle and crust.

Beyond that, Earth and Venus could not be more different. And two ways in which they are in stark contrast is the time it takes for the Sun to rise, set, and return to the same place in the sky (i.e. one day). In Earth’s case, this process takes a full 24 hours. But in Venus’ case, its slow rotation and orbit mean that a single day lasts as long as 116.75 Earth days.

Sidereal Vs. Solar:

Naturally, some clarification is necessary when addressing the question of how long a day lasts. For starters, one must distinguish between a sidereal day and a solar day. A sidereal day is the time it takes for a planet to complete a single rotation on its axis. On the other hand, a solar day is the time it takes for the Sun to return to the same place in the sky.

On Earth, a sidereal days last 23 hours 56 minutes and 4.1 seconds, whereas a solar day lasts exactly 24 hours. In Venus’ case, it takes a whopping 243.025 days for the planet to rotate once on its axis – which is the longest rotational period of any planet in the Solar System. In addition, it rotates in the opposite the direction in which it orbits around the Sun (which it takes about 224.7 Earth days to complete).

In other words, Venus has a retrograde rotation, which means that if you could view the planet from above its northern polar region, it would be seen to rotate in a clockwise direction on its axis, and in a counter-clockwise direction around the Sun. It also means that if you could stand on the surface of Venus, the Sun would rise in the west and set in the east.

From all this, one might assume that a single day lasts longer than a year on Venus. But again, the distinction between a sidereal and solar days means that this is not true. Combined with its orbital period, the time it takes for the Sun to return to the same point in the sky works out to 116.75 Earth days, which is little more than a half a Venusian (or Cytherian) year.

At a closest average distance of 41 million km (25,476,219 mi), Venus is the closest planet to Earth. Credit: NASA/JPL/Magellan

Axial Tilt and Temperatures:

Unlike Earth or Mars, Venus has a very low axial tilt – just 2.64° relative to the ecliptic. In fact, it’s axial tilt is the one of the lowest in the Solar System, second only to Mercury (which has an extremely low tilt of 0.03°). Combined with its slow rotational period and dense atmosphere, this results in the planet being effectively isothermal, with virtually no variation in its surface temperature.

In other words, the planet experiences a mean temperature of 735 K (462 °C; 863.6 °F) – the hottest in the Solar System – with very little change between day and night, or between the equator and the poles. In addition, the planet experiences minimal seasonal temperature variation, with the only appreciable variations occurring with altitude.

Weather Patterns:

It is a well-known fact that Venus’ atmosphere is incredibly dense. In fact, the mass of Venus atmosphere is 93 times that of Earth’s, and the air pressure at the surface is estimated to be as high as 92 bar – i.e. 92 times that of Earth’s at sea level. If it were possible for a human being to stand on the surface of Venus, they would be crushed by the atmosphere.

The composition of the atmosphere is extremely toxic, consisting primarily of carbon dioxide (96.5%) with small amounts of nitrogen (3.5%) and traces of other gases – most notably sulfur dioxide. Combined with its density, the composition generates the strongest greenhouse effect of any planet in the Solar System.

According to multiple Earth-based surveys and space missions to Venus, scientists have learned that its weather is rather extreme. The entire atmosphere of the planet circulates around quickly, with winds reaching speeds of up to 85 m/s (300 km/h; 186.4 mph) at the cloud tops, which circle the planet every four to five Earth days.

At this speed, these winds move up to 60 times the speed of the planet’s rotation, whereas Earth’s fastest winds are only 10-20% of the planet’s rotational speed. Spacecraft equipped with ultraviolet imaging instruments are able to observe the cloud motion around Venus, and see how it moves at different layers of the atmosphere. The winds blow in a retrograde direction, and are the fastest near the poles.

Closer to the equator, the wind speeds die down to almost nothing. Because of the thick atmosphere, the winds move much slower as you get close to the surface of Venus, reaching speeds of about 5 km/h. Because it’s so thick, though, the atmosphere is more like water currents than blowing wind at the surface, so it is still capable of blowing dust around and moving small rocks across the surface of Venus.

Venus flybys have also indicated that its dense clouds are capable of producing lightning, much like the clouds on Earth. Their intermittent appearance indicates a pattern associated with weather activity, and the lightning rate is at least half of that on Earth.

Artist concept of the surface of Venus, showing its dense clouds and lightning storms. Credit: NASA

Yes, Venus is a planet of extremes. Extreme heat, extreme weather, and extremely long days! In short, there’s a reason why nobody lives there. But who knows? Given the right kind of technology, and perhaps even some dedicated terraforming efforts, people could one day being watching the Sun rising in the west and setting in the east.

We have written many interesting articles about Venus here at Universe Today. Here’s Venus compared to Earth, How Fast Does Venus Rotate?, What is the Weather Like on Venus?, How Long is a Year on Venus?, What is the Average Surface Temperature on Venus?, and How Long is a Day on the Other Planets of the Solar System?

For more information, check out NASA’s Solar System Exploration page on Venus.

Astronomy Cast also has a good episodes on the subject. Here’s Episode 50: Venus

Sources:

Messier 34 – the NGC 1039 Open Star Cluster

The location of Messier 34 in the northern skies. Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Triangulum Galaxy, also known as Messier 33. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is known as Messier 34, an open star cluster located in the northern Perseus constellation. Located at a distance of about 1,500 light years from Earth, it is one of the closest Messier objects to Earth, and is home to an estimated 400 stars. It is also bright enough to be seen with the naked eye or binoculars, where light conditions permit.

What You Are Looking At:

This cluster of stars started its journey off together through our galaxy some 180 million years ago as part of the “Local Association”… groups of stars like the Pleiades, Alpha Persei Cluster and the Delta Lyrae Cluster that share a common origin, but have become gravitationally unbound and are still moving together through space. We know the stars are related by their common movement and ages, but what else do we know about them?

The core region of the Messier 34 open star cluster. Credit: Wikisky

Well, one thing we do know is that out of the 354 stars in the region survey, 89 of them are actual cluster members and that all six of the visual binaries and three of the four known Ap stars are members of the cluster. There’s even a giant among them! But like almost all stars out there, we know they usually aren’t singles and actually have companions. As Theodore Simon wrote in his 2000 study regarding NGC 1039 and NGC 3532:

“Roughly half the sources detected in both images have likely optical counterparts from earlier ground-based surveys. The remainder are either prospective cluster members or foreground/background stars, which can be decided only through additional photometry, spectroscopy, and proper-motion studies. There is some indication (at the 98% confidence level) that solar-type stars may lack the extreme rotation and activity levels shown by those in the much younger Pleiades and alpha Persei clusters, but a detailed assessment of the coronal X-ray properties of these clusters must await more sensitive observations in the future. If confirmed, this finding could help to rule out the possibility that stellar dynamo activity and rotational braking are controlled by a rapidly spinning central core as stars pass through this phase of evolution from the Pleiades stage to that represented by the Hyades.”

If there’s companion stars to be discovered, what else might be in the field that we just can quite “see”? Try white dwarfs. As Kate Rubin (et al.) published in the May 2008 issue of the Astronomical Journal:

“We present the first detailed photometric and spectroscopic study of the white dwarfs (WDs) in the field of the ~225 Myr old (log ?cl = 8.35) open cluster NGC 1039 (M34) as part of the ongoing Lick-Arizona White Dwarf Survey. Using wide-field UBV imaging, we photometrically select 44 WD candidates in this field. We spectroscopically identify 19 of these objects as WDs; 17 are hydrogen-atmosphere DA WDs, one is a helium-atmosphere DB WD, and one is a cool DC WD that exhibits no detectable absorption lines. Of the 17 DAs, five are at the approximate distance modulus of the cluster. Another WD with a distance modulus 0.45 mag brighter than that of the cluster could be a double-degenerate binary cluster member, but is more likely to be a field WD. We place the five single cluster member WDs in the empirical initial-final mass relation and find that three of them lie very close to the previously derived linear relation; two have WD masses significantly below the relation. These outliers may have experienced some sort of enhanced mass loss or binary evolution; however, it is quite possible that these WDs are simply interlopers from the field WD population.”

Close-up image of M34 showing its white dwarf population, taken by the Sloan Digital Sky Survey. Credit: SDSS

While it sounds a little confusing, it’s all about how star clusters evolve. As David Soderblom wrote in a 2001 study:

“We analyze Keck Hires observations of rotation in F, G, and K dwarf members of the open cluster M34 (NGC 1039), which is 250 Myr old, and we compare them to the Pleiades, Hyades, and NGC 6475. The upper bound to rotation seen in M34 is about a factor of two lower than for the 100 Myr-old Pleiades, but most M34 stars are well below this upper bound, and it is the overall convergence in rotation rates that is most striking. A few K dwarfs in M34 are still rapid rotators, suggesting that they have undergone core-envelope decoupling, followed by replenishment of surface angular momentum from an internal reservoir. Our comparison of rotation in these clusters indicates that the time scale for the coupling of the envelope to the core must be close to 100 Myr if decoupling does, in fact, occur.”

History of Observation:

M34 was probably first found by Giovanni Batista Hodierna before 1654, and independently rediscovered by Charles Messier in on August 25, 1764. As he described it in his notes:

“I have determined the position of a cluster of small stars between the head of the Medusa and the left foot of Andromeda almost on the parallel of the star Gamma of that letter constellation. With an ordinary refractor of 3 feet, one distinguishes these stars; the cluster may have 15 minutes in extension. I have determined its position with regard to the star Beta in the head of the Medusa; its right ascension has been concluded at 36d 51′ 37″, and its declination as 41d 39′ 32″ north.”

Image of Messier 34 taken by the Two Micron All-Sky Survey (2MASS) of Messier 34 (also known as M34 or NGC 1039). Credit: 2MASS/UMass/IPAC-Caltech/NASA/NSF

Over the years, a great many historic observers would turn a telescope its way to examine it – also looking for more. Said Sir William Herschel: “A cluster of stars; with 120, I think it is accompanied with mottled light, like stars at a distance.” Yet very little more can be seen except for the fact that most of the stars seem to be arranged in pairs – the most notable being optical double in the center – h 1123 – which was cataloged by Sir John Herschel on December 23rd, 1831.

Charles Messier discovered it independently on August 25th, 1764, and included it in the Messier Catalog. As he wrote in the first edition of the catalog:

“In the same night of [August] 25 to 26, I have determined the position of a cluster of small stars between the head of the Medusa [Algol] & the left foot of Andromeda almost on the parallel of the star Gamma of that letter constellation. With an ordinary [non-achromatic] refractor of 3 feet [FL], one distinguishes these stars; the cluster may have 15 minutes in extension. I have determined its position with regard to the star Beta in the head of the Medusa; its right ascension has been concluded at 36d 51? 37?, & its declination as 41d 39? 32? north.”

But as always, it was Admiral William Henry Smyth who described the object with the most florid prose. As he wrote in his notes when observing the cluster in October 1837, he noted the following:

“A double star in a cluster, between the right foot of Andromeda and the head of Medusa; where a line from Polaris between Epsilon Cassiopeiae and Alpha Persei to within 2deg of the parallel of Algol, will meet it. A and B, 8th magnitudes, and both white. It is in a scattered but elegant group of stars from the 8th to the 13th degree of brightness, on a dark ground, and several of them form into coarse pairs. This was first seen and registered by Messier, in 1764, as a “mass of small stars;” and in 1783 was resolved by Sir W. Herschel with a seven-foot reflector: with the 20-foot he made it “a coarse cluster of large stars of different sizes.” By the method he applied to fathom the galaxy, he concluded the profundity of this object not to exceed the 144th order.”

The location of Messier 34 in the northern Perseus constellation. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 34:

M34 is easily found in binoculars about two fields of view northwest of Algol(Beta Persei). You will know when you have found this distinctive star cluster because “X” marks the spot! In a telescope finderscope, it will appear as a faint, hazy spot and will fully resolve to most average telescopes. Messier 34 makes an excellent target for moonlit nights or light polluted areas and will stand up well to less than perfect sky conditions.

It can even be seen unaided from ideal locations! Enjoy your observations!

And as always, we’ve included the quick facts on this Messier Object to help you get started:

Object Name: Messier 34
Alternative Designations: M34, NGC 1039
Object Type: Galactic Open Star Cluster
Constellation: Perseus
Right Ascension: 02 : 42.0 (h:m)
Declination: +42 : 47 (deg:m)
Distance: 1.4 (kly)
Visual Brightness: 5.5 (mag)
Apparent Dimension: 35.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Ancient Annular: Dating Joshua’s Eclipse

Annular Eclipse
The May 2012 annular eclipse low to the horizon. Image credit and copyright: Jared Bowens.
Annular Eclipse
The May 2012 annular eclipse low to the horizon. Image credit and copyright: Jared Bowens.

Astronomy turns up in fascinating junctures in history. Besides just the romantic angle, we can actually pin down contextual events in ancient history if we can tie them in with a spectacle witnessed in the heavens. A recent look at the story of ‘Joshua’s eclipse’ is one such possible tale.

Lunar and solar eclipses are especially dramatic events, something that would have really made the ancients stop and take notice. A recent study published in an edition of the Beit Mikra Journal (in Hebrew) by researchers from Ben Gurion University may have pinpointed a keypoint in biblical history: the date of the Battle of Gibeon.

This study first came to our attention via the Yahoo! SEML eclipse message board and a recent Times of Israel article. The article makes mention of NASA eclipse data, which is free for anyone to peruse looking over the five millennium canon of solar and lunar eclipses… hey, it’s what we do for fun.

We did obtain a look at a translation of the abstract from the paper, which ends with the following:

“In the period between 1500-1000 BCE which is the relevant time for the biblical story, there were only three eclipses seen from Jerusalem, one total eclipse and two annular eclipses. We show that the most appropriate one is the annular solar eclipse that occurred on October 30 in 1206 BCE at sunset, an appropriate date for the time of conquest and the early settlement period, at the time of Marneptah’ rule in Egypt.”

The path of the eclipse of October 30th, 1206 BC. Credit: NASA/GSFC/Espenak/Meeus.

Joshua 10:12 reads: “Sun, stand still upon Gibeon; and you, Moon, in the valley of Ayalon.”

According to tradition, Joshua commanded the Sun to stand still long enough to defeat the Canaanite kings. Of course, the Sun and the Moon still move during an eclipse be it lunar or solar, though its mostly our planet that’s doing the moving. Still, the actual biblical term “-dom” is open to interpretation, and the researchers chose the Hebrew “to become dark” instead of the King James translation of “to stand still,” or “stationary”.

If this Bible verse sounds familiar, that’s because it turns up in astronomical history again in medieval Europe, when Church proponents used it as supposed proof of geocentricism.

Mid eclipse
Mid-eclipse over central Israel at sunset on October 30th, 1206 BC. Credit: Stellarium.

It’s tough to predict eclipses in distant time. The rotation of the Earth is not entirely smooth, and the minute change in the length of the day (known as Delta T) accumulates to the point that a leap second must be inserted on occasion to keep observed time in sync with reckoned terrestrial time. Braking action by the Sun and Moon, tectonic activity, and even global warming all cause small changes in the Earth’s rotation that slowly build up over time. This means that it’s tough to predict eclipses more than a few thousand years out, where at best we can only judge which continent they might have or will fall on.

“Not everyone likes the idea of using physics to prove things from the Bible,” said researcher Hezi Yitzhak to the Israeli news site Haaretz. “We do not claim that everything written in the Bible is true or took place… but there is also a grain of historical truth that has archaeological evidence behind it.”

The eclipse in question occurred on October 30th, 1206 BC. This was an annular eclipse, crossing the Atlantic and the Mediterranean and ending over Israel and Jordan at sunset. Researchers pegged this suspect eclipse because of its fit for historical context and visibility. Annularity for the eclipse was 86% obscuration and started at an altitude of nine degrees above the western horizon, and would have still been in progress during its final phases at sunset.

path
The end of the eclipse path over modern day Israel and Jordan. Credit: NASA/GSFC data.

Lots of eclipses turn up in history. A partial lunar eclipse preceded the fall of Constantinople in 1453, seeming to fulfill prophecy. Solar and lunar eclipses made a showing at lots of battles, including the Second Battle of Syracuse on August 28th, 412 BC and during the Zulu War on January 22nd, 1879. A solar eclipse on June 15th, 762 BC mentioned in Assyrian texts pinpoints a crucial time in ancient history, giving us a benchmark for later dates. It’s worth noting that prior to modern times, it seems that battles were the only thing worth writing down…

Still, it’s interesting to imagine the scene as ancient armies clash, only to stop and gaze at the wondrous sight on the horizon: a pair of glowing horns, hanging low in the pre-dusk sky. We caught the 1994 annular eclipse from the Sandusky, Ohio on the shores of Lake Erie and can attest that even a 98% eclipsed Sun is still pretty bright, giving even a clear day a deep steely blue tint. Lower to the horizon though, an annular eclipse is more readily visible to the unaided eye.

You have to be careful when attempting to read ancient texts as astronomical guide books. Great minds, including Kepler and Newton, expended lots of mental juice on attempting to link biblical accounts such as Ezekiel’s Wheel and the Star of Bethlehem with actual astronomical events. We’ll probably never know for sure if a coincidental conjunction graced the sky over the manger in Bethlehem, or if Ezekiel saw the breakup of a brilliant comet, but it’s always fun to imagine and wonder. Then, there’s the inevitable embellishment that accompanies stories that may have been first sparked by meteor showers or sundogs, centuries ago. We don’t, for example, see flaming swords or banners emblazoned with Latin inscriptions across the sky today, though if you can believe medieval accounts, they seemed common back in the day.

And don’t forget: we’ve got our very own history making eclipse (hopefully sans battlefields) this coming August 21st, 2017 crossing the United States from coast-to-coast.

Though far from conclusive, the results of the study concerning Joshua’s eclipse and the battle of Gideon are interesting to consider. Most likely we’ll never truly know what happened that ancient afternoon, unless, of course, we perfect time travel. What other events remain hidden and lost to time, ready for some historical astro-sleuth to uncover them?

-Can’t get enough of eclipses, historical or otherwise? Check out our original eclipse-fueled sci-fi tales Exeligmos, Peak Season and Class Field Trip.

See a Flirtatious Lunar Eclipse This Friday Night

Penumbral lunar eclipse Oct. 18-19, 2013. Credit: AstroTripper2000
This sequence of photos taken on October 18, 2013 nicely show the different phases of a penumbral lunar eclipse. The coming penumbral eclipse will likely appear even darker because Earth’s shadow will shade to the top (northern) half of the Moon rich in dark lunar “seas” at maximum. Credit: AstroTripper 2000

Not many people get excited about a penumbral eclipse, but when it’s a deep one and the only lunar eclipse visible in North America this year, it’s worth a closer look. What’s more, this Friday’s eclipse happens during convenient, early-evening viewing hours. No getting up in the raw hours before dawn.

Lunar eclipses — penumbral, partial and total — always occur at Full Moon, when the Moon, Earth and Sun line up squarely in a row in that order. Only then does the Moon pass through the shadow cast by our planet. Credit: Starry Night with additions by the author

During a partial or total lunar eclipse, the full moon passes first through the Earth’s outer shadow, called the penumbra, before entering the dark, interior shadow or umbra. The penumbra is nowhere near as dark as the inner shadow because varying amounts of direct sunlight filter into it, diluting its duskiness.

To better understand this, picture yourself watching the eclipse from the center of the Moon’s disk (latitude 0°, longitude 0°). As you look past the Earth toward the Sun, you would see the Sun gradually covered or eclipsed by the Earth. Less sunlight would be available to illuminate the Moon, so your friends back on Earth would notice a gradual dimming of the Moon, very subtle at first but becoming more noticeable as the eclipse progressed.

This diagram shows an approximation of the Sun’s position and size as viewed by an observer at the center of the lunar disk during Friday’s penumbral eclipse. More sunlight shines across the Moon early in the eclipse, making the penumbral shadow very pale, but by maximum (right), half the sun is covered and the Moon appears darker and duskier as seen from Earth. During a total lunar eclipse, the sun is hidden completely. Credit: Bob King with Earth image by NASA

As the Moon’s leading edge approached the penumbra-umbra border, the Sun would narrow to a glaring sliver along Earth’s limb for our lucky lunar observer. Back on Earth, we’d notice that the part of the Moon closest to the umbra looked strangely gray and dusky, but the entire lunar disk would still be plainly visible. That’s what we’ll see during Friday’s eclipse. The Moon will slide right up to the umbra and then roll by, never dipping its toes in its dark waters.

During a partial eclipse, the Moon keeps going into the umbra, where the Sun is completely blocked from view save for dash of red light refracted by the Earth’s atmosphere into what would otherwise be an inky black shadow. This eclipse, the Moon only flirts with the umbra.

The moon’s orbit is tilted 5.1 degrees in relation to Earth’s orbit, so most Full Moons, it passes above or below the shadow and no eclipse occurs. Credit: Bob King

Because the moon’s orbit is tilted about 5° from the plane of Earth’s orbit, it rarely lines up for a perfect bullseye total eclipse: Sun – Earth – Moon in a straight line in that order. Instead, the moon typically passes a little above or below (north or south) of the small, circle-shaped shadow cast by our planet, and no eclipse occurs. Or it clips the outer edge of the shadow and we see — you guessed it — a penumbral eclipse.

Earth’s shadow varies in size depending where you are in it. Standing on the ground during twilight, it can grow to cover the entire sky, but at the moon’s distance of 239,000 miles, the combined penumbra and umbra span just 2.5° of sky or about the width of your thumb held at arm’s length.

The moon passes through Earth’s outer shadow, the penumbra, on Feb. 10-11. In the umbra, the sun is blocked from view, but the outer shadow isn’t as dark because varying amounts of sunlight filter in to dilute the darkness. Times are Central Standard. Credit: F. Espenak, NASA’s GFSC with additions by the author

Because the Moon travels right up to the umbra during Friday’s eclipse, it will be well worth watching.The lower left  or eastern half of the moon will appear obviously gray and blunted especially around maximum eclipse as it rises in the eastern sky that Friday evening over North and South America. I should mention here that the event is also visible from Europe, Africa, S. America and much of Asia.

This map shows where the eclipse will be visible. Most of the U.S. will see at least part of the event. Credit: F. Espenak, NASA’s GFSC

For the U.S., the eastern half of the country gets the best views. Here are CST and UT times for the different stages. To convert from CST, add an hour for Eastern, subtract one hour for Mountain and two hours for Pacific times. UT stands for Universal Time, which is essentially the same as Greenwich or “London” Time except when Daylight Saving Time is in effect:

This is a simulated view of the Full Snow Moon at maximum eclipse Friday evening low in the eastern sky alongside the familiar asterism known as the Sickle of Leo. Created with Stellarium

Eclipse begins: 4:34 p.m. (22:34 p.m. UT)
Maximum eclipse (moon deepest in shadow): 6:44 p.m. (00:43 UT Feb. 11)
Eclipse ends: 8:53 p.m. (2:53 UT Feb. 11)

You can see that the eclipse plays out over more than 4 hours, though I don’t expect most of us will either be able or would want to devote that much time. Instead, give it an hour or so when the Moon is maximally in shadow from 6 to 7:30 p.m. CST; 7-8:30 EST; 5-6:30 p.m. MST and around moonrise Pacific time.

This should be a fine and obvious eclipse because around the time of maximum, the darkest part of the penumbra shades the dark, mare-rich northern hemisphere of the Moon. Dark plus dark equals extra dark! Good luck and clear skies!

Juno Buzzes Jupiter a mere 4,300 Km’s above the Cloud Tops

Illustration of NASA's Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA's Jet Propulsion Laboratory. Credit: NASA/Lockheed Martin

On July 4th, 2016, NASA’s Juno spacecraft made history when it became the second mission to establish orbit around Jupiter – the previous being the Galileo spacecraft, which orbited the planet from 1995 to 2003. Since that time, it has circled the massive gas giant three times, collecting data on the gas giant’s composition, interior and gravity field.

This past Thursday, February 1st, the mission conducted its fourth orbit of the planet. In the process, the spacecraft collected more vital data on the gas giant and snapped several dozen pictures. And in what is has been a first for a space mission, NASA will once again be asking the public what features they would like to see photographed during Juno’s next pass.

Juno made its closest pass (what is known as perijove) to Jupiter at precisely 1257 GMT (7:57 a.m. EST), passing the cloud tops at a distance of 4,300 km (2,670 mi) and traveling at a velocity of about 208,000 km/h (129,300 mph) relative to the gas giant. Using its suite of instruments, it scanned Jupiter’s atmosphere, gathered data on its radiation and plasma, and began returning this information to Earth.

Processed image taken on Dec. 11, 2016, at 9:27 a.m. PST (12:27 p.m. EST) by the NASA Juno spacecraft, as it performed its third close flyby of Jupiter. Credits: NASA/JPL-Caltech/SwRI/MSSS/Eric Jorgensen

And during this latest pass, the JunoCam snapped several dozen more pictures. During two of its three previous perijove maneuvers, this instruments captured some of the most breathtaking photographs of Jupiter’s clouds to date (like the one seen above). Once they were transmitted back to Earth and made available to the public, “citizen scientistswere able to download and process them at their leisure.

And with this latest pass complete, the public is once again being encouraged to vote on what features they want to see photographed during the next pass. As Candy Hansen, the Juno mission’s co-investigator from the Planetary Science Institute, stated shortly before Juno made its fourth perijovian maneuver:

“The pictures JunoCam can take depict a narrow swath of territory the spacecraft flies over, so the points of interest imaged can provide a great amount of detail. They play a vital role in helping the Juno science team establish what is going on in Jupiter’s atmosphere at any moment. We are looking forward to seeing what people from outside the science team think is important.”

This has all been part of a first-ever effort on behalf of NASA to get the public involved in what kinds of images are to be taken. According to NASA, this is to become a regular feature of the Juno mission, with a  new voting page being created for each upcoming flyby. The next perijovian maneuver will take place on March 27th, 2017, coinciding with the Juno spacecraft’s 53.4-day orbital period.

False color view of Jupiter’s polar haze, created by citizen scientist Gerald Eichstädt using data from the JunoCam instrument. Credit: NASA/JPL-Caltech/SwRI/MSSS/Eric Jorgensen

Originally, the mission planners had hoped to narrow Juno’s orbital period down to 14 days, which would have been accomplished by having the craft fire its main engine while at perijove. However, two weeks before the engine burn was scheduled to take place (Oct. 19th, 2016), ground controllers noticed a problem with two of the engine’s check valves – which are part of the spacecraft’s fuel pressurization system.

As Juno project manager Rick Nybakken said at the time:

“Telemetry indicates that two helium check valves that play an important role in the firing of the spacecraft’s main engine did not operate as expected during a command sequence that was initiated yesterday. The valves should have opened in a few seconds, but it took several minutes. We need to better understand this issue before moving forward with a burn of the main engine.”

Because of this technical issue, the mission leaders chose to postpone the engine burn so they could check the craft’s instruments to get a better understanding of why it happened. The Juno team was hoping to use the third orbit of the spacecraft to study the problem, but this was interrupted when a software performance monitor induced a reboot of the spacecraft’s onboard computer.

To accomplish its science objectives, Juno is orbiting Jupiter’s poles and passing very close to the planet, avoiding the most powerful (and hazardous) radiation belts in the process. Credit: NASA/JPL-Caltech

Because of this, the spacecraft went into safe mode during its third flyby, which prevented them from gathering data on the engine valve problem. On Oct. 24th, the mission controllers managed to get the craft to exit safe mode and performed a trim maneuver in preparation for its next flyby. But the mystery of why the engine valves failed to open remains, and the mission team is still unable to resolve the problem.

Thus, the decision to fire the main engine (thereby shortening its orbital period) has been postponed until they get it back online. But as Scott Bolton – the Associate Director of R&D at the Southwest Research Institute (SwRI) and Juno’s Principal Investigator – has emphasized in the past:

“It is important to note that the orbital period does not affect the quality of the science that takes place during one of Juno’s close flybys of Jupiter. The mission is very flexible that way. The data we collected during our first flyby on August 27th was a revelation, and I fully anticipate a similar result from Juno’s October 19th flyby.”

In the meantime, the Juno science team is still analyzing data from all previous Jupiter flybys. During each pass, the spacecraft and its instruments peer beneath Jupiter’s dense cloud cover to study its auroras, its magnetic field, and to learn more about the planet’s structure, composition, and formation. And with the public’s help, it is also providing some of the clearest and most detailed imagery of the gas giant to date.

Further Reading: NASA

 

The Race To Image Exoplanets Heats Up!

Comparison of images taken from existing, facility instrument (AO 188 + HiCIAO, left) and the newly commissioned instrument (AO 188 + SCExAO, right). Credit: NAOJ

Thanks to the deployment of the Kepler mission, thousands of extrasolar planet candidates have been discovered. Using a variety of indirect detection methods, astronomers have detected countless gas giants, super Earths, and other assorted bodies orbiting distant stars. And one terrestrial planet (Proxima b) has even been found lurking in the closest star system to Earth – Proxima Centauri.

The next step, quite logically, is to observe these planets directly. Hence why the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument was commissioned at the National Astronomical Observatory of Japan (NAOJ) in  Mauna Kea, Hawaii. Designed to allow for the direct detection of planets around other stars, this instrument will help ensure that the Subaru Telescope remains on the cutting-edge of exoplanet hunting.

As of January 22nd, 2017, some 3,565 exoplanet candidates have been detected in 2,675 planetary systems, and over 2000 of these have been confirmed. However, as already noted, the vast majority of these have been detected by  indirect means – generally through the measurement of a star’s radial velocity, or by measuring dips in a star’s luminosity as an exoplanet passes in front of it (i.e. the transit method).

The Subaru Telescope atop Mauna Kea. CHARIS works in conjunction with Subaru. Image: Dr. Hideaki Fujiwara - Subaru Telescope, NAOJ.
The Subaru Telescope atop Mauna Kea. CHARIS works in conjunction with Subaru. Credit: Dr. Hideaki Fujiwara/NAOJ

Adaptive Optics, meanwhile, have allowed for the detection of exoplanets directly. When used in astronomy, this technology removes the the effects of atmospheric interference so that light from distant stars or planets can be seen clearly. Relying on experimental technology, the SCExAO was specifically designed and optimized for imaging planets, and is one of several newly-commissioned extreme AO instruments.

However, as Dr. Thayne Currie – a research associate at the NOAJ – indicated, the Observatories on Mauna Kea are particularly well suited to the technology. “Mauna Kea is the best place on this planet to see planets in other stellar systems,” he said. “Now, we finally have an instrument designed to utilize this mountain’s special gifts and the results are breathtaking.”

What makes the SCExAO special is that it allows astronomers the ability to image planets with masses and orbital separations that are similar to those in our own Solar System. So far, about a dozen planets have been detected directly using AO instruments, but these planets have all been gas giants with 4 to 13 times the mass of Jupiter, and which orbit their stars at distances beyond that of Neptune from our Sun.

This improved imaging capacity is made possible by the SCExAO’s ability to compensate for atmospheric interference at a faster rate. This will enable the Subaru Telescope to be able to capture far images of distant stars that are sharper and subject to less glare. And astronomers will be able to discern the presence of fainter objects that are circling these stars – i.e. exoplanets – with greater ease.

The debris disk detected around a young star HD 36546 using SCExAO/HiCIAO (left, seen nearly edge-on) and its model (right, viewed face-on). Credit: NAOJ

The first discovery made with the SCExAO, took place back in October of 2016. At the time, the Subaru telescope had detected a debris disk around HD 36546 – a 2 solar-mass star in the direction of the Taurus constellation – which appeared almost edge on. Located about twice as far from HD 36546 as the Kuiper Belt is from our Sun, this disk is believed to be the youngest debris disk ever observed (3 to 10 million years old).

This test of the SCExAO not only revealed a disk that could be critical to studying the earliest stages of icy planet formation, but demonstrated the extreme sensitivity of the technology. Basically, it allowed the astronomers conducting the study to rule out the existence of any planets in the system, thus concluding that planetary dynamics played no role in sculpting the disk.

More recently, the SCExAO instrument managed to directly detect multiple planets in the system known as HR 8799, which it observed in July of 2016. Prior to this, some of the systems four planets were spotted by surveys conducted using the Keck and the Subaru telescope (before the SCExAO was incorporated). However, these surveys could not correct for all the glare coming from HR 8799, and could only image two of three of the planets as a result.

A follow-up was conducted in the Fall of 2016, combining data from the SCExAO with that obtained by the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). This resulted in even clearer detection of the system’s inner three planets, not to mention high-quality spectrographic data that could allow researchers to determine the chemical compositions of their atmospheres.

The star and multiple planet system HR 8799 imaged using the SCEAO and the HiCIAO camera (left) and the Keck facility AO system coupled with the NIRC2 camera (right). Credit: NAOJ

As Dr. Olivier Guyon, the head of the SCExAO project, explained, this is a major improvement over other AO surveys. It also presents some major advantages when it comes to exoplanet hunting. “With SCExAO, we know not only the presence of a planet but also its character such as whether it is cloudy and what molecules it has, even if that planet is tens of trillions of miles away.”

Looking at the year ahead, the SCExAO is scheduled to undergo improvements that will allow it to detect planets that are 10 to 10o times fainter than what it can right now. The CHARIS instrument is also scheduled for additional engineering tests to improve its capabilities. These improvements are also expected to be incorporated into next-generation telescopes like the Thirty Meter Telescope – which is currently under construction at Mauna Kea.

Other recently-commissioned extreme AO instruments include the Gemini Planet Imager (GPI) at Gemini Observatory on its telescope in Chile, the Spectro-Polarimetric High-contrast Exoplanet Research (SPHERE) on Very Large Telescope (VLT) in Chile, and the AO system on the Large Binocular Telescope (LBT) in Arizona. And these are only some of the current attempts to reduce interference and make exoplanets easier to detect.

For instance, coronagraph are another way astronomers are attempting to refine their search efforts. Consisting of tiny instruments that are fitted inside telescopes, coronagraphs block the incoming light of a star, thus enabling telescopes to spot the faint light being reflected from orbiting planets. When paired with spectrometers, scientists are able to conduct studies of these planet’s atmospheres.

An artist's illustration of the Starshade deployed near its companion telescope. Image: NASA
An artist’s illustration of the Starshade deployed near its companion space telescope. Credit: NASA

And then you have more ambitious projects like Starshade, a concept currently being developed by Northrop Grumman with the support of NASA’s Jet Propulsion Laboratory. This concept calls for a giant, flower-shaped screen that would be launched with one of NASA’s next-generation space telescopes. Once deployed, it would fly around in front of the telescope in order to obscure the light coming from distant stars.

The era of exoplanet discovery loometh! In the coming decades, we are likely to see an explosion in the number of planets were are able to observe directly. And in so doing, we can expect the number of potentially habitable exoplanets to grow accordingly.

Further Reading: NAOJ/Subaru Telescope

The Cassiopeia Constellation

The familiar W patterns of the Cassiopeia constellation. Credit & Copyright: Rogelio Bernal Andreo (Deep Sky Colors)

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with the “keel of the ship”, the Carina constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of the most famous of these constellations is Cassiopeia, which is easily recognized by its W-shape in the sky. As one of the 48 constellation included in the Almagest, it is now one of the 88 modern constellations recognized by the IAU. Located in the norther sky opposite of the Big Dipper (Ursa Major), it is bordered by Camelopardalis, Cepheus, Lacerta, Andromeda and Perseus.

Name and Meaning:

In mythology, Cassiopeia the wife of King Cepheus and the queen of the mythological Phoenician realm of Ethiopia. Her name in Greek means “she whose words excel”, and she was renowned for her beauty but also her arrogance. This led to her downfall, as she boasted that both she and her daughter Andromeda were more beautiful than all the Nereids – the nymph-daughters of the sea god Nereus.

Cassiopeia in her chair, as depicted in Urania’s Mirror. Credit: Sidney Hall/United States Library of Congress

This led the Nerieds to unleash the wrath of Poseidon upon the kingdom of Ethiopia.Accounts differ as to whether Poseidon decided to flood the whole country or direct the sea monster Cetus to destroy it. In either case, trying to save their kingdom, Cepheus and Cassiopeia consulted a wise oracle, who told them that the only way to appease the sea gods was to sacrifice their daughter.

Accordingly, Andromeda was chained to a rock at the sea’s edge and left there to helplessly await her fate at the hands of Cetus. But the hero Perseus arrived in time, saved Andromeda, and ultimately became her husband. Since Poseidon thought that Cassiopeia should not escape punishment, he placed her in the heavens in such a position that, as she circles the celestial pole, she is upside-down for half the time.

History of Observation:

Cassiopeia was one of the traditional constellations included by Ptolemy in his 2nd century CE tract, the Almagest.  It also figures prominently in the astronomical and astrological traditions of the Polynesian, Indian, Chinese and Arab cultures. In Chinese astronomy, the stars forming the constellation Cassiopeia are found among the areas of the Purple Forbidden enclosure, the Black Tortoise of the North, and the White Tiger of the West.

Chinese astronomers also identified various figures in its major stars. While Kappa, Eta, and Mu Cassopeiae formed a constellation called the Bridge of the Kings, when combined with  Alpha and Beta Cassiopeiae – they formed the great chariot Wang-Liang. In Indian astronomy, Cassiopeia was associated with the mythological figure Sharmishtha – the daughter of the great Devil (Daitya) King Vrishparva and a friend to Devavani (Andromeda).

Kappa Cassiopeiae and its bow shock. Spitzer infrared image (NASA/JPL-Caltech)

Arab astronomers also associated Cassiopeia’s stars with various figures from their mythology. For instance, the stars of Alpha, Beta, Gamma, Delta, Epsilon and Eta Cassiopeiae were often depicted as the “Tinted Hand” in Arab atlases – a woman’s hand dyed red with henna, or the bloodied hand of Muhammad’s daughter Fatima. The arm was made up of stars from the neighboring Perseus constellation.

Another Arab constellation that incorporated the stars of Cassiopeia was the Camel. Its head was composed of Lambda, Kappa, Iota, and Phi Andromedae; its hump was Beta Cassiopeiae; its body was the rest of Cassiopeia, and the legs were composed of stars in Perseus and Andromeda.

In November of 1572, astronomers were stunned by the appearance of a new star in the constellation – which was later named Tycho’s Supernova (SN 1572), after astronomer Tycho Brahe who recorded its discovery. At the time of its discovery, SN1572 was a Type Ia supernova that actually rivaled Venus in brightness. The supernova remained visible to the naked eye into 1574, gradually fading until it disappeared from view.

The “new star” helped to shatter stale, ancient models of the heavens by demonstrating that the heavens were not “unchanging”. It helped speed the the revolution that was already underway in astronomy and also led to the production of better astrometric star catalogues (and thus the need for more precise astronomical observing instruments).

Star map of the constellation Cassiopeia showing the position (labelled I) of the supernova of 1572. Credit: Wikipedia Commons

To be fair, Tycho was not even close to being the first to observe the 1572 supernova, as his contemporaries Wolfgang Schuler, Thomas Digges, John Dee and Francesco Maurolico produced their own accounts of its appearance. But he was apparently the most accurate observer of the object and did extensive work in both observing the new star and in analyzing the observations of many other astronomers.

Notable Features:

This zig-zag shaped circumpolar asterism consists of 5 primary stars (2 of which are the most luminous in the Milky Way Galaxy) and 53 Bayer/Flamsteed designated stars. It’s brightest star – Beta Cassiopeiae, otherwise known by its traditional name Caph – is a yellow-white F-type giant with a mean apparent magnitude of +2.28. It is classified as a Delta Scuti type variable star and its brightness varies from magnitude +2.25 to +2.31 with a period of 2.5 hours.

Now move along the line to the next bright star – Alpha. Its name is Schedar and its an orange giant (spectral type K0 IIIa), a type of star cooler but much brighter than our Sun. In visible light only, it is well over 500 times brighter than the Sun. According to the Hipparcos astrometrical satellite, distance to the star is about 230 light years (or 70 parsecs).

Continue up the line for Eta, marked by the N shape and take a look in a telescope. Eta Cassiopeiae’s name is Achird and its a multiple is a star system 19.4 light years away from Earth. The primary star in the Eta Cassiopeiae system is a yellow dwarf (main sequence star) of spectral type G0V, putting it in the same spectral class as our Sun, which is of spectral type G2V. It therefore resembles what our Sun might look like if we were to observe it from Eta Cassiopeiae.

Mosaic image of Cassiopeia A, a supernova remnant, taken by the Hubble and Spitzer Space Telescopes. Credit: NASA/JPL-Caltech/STScI/CXC/SAO

The star is of apparent magnitude 3.45. The star has a cooler and dimmer (magnitude 7.51) orange dwarf companion of spectral type K7V. Based on an estimated semi major axis of 12″ and a parallax of 0.168 mas, the two stars are separated by an average distance of 71 AU. However, the large orbital eccentricity of 0.497 means that their periapsis, or closest approach, is as small as 36 AU.

The next star in line towards the pole is Gamma, marked by the Y shape. Gamma Cassiopeiae doesn’t have a proper name, but American astronaut Gus Grissom nicknamed it “Navi” since it was an easily identifiable navigational reference point during space missions. The apparent magnitude of this star was +2.2 in 1937, +3.4 in 1940, +2.9 in 1949, +2.7 in 1965 and now it is +2.15. This is a rapidly spinning star that bulges outward along the equator. When combined with the high luminosity, the result is mass loss that forms a disk around the star.

Gamma Cassiopeiae is a spectroscopic binary with an orbital period of about 204 days and an eccentricity alternately reported as 0.26 and “near zero.” The mass of the companion is believed to be comparable to our Sun (Harmanec et al. 2000, Miroschnichenko et al. 2002). Gamma Cas is also the prototype of a small group of stellar sources of X-ray radiation that is about 10 times higher that emitted from other B or Be stars, which shows very short term and long-term cycles.

Now move over to Delta Cassiopeiae, the figure 8. It’s traditional name is Ruchbah, the “knee”. Delta Cassiopeiae is an eclipsing binary with a period of 759 days. Its apparent magnitude varies between +2.68 mag and +2.74 with a period of 759 days. It is of spectral class A3, and is approximately 99 light years from Earth.

Gamma Cassiopeiae. Credit & Copyright: Noel Carboni/Greg Parker, New Forest Observatory

Last in line on the end is Epsilon, marked with the backward 3. Epsilon Cassiopeiae’s tradition name is Segin. It is approximately 441 light years from Earth. It has an apparent magnitude of +3.38 and is a single, blue-white B-type giant with a luminosity 720 times that of the Sun.

Finding Cassiopeia:

Cassiopeia constellation is located in the first quadrant of the northern hemisphere (NQ1) and is visible at latitudes between +90° and -20°. It is the 25th largest constellation in the night sky and is best seen during the month of November. Due to its distinctive shape and proximity to the Big Dipper, it is very easy to find. And the constellation has plenty of stars and Deep Sky Objects that can be spotted using a telescope or binoculars.

First, let’s begin by observing Messier 52. This one’s easiest found first in binoculars by starting at Beta, hopping to Alpha as one step and continuing the same distance and trajectory as the next step. M52 (NGC 7654) is a fine open cluster located in a rich Milky Way field. The brightest main sequence star of this cluster is of mag 11.0 and spectral type B7.

Two yellow giants are brighter: The brightest is of spectral type F9 and mag 7.77, the other of type G8 and mag 8.22. Amateurs can see M52 as a nebulous patch in good binoculars or finder scopes. In 4-inch telescopes, it appears as a fine, rich compressed cluster of faint stars, often described as of fan or “V” shape; the bright yellow star is to the SW edge. John Mallas noted “a needle-shaped inner region inside a half-circle.” M52 is one of the original discoveries of Charles Messier, who cataloged it on September 7, 1774 when the comet of that year came close to it.

The location of the Cassiopeia constellation in the northern sky. Credit: IAU/Sky&Telescope magazine

For larger telescopes, situated about 35′ southwest of M52 is the Bubble Nebula NGC 7635, a diffuse nebula which appears as a large, faint and diffuse oval, about 3.5×3′ around the 7th-mag star HD 220057 of spectral type B2 IV. It is difficult to see because of its low surface brightness. Just immediately south of M52 is the little conspicuous open cluster Czernik 43 (Cz 43).

Now let’s find Messier 103 by returning to Delta Cassiopeiae. In binoculars, M103 is easy to find and identify, and well visible as a nebulous fan-shaped patch. Mallas states that a 10×40 finder resolves the cluster into stars; however, this is so only under very good viewing conditions. The object is not so easy to identify in telescopes because it is quite loose and poor, and may be confused with star groups or clusters in the vicinity.

But telescopes show many fainter member stars. M103 is one of the more remote open clusters in Messier’s catalog, at about 8,000 light years. While you are there, enjoy the other small open clusters that are equally outstanding in a telescope, such as NGC 659, NGC 663 and NGC 654. But, for a real star party treat, take the time to go back south and look up galactic star cluster NGC 457.

It contains nearly one hundred stars and lies over 9,000 light years away from the Sun. The cluster is sometimes referred by amateur astronomers as the Owl Cluster, or the ET Cluster, due to its resemblance to the movie character. Those looking for a more spectacular treat should check out NGC 7789 –  a rich galactic star cluster that was discovered by Caroline Herschel in 1783. Her brother William Herschel included it in his catalog as H VI.30.

Chandra image of the Supernova remnant of Tycho’s Nova. Credit: NASA/CXC/Rutgers/J.Warren & J.Hughes et al.

This cluster is also known as “The White Rose” Cluster or “Caroline’s Rose” Cluster because when seen visually, the loops of stars and dark lanes look like the swirling pattern of rose petals as seen from above. At 1.6 billion years old, this cluster of stars is beginning to show its age. All the stars in the cluster were likely born at the same time but the brighter and more massive ones have more rapidly exhausted the hydrogen fuel in their cores.

Are you interested in faint nebulae? Then try your luck with IC 59. One of two arc-shaped nebulae (the other is IC 63) that are associated with the extremely luminous star Gamma Cassiopeiae. IC 59 lies about 20′ to the north of Gamma Cas and is primarily a reflection nebula. Other faint emission nebulae include the “Heart and Soul” (LBN 667 and IC 1805) which includes wide open star clusters Collider 34 and IC 1848.

Of course, no trip through Cassiopeia would be complete without mentioning Tycho’s Star! Given the role this “new star” played in the history of astronomy (and as one of only 8 recorded supernovas that was visible with the naked eye), it is something no amateur astronomer or stargazer should pass up!

While there is no actual meteoroid stream associated with the constellation of Cassiopeia, there is a meteor shower which seems to emanate near it. On August 31st the Andromedid meteor shower peaks and its radiant is nearest to Cassiopeia. Occasionally this meteor shower will produce some spectacular activity but usually the fall rate only averages about 20 per hour. There can be some red fireballs with trails. Biela’s Comet is the associated parent with the meteor stream.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources: