The Carina Constellation

Argo Navis constellation map. Credit: Constellation Guide/Torsten Bronger

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with the “keel of the ship”, the Carina constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these constellations, known as Argo Navis, would eventually be divided into three asterism  – one of which became the southern constellations of Carina. Bordered by the Vela, Puppis, Pictor, Volans, Chamaeleon, Musca and Centaurus constellations, Carina is one of 88 modern constellations that are currently recognized by the IAU.

Name and Meaning:

The stellar southern constellation Carina is part of the ancient constellation known as Argo Navis. It is now abbreviated and represents the “Keel”. While Carina has no real mythological connection, since its stars weren’t visible to the ancient Greeks and Romans, it does have a fascinating history. Argo Navis (or simply Argo) was a large southern constellation representing the Argo, the ship used by Jason and the Argonauts in Greek mythology.

Johannes Hevelius’ Argo Navis from Uranographia (1690). Credit: NASA/Chandra/Harvard University

The Argo was built by the shipwright Argus, and its crew were specially protected by the goddess Hera. The best source for the myth is the Argonautica by Apollonius Rhodius. According to a variety of sources of the legend, the Argo was said to have been planned or constructed with the help of Athena.

According to other legends it contained in its prow a magical piece of timber from the sacred forest of Dodona, which could speak and render prophecies. After the successful journey, the Argo was consecrated to Poseidon in the Isthmus of Corinth. It was then translated into the sky and turned into the constellation of Argo Navis. The abbreviation for it was “Arg”, and the genitive was “Argus Navis”.

History of Observation:

Carina is the only one of Ptolemy’s list of 48 constellations that is no longer officially recognized as a constellation. In 1752, French astronomer Nicolas Louis de Lacaille subdivided Argo Navis into Carina (the keel of the ship), Puppis (the Poop deck), and Vela (the sails). Were this still considered to be a single constellation, it would be the largest of all, being larger than Hydra.

When Argo Navis was split, its Bayer designations were also split. Whereas Carina got the Alpha, Beta and Epsilon stars, Vela got Gamma and Delta, Puppis got Zeta, and so on. The constellation Pyxis occupies an area which in antiquity was considered part of Argo’s mast. However, Pyxis is not typically considered part of Argo Navis, and in particular its Bayer designations are separate from those of Carina, Puppis and Vela.

Canopus (alpha Carinae), the brightest star in the Carina constellation and the second brightest star in the night sky. Credit: NASA

Notable Features:

The Carina constellation consists of 9 primary stars and has 52 Bayer/Flamsteed designated stars. It’s alpha star, Canopus, is not only he brightest star in the constellation, but the second brightest in the night sky (behind Sirius). This F-type giant is 13,600 times brighter than our Sun, with an apparent visual magnitude of -0.72 and an absolute magnitude of -5.53.

The name is the Latinized version of the Greek name Kanobos, presumably derived from the pilot of the shop that took Menelaus of Sparta to Troy to retrieve Helen in The Iliad. It is also known by its Arabic name, Suhail, which is derived from the Arabic name for several bright stars.

Before the launching of the Hipparcos satellite telescope, distance estimates for the star varied widely, from 96 light years to 1200 light years. Had the latter distance been correct, Canopus would have been one of the most powerful stars in our galaxy. Hipparcos established Canopus as lying 310 light years (96 parsecs) from our solar system; this is based on a parallax measurement of 10.43 ± 0.53 mas.

The difficulty in measuring Canopus’ distance stemmed from its unusual nature. Canopus is too far away for Earth-based parallax observations to be made, so the star’s distance was not known with certainty until the early 1990s. Canopus is 15,000 times more luminous than the Sun and the most intrinsically bright star within approximately 700 light years.

Sky as seen from central South America showing the approximate location of the new comet on August 19 in Puppis near the bright star Canopus. Credit: Stellarium

For most stars in the local stellar neighborhood, Canopus would appear to be one of the brightest stars in the sky. Canopus is outshone by Sirius in our sky only because Sirius is far closer to the Earth (8 light years). Its surface temperature has been estimated at 7350 ± 30 K and its stellar diameter has been measured at 0.6 astronomical units 65 times that of the sun.

If it were placed at the centre of the solar system, it would extend three-quarters of the way to Mercury. An Earth-like planet would have to lie three times the distance of Pluto! Canopus is part of the Scorpius-Centaurus Association, a group of stars which share similar origins.

Next up is Miaplacidus (beta Carinae), an A-type subgiant located approximately 111 light years from Earth. It is the second brightest star in the constellation and the 29th brightest star in the sky. The star’s name means “placid waters”, which is derived from the combination of the Arabic word for waters (miyah) and the Latin word for placid (placidus).

Then there’s Eta Carinae, a luminous blue variable (LBV) binary star that is between 7,500 and 8,000 light years distant from Earth. The combined luminosity of this system is four million times that of our Sun, and the most massive star in the system has between 120 and 250 Solar Masses. It is sometimes known by its traditional names, Tseen She (“heaven’s altar” in Chinese) and Foramen.

Eta Carinae, one of the most massive stars known. Image credit: NASA
Eta Carinae, one of the most massive stars in the known Universe. Credit: NASA

Also, it is believed that Eta Carinae will explode in the not-too-distant future, and it will be the most spectacular supernovae humans have ever seen. This supernova (or hypernova) might even affect Earth, since the star is only 7,500 light years away, causing disruption to the upper layers of the atmosphere, the ozone layer, satellites, and spacecraft could be damaged and any astronauts who happen to be in space could be injured.

Avior (epsilon Carinae) is another double star system, consisting of a K0 III class orange giant and a hot hydrogen-fusing B2 V  blue dwarf. With an apparent magnitude of 1.86 and is 630 light years distant, it is the 84th brightest star in the sky.  The name Avior was assigned in the late 1930s by Her Majesty’s Nautical Almanac Office as a navigational aid, at the request of the Royal Air Force.

Aspidiske (aka. Iota Carinae) is a rare spectral type A8 Ib white supergiant located 690 light years from Earth. With a luminosity of 4,900 Suns (and seven Solar Masses), it is the 68th brightest star in the sky and is estimated to be around 40 million years old. It is known by the names Aspidiske, Turais and Scutulum, all diminutives of the word “shield,” (in Greek, Arabic and Latin, respectively).

Since the Milky Way runs through Carina, there are a large number of Deep Sky Objects associated with it. For instance, there’s the Carina Nebula (aka. the Eta Carinae Nebula, NGC 3372), a large nebula surrounding the massive stars Eta Carinae and HD 93129A. In addition to being four time as bright as the Orion Nebula (Messier 42), it is one of the largest diffuse nebulae known.

The Eta Carinae Nebula, one of the largest nebulae in the known Universe. Credit: ESO, IDA, Danish 1.5 m, R. Gendler, J-E. Ovaldsen, C. Thöne, and C. Feron

The nebula is between 6,500 and 10,000 light years from Earth, and has an apparent visual magnitude of 1.0. It contains several O-type stars (extremely luminous hot, bluish stars, which are very rare). The first recorded observation of this nebula was made by the French astronomer Nicolas Louis de Lacaille in 1751-52, who observed it from the Cape of Good Hope.

The Carina Nebula contains two smaller nebulae – the Homunculus Nebula and the Keyhole Nebula. The Keyhole Nebula – a small, dark cloud of dust and with bright filaments of fluorescent gas, was named by John Herschel in the 19th century. It is about seven light years in diameter, and appears contrasted against the bright nebula in the background.

The Homunculus Nebula (Latin for “Little Man”) is an emission nebula embedded within the Eta Carinae Nebula, immediately surrounding the star Eta Carinae. The nebula is believed to have formed after an enormous outburst from the star, which coincided with Eta Carinae becoming the second brightest star in the night sky. The light of this outburst was visible from Earth by 1841.

There’s also the Theta Carinae Cluster (aka. the Southern Pleiades, because of its resemblance to the Pleiades cluster. This open cluster was discovered by Lacaille in 1751,  is located approximately 479 light years from Earth and is visible to the naked eye. The brightest star in the cluster, as the name indicates, is Theta Carinae, a blue-white dwarf.

The Keyhole Nebula, part of the larger Carina Nebula. Credit: NASA/The Hubble Heritage Team (AURA, STScI)

Then there’s the Wishing Well Cluster (aka. NGC 3532), an open cluster in Carina. Approximately 1,321 light years distant, the cluster is composed of about 150 stars that appear through a telescope like silver coins twinkling at the bottom of a wishing well. The cluster lies between the constellation Crux (the Southern Cross) and the False Cross asterism in Carina and Vela, and was first object observed by the Hubble Space Telescope in May 1990.

Finding Carina:

Carina is the 34th largest constellation in the sky, occupying an area of 494 square degrees. It lies in the second quadrant of the southern hemisphere (SQ2) and is visible at latitudes between +20° and -90° and is best seen during the month of March. Before you even begin with a telescope or binoculars, be sure to stop and just take a good look at Alpha Carinae – Canopus.

Canopus is essentially white when seen with the naked eye (though F-type stars are sometimes listed as “yellowish-white”). The spectral classification for Canopus is F0 Ia (Ia meaning “bright supergiant”), and such stars are rare and poorly understood; they are stars that can be either in the process of evolving to or away from red giant status. This in turn made it difficult to know how intrinsically bright Canopus is, and therefore how far away it might be.

Since the Milky Way runs through Carina, there are a large number of open clusters in the constellation, making it a binocular observing paradise. NGC 2516 is a magnitude 3.1 open cluster originally discovered by Abbe Lacaille in 1751 with a 1/2″ spyglass. This gorgeous 30 arc minute spread of stars is also known as Caldwell 96 and graces many observing lists, including the Astronomical League Open Cluster, Deep Sky and Southern Observing Clubs.

Location of the Carina Constellation in the southern skies. Credit: IAU/Sky&Telescope magazine

It is commonly known as the “Southern Beehive Cluster” (for it does resemble northern Messier 44) and it contains about 100 stars the brightest of which is an fifth magnitude red giant that lies near the center. As far as stellar age goes, this star cluster is very young – only about 140 million years old!

Now hop to IC 2602, popularly known as the “Southern Pleiades” for is resemblance to northern Messier 45. This galactic cluster contains more than 50 stars and is approximately 500 light years away from Earth. At its heart is blue-white star Theta Carinae, and it can be found by forming a triangle in the sky with Beta and Iota Carinae. With a stellar magnitude of 2.0, this object is easily seen as a nebulous patch to the unaided eye!

Another nebula that can been seen unaided but is better in binoculars is the Homunculus, an emission nebula surrounding the massive star Eta Carinae. The nebula is embedded within a much larger H II region, the Eta Carinae Nebula. Even though Eta Carinae is about 7,500 light-years away, structures only 10 billion miles across (about the diameter of our solar system) can be distinguished.

Dust lanes, tiny condensations, and strange radial streaks all appear with unprecedented clarity. Excess violet light escapes along the equatorial plane between the bipolar lobes. While there is relatively little dusty debris between the lobes down by the star; most of the blue light is able to escape. The lobes, on the other hand, contain large amounts of dust which absorb blue light, causing the lobes to appear reddish.

The gas pillar in the Carina Nebula, known as the “Mystic Mountain”. Credit: NASA/ESA/M. Livio and the Hubble 20th Anniversary Team (STScI)

The Eta Carinae Nebula, or NGC 3372 itself is fascinating. It is a hypergiant luminous blue variable star in the Carina constellation, one of the most massive stars yet discovered. Because of its mass and the stage of life, it is expected to explode in a supernova in the “near” future. Stars in the stellar mass class of Eta Carinae, with more than 100 times the mass of the Sun, produce more than a million times as much light as the Sun.

They are quite rare — only a few dozen in a galaxy as big as the Milky Way. They are assumed to approach (or potentially exceed) the Eddington limit, i.e., the outward pressure of their radiation is almost strong enough to counteract gravity. Stars that are more than 120 solar masses exceed the theoretical Eddington limit, and their gravity is barely strong enough to hold in their radiation and gas.

Now hop just three degrees away to NGC 3532 – known as the “Wishing Well Cluster”. This open star cluster is one of the jewels of the southern sky and is also referred to as Caldwell 91 and is on many observing lists. Want another? Try globular cluster NGC 2808, also known as Bennett 41. Beautiful NGC 2808 is a fine example of a symmetrical and strongly compressed globular cluster.

Viewable in binoculars and totally resolvable in a 6″ telescope, this is another of Dreyer’s remarkable objects described as very large extremely rich, and gradually reaching an extremely condensed status in the middle. NGC 2808 contains thousands of magnitude 13-15 stars!

The NGC 2808 star cluster, Credit: NASA, ESA, A. Sarajedini (University of Florida) and G. Piotto (University of Padova)

For double star fans, take on Epsilon Carinae, also known by the name Avior. Epsilon Carinae is a binary star located 630 light years away from our solar system. The primary component is a dying orange giant of spectral class K0 III, and the secondary is a hot hydrogen-fusing blue dwarf of class B2 V. The stars regularly eclipse each other, leading to brightness fluctuations on the order of 0.1 magnitudes.

Now try Upsilon Carinae – part of the Diamond Cross asterism in southern Carina. It’s name is Vathorz Prior, a name of Old Norse-Latin origin meaning “Preceding One of the Waterline”. Located approximately 1623 light years from Earth, the star system is made of two components. Upsilon Carinae A, is a white A-type supergiant with an apparent magnitude of +3.01 while its companion, Upsilon Carinae B, is a blue-white B-type giant 5 arc seconds away.

But no constellation would be complete without a true telescope challenge. Planetary nebula NGC 3211 (RA 10h 17m 50.4s Dec -62° 40´ 12″) heralds in at about 12th magnitude. For even more fun, try NGC 2867 (R.A. 09h 21m 25.3s Dec. -58° 18′ 40.7″). You’ll find it about a degree north/northeast of Iota. Iota Carinae. NGC 2867 may be no more than 2,750 years old.

Strangely, it is one of only a few dozen objects known to have a Wolf-Rayet star (type WC6) as its central star. NGC 2867 was discovered by John Herschel from Felhausen observatory at the Cape of Good Hope on April’s Fools Day, 1834 – appropriate since Herschel was almost fooled into thinking it was a new planet. Its size and appearance were certainly planet-like and it was only after careful checking that Herschel was convinced it was a nebula.

The NGC 3247 nebur. Credit NASA/JPL-Caltech/E. Churchwell (University of Wisconsin)

Now try NGC 3247 (RA 10 : 25.9 Dec -57 : 56 ). This is a very cool, very small galactic cluster with associated nebulosity. At around magnitude 8, you won’t find the rich little cluster much of a problem, but use minimal magnifcation to appreciate the true field!

While at the telescope, also look up NGC 3059 (9 : 50.2 Dec -73 : 55). Now, we’ve got a spiral galaxy cutting its way through the dust of the Milky Way! With an apparent magnitude of 12, and a 3.2 arc minute diameter, this barred spiral galaxy is going to present a nice, unique challenge to southern hemisphere observers.

There are myriad other things to look at in Carina as well, so don’t see this lovely constellation short! There is also a meteor shower associated with the constellation of Carina, too. The Eta Carinids are a lesser known meteor shower lasting from January 14 to 27 each year. The activity peaks on or about January 21. It was first discovered in 1961 in Australia. Roughly two to three meteors occur per hour at its maximum. It gets its name from the radiant which is close to the nebulous star Eta Carinae.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Source:

Adventures With “Copyscope”

Credit: Dave Dickinson
Presenting… Copyscope. Image credit: Dave Dickinson

Every telescope has a story to tell, and our discovery of Copyscope sent us on an interesting detective tale. We returned back to the U S of A recently, and one of our first tasks upon re-establishing our lives back in Florida was to dig through the archaeological strata that is our storage unit. Headlamp on and Leatherman in hand, we worked our way hacking through layers put in place over years of storage unit drop-off runs.

On one hand, it’s like Xmas all over again, as you rediscover all your stuff anew. But on the other, you realize when you travel long term just how much you can really do without.

Of course, I was eager to dig my telescopes out. I make do with our trusty pair of image-stabilized Canon 15×45’s on the road, but I was ready to get the REAL telescopes back in action. It was then I discovered an interesting piece of telescope making history that I’d inherited for 20$ a few years back.

Now, Amateur Telescope Makers (ATMs) build some pretty amazing things. Before the 1950s and the advent of mass market commercial telescopes, if you wanted an astronomical telescope, you had to build yourself. But a majority of amateur built telescopes are reflectors, as large mirrors are much easier to grind than lenses. ATM-made refractors are almost unheard of.

The body of Copyscope, with the eyepiece removed. Credit: Dave Dickinson

I scarcely knew such a beast existed. A friend of mine pulled a short tube refractor out of the back of his pickup truck and asked if I knew anyone that would give this strange homemade telescope a home.

Now, I didn’t build Copyscope, though I wish I had. I did once build a 5 ½” Newtonian telescope out of surplus parts and a stovepipe for about 20$. As the name suggests, Copyscope is built out of plumbing fixtures, brackets and scrap bench stock around an old photocopier lens. Old timers will remember the temperamental type of pre-laser printer copier we’re talking about, one that might as easily smeared ink all over your resume copies, or spit them out like confetti.

The battered exterior of Copyscope. Credit: Dave Dickinson

Its pedigree a mystery, Copyscope sent me digging into ye ole web, looking for others of its ilk. In addition to several older websites citing similar creations, the search led me back to a 1986 May edition of Astronomy magazine and an article by Ken Bird detailing the construction of just such an instrument, using a surplus photocopier lens and plumbing fixtures. Another resource often cited is an October 1990 article in Sky and Telescope magazine entitled The Tuneable Finderscope. Much like the first caveman who was hungry enough to try eating rotten grapes, you can imagine way back when the first enterprising ATM with a plumbing background decided to re-purpose a used photocopier lens for astronomy.

Looking down the lens of Copyscope. Image credit: Dave Dickinson

The first thing that struck us is just how heavy Copyscope is. Weighing in at 10 pounds, it seems better suited to hurling cannonballs than portable astronomy. The handle is handy in this regard, though it means that a right angle eyepiece holder is mandatory. Hefty Copyscope is definitely on the heavy end of what a typical camera tripod can tolerate.

Now, a refined high end $10,000 refractor it isn’t: images of bright objects such as the Moon have a decidedly bluish cast through Copyscope, and the baffling occasionally produces internal reflections. Still, the generous wide field of view makes it great for sweeping wide swaths of the sky for fuzzy nebulae or comets. In fact, the viewing experience using a standard 24mm eyepiece is more reminiscent of a binocular view than a telescope, at about two degrees across. Copyscope isn’t great for planetary observing, barely resolving Jupiter and Venus as tiny disks. Still, on the plus side, the field of view is so wide that a finderscope isn’t really needed.

A foggy Last Quarter Moon shot through Copyscope with a handheld Android smartphone. Note the slight chromatic aberration. Credit: Dave Dickinson

Copyscope has a fast focal length of about 300 millimeters (f/3) and – get this – the designer build a variable f/stop diaphragm into the scope body:

The f/stop diaphragm. Credit: Dave Dickinson

The word (initials?) ‘JAX’ on the back end of the scope remain a mystery. Perhaps the original builder was in the habit of naming telescopes. Still, Copyscope shows what weird and wonderful creations spring from the minds of amateur telescope builders, and is a great conversation piece. Any other unique constructions out there? Let us know!

Update: A discussion of Copyscope on Twitter led us to the conclusion that the back part of CopyScope is built around a large PVC reducer (thanks @Wrecksdart!)

Messier 32 – the “Le Gentil” Dwarf Elliptical Galaxy

Color view of M31 (The Andromeda Galaxy), with M32 (a satellite galaxy) shown to the lower left. Credit and copyright: Terry Hancock.

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at dwarf elliptical galaxy known as Messier 32. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the dwarf elliptical galaxy known as Messier 32 (aka. NGC 221). Located about 2.65 million light-years from Earth, in the direction of the Andromeda constellation, this dwarf is actually a satellite galaxy of the massive Andromeda Galaxy (M31). Along with Andromeda, the Milky Way and the Triangulum Galaxy (M33) is a member of the Local Group.

Description:

M32 is an elliptical dwarf galaxy which contains about 3 billion solar masses. While it looks small compared to its massive neighbor, this little guy actually stretches across space some 8,000 light years in diameter. Once you pick it up, you’ll notice it’s really quite bright on its own – and with very good reason – its nucleus is almost identical to M31. Both contain about 100 million solar masses in rapid motion around a central supermassive object!

The dwarf elliptical galaxy Messier 32 (Le Gentil). Credit: Wikisky

As Alister W. Graham wrote in his 2002 study – titled “Evidence for an outer disk in the Prototype `Compact Elliptical’ Galaxy M32“:

“M32 is the prototype for the relatively rare class of galaxies referred to as compact ellipticals. It has been suggested that M32 may be a tidally disturbed r1/4 elliptical galaxy or the remnant bulge of a disk-stripped early-type spiral galaxy reveals that the surface bightness profile, the velocity dispersion measurements, and the estimated supermassive black hole mass in M32 are inconsistent with the galaxy having, and probably ever having had, an r1/4 light profile. Instead, the radial surface brightness distribution of M32 resembles an almost perfect (bulge+exponential disk) profile; this is accompanied by a marked increase in the ellipticity profile and an associated change in the position angle profile where the “disk” starts to dominate. Compelling evidence that this bulge/disk interpretation is accurate comes from the best-fitting r1/n bulge model, which has a Sersic index of n=1.5, in agreement with the recently discovered relation between a bulge’s Sersic index and the mass of a bulge’s supermassive black hole.”

By probing deeply into Messier 32, we’ve learned this little galaxy is home to mainly mature red and yellow stars. And they’re good housekeepers, too… because there’s practically no dust or gas to be found. While this seems neat and tidy, it also means there isn’t any new star formation going on either, but there are signs of some lively doings in the not too distant past.

Because M32 has shared “space” with neighboring massive M31, the strong tidal field of the larger galaxy may have ripped away what once could have been spiral arms – leaving only its central bulge and triggering starburst in the core. As Kenji Bekki (et al) wrote in their 2001 study:

“The origin of M32, the closest compact elliptical galaxy (cE), is a long-standing puzzle of galaxy formation in the Local Group. Our N-body/smoothed particle hydrodynamics simulations suggest a new scenario in which the strong tidal field of M31 can transform a spiral galaxy into a compact elliptical galaxy. As a low-luminosity spiral galaxy plunges into the central region of M31, most of the outer stellar and gaseous components of its disk are dramatically stripped as a result of M31’s tidal field. The central bulge component on the other hand, is just weakly influenced by the tidal field, owing to its compact configuration, and retains its morphology. M31’s strong tidal field also induces rapid gas transfer to the central region, triggers a nuclear starburst, and consequently forms the central high-density and more metal-rich stellar populations with relatively young ages. Thus, in this scenario, M32 was previously the bulge of a spiral galaxy tidally interacting with M31 several gigayears ago. Furthermore, we suggest that cE’s like M32 are rare, the result of both the rather narrow parameter space for tidal interactions that morphologically transform spiral galaxies into cE’s and the very short timescale (less than a few times 109 yr) for cE’s to be swallowed by their giant host galaxies (via dynamical friction) after their formation.”

Messier 31 (the Andromeda Galaxy), along with Messier 32 and Messier 110. Credit: Wikisky

History of Observation:

M32 was discovered by Guillaume Le Gentil on October 29th, 1749 and became the first elliptical galaxy ever observed. Although it wasn’t cataloged by Charles Messier until August 3rd, 1764, he had also seen it some seven years earlier while studying at the Paris Observatory, but his notes had been suppressed. But no matter, for he made sure to include it in his notes with a drawing! As he wrote of the object:

“I have examined in the same night [August 3 to 4, 1764], and with the same instruments, the small nebula which is below and at some [arc] minutes from that in the girdle of Andromeda. M. le Gentil discovered it on October 29, 1749. I saw it for the first time in 1757. When I examined the former, I did not know previously of the discovery which had been made by M. Le Gentil, although he had published it in the second volume of the Memoires de Savans erangers, page 137. Here is what I found written in my journal of 1764. That small nebula is round and may have a diameter of 2 minutes of arc: between that small nebula and that in the girdle of Andromeda one sees two small telescopic stars. In 1757, I made a drawing of that nebula, together with the old one, and I have not found and change at each time I have reviewed it: One sees with difficulty that nebula with an ordinary refractor of three feet and a half; its light is fainter than that of the old one, and it doesn’t contain any star. At the passage of that new nebula through the Meridian, comparing it with the star Gamma Andromedae, I have determined its position in right ascension as 7d 27′ 32″, and its declination as 38d 45′ 34″ north.”

Later, Messier 32 would be examined again, this time by Admiral Symth who said:

“An overpowering nebula, with a companion about 25′ in the south vertical M32 … The companion of M31 was discovered in November, 1749, by Le Gentil, and was described by him as being about an eighth of the size of the principal one. The light is certainly more feeble than here assigned. Messier – whose No. 32 it is – observed it closely in 1764, and remarked, that no change had taken place since the time of its being first recorded. In form it is nearly circular. The powerful telescope of Lord Rosse is a reflector of three feet in diameter, of performance hitherto unequalled. It was executed by the Earl of Rosse, under a rare union of skill, assiduity, perseverance, and muniference. The years of application required to accomplish this, have not worn his Lordship’s zeal and spirit; like a giant refreshed, he has returned to his task, and is now occupied upon a metallic disc of no less than six feet in diameter. Should the figure of this prove as perfect as the present one, we may soon over-lap what many absurdly look upon as the boundaries of the creation.”

The location of Messier 32 location in the Andromeda constellation. Credit: Roberto Mura

Locating Messier 32:

Locating M32 is as easy as locating the Andromeda Galaxy, but it will require large binoculars or at least a small telescope to see. Even under moderately light polluted skies the Great Andromeda Galaxy can be easily be found with the unaided eye – if you know where to look. Seasoned amateur astronomers can literally point to the sky and show you the location of M31, but perhaps you have never tried to find it.

Believe it or not, this is an easy galaxy to spot even under the moonlight. Simply identify the large diamond-shaped pattern of stars that is the Great Square of Pegasus. The northernmost star is Alpha, and it is here we will begin our hop. Stay with the northern chain of stars and look four finger widths away from Alpha for an easily seen star.

The next along the chain is about three more finger widths away… And we’re almost there. Two more finger widths to the north and you will see a dimmer star that looks like it has something smudgy nearby. Point your binoculars there, because that’s no cloud – it’s the Andromeda Galaxy!

Now aim your binoculars or telescope its way… Perhaps one of the most outstanding of all galaxies to the novice observer, M31 spans so much sky that it takes up several fields of view in a larger telescope, and even contains its own clusters and nebulae with New General Catalog designations. If you have larger binoculars or a telescope, you will be able to pick up M31’s two companions – M32 and M110. Messier 32 is the elliptical galaxy to the south.

Why not stretch your own boundaries? Go observing! Halton Arp included Messier 32 as No. 168 in his Catalogue of Peculiar Galaxies. It’s bright, easy and fun! And here are the quick facts on this Messier Object to help you get started:

Object Name: Messier 32
Alternative Designations: M32, NGC 221
Object Type: Type E2, Elliptical Galaxy
Constellation: Andromeda
Right Ascension: 00 : 42.7 (h:m)
Declination: +40 : 52 (deg:m)
Distance: 2900 (kly)
Visual Brightness: 8.1 (mag)
Apparent Dimension: 8×6 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Mars Curiosity Rolls Up to Potential New Meteorite

This peculiar rock, photographed on Jan. 12 (Sol 1577) by NASA's Curiosity rover, appears to be a metal meteorite. When confirmed, this will be the rover's third meteorite find on the Red Planet. Click for the high resolution original. Credit: NASA/JPL-Caltech/MSSS
This peculiar rock, photographed on Jan. 12 (Sol 1577) by NASA’s Curiosity rover, appears to be a metal meteorite. When confirmed, this would be the rover’s third meteorite find on the Red Planet. Click for the high resolution original. Credit: NASA/JPL-Caltech/MSSS

Rolling up the slopes of Mt. Sharp recently, NASA’s Curiosity rover appears to have stumbled across yet another meteorite, its third since touching down nearly four and a half years ago. While not yet confirmed, the turkey-shaped object has a gray, metallic luster and a lightly-dimpled texture that hints of regmaglypts. Regmaglypts, indentations that resemble thumbprints in Play-Doh, are commonly seen in meteorites and caused by softer materials stripped from the rock’s surface during the brief but intense heat and pressure of its plunge through the atmosphere.

Closeup showing laser zap pits. Credit: NASA/JPL-Caltech/MSSS

Oddly, only one photo of the assumed meteorite shows up on the Mars raw image site. Curiosity snapped the image on Jan. 12 at 11:21 UT with its color mast camera. If you look closely at the photo a short distance above and to the right of the bright reflection a third of the way up from the bottom of the rock, you’ll spy three shiny spots in a row. Hmmm. Looks like it got zapped by Curiosity’s ChemCam laser. The rover fires a laser which vaporizes part of the meteorite’s surface while a spectrometer analyzes the resulting cloud of plasma to determine its composition. The mirror-like shimmer of the spots is further evidence that the gray lump is an iron-nickel meteorite.

Meet Egg Rock, another iron-nickel meteorite and Curiosity’s second meteorite find. The white spots/holes are where the object was zapped by the rover’s laser to determine its composition. The rover spotted Egg Rock (about the size of a golfball) on Oct. 27, 2016. Credit: NASA/JPL-Caltech

Curiosity has driven more than 9.3 miles (15 km) since landing inside Mars’ Gale Crater in August 2012. It spent last summer and part of fall in a New Mexican-like landscape of scenic mesas and buttes called “Murray Buttes.” It’s since departed and continues to climb to sequentially higher and younger layers of the lower part of Mt. Sharp to investigate additional rocks. Scientists hope to create a timeline of how the region’s climate changed from an ancient freshwater lake environment with conditions favorable for microbial life (if such ever evolved) to today’s windswept, frigid desert.

Assuming the examination of the rock proves a metallic composition, this new rock would be the eighth discovered by our roving machines. All of them have been irons despite the fact that at least on Earth, iron meteorites are rather rare. About 95% of all found or seen-to-fall meteorites are the stony variety (mostly chondrites), 4.4% are irons and 1% stony-irons.

Curiosity found this iron meteorite called “Lebanon” back in 2014. It’s about two yards or two meters wide (left to right). The smaller piece in the foreground is named “Lebanon B. This photo combines a series of high-resolution circular images across the middle taken by the Remote Micro-Imager (RMI) with a MastCam image. Credit: NASA/JPL-Caltech/LANL/CNES/IRAP/LPGNantes/CNRS/IAS/MSSS

NASA’s Opportunity rover found five metal meteorites, and Curiosity’s rumbled by its first find, a honking hunk of metallic gorgeousness named Lebanon, in May 2014. If this were Earth, the new meteorite’s smooth, shiny texture would indicate a relatively recent fall, but who’s to say how long it’s been sitting on Mars. The planet’s not without erosion from wind and temperature changes, but it lacks the oxygen and water that would really eat into an iron-nickel specimen like this one. Still, the new find looks polished to my eye, possibly smoothed by wind-whipped sand grains during the countless Martian dust storms that have raged over the eons.

Curiosity really knows how to put you on Mars. This view of exposed bedrock and dark sands was taken by the rover’s navigation camera on Friday, Jan. 13. Credit: NASA/JPL-Caltech/MSSS

Why no large stony meteorites have yet to be been found on Mars is puzzling. They should be far more common; like irons, stonies would also display beautiful thumprinting and dark fusion crust to boot. Maybe they simply blend in too well with all the other rocks littering the Martian landscape. Or perhaps they erode more quickly on Mars than the metal variety.

Every time a meteorite turns up on Mars in images taken by the rovers, I get a kick out of how our planet and the Red One not only share water, ice and wind but also getting whacked by space rocks.

The Constellation Capricornus

The constellation Capricornus as it can be seen with the naked eye. Credit: AlltheSKy/Till Credner

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with the “Sea Goat” – aka. Capricornus!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these constellations is Capricornus, otherwise known as the “Sea Goat” (or simply as Capricorn). Positioned on the ecliptic plane, this constellation is one of the 12 constellations of the Zodiac, and is bordered by Aquarius, Aquila, Sagittarius, Microscopium and Piscis Austrinus. Today, it is one of the 88 modern constellations recognized by the International Astronomical Union.

Name and Meaning:

The name Capricornus is derived from Latin, which translates to “goat horn” or “horns of the goat”.  This arises from the fact that representations dating back to the Middle Bronze Age consistently depict the constellation as a hybrid of a goat and fish. This may be due to the fact that at that time, the northern hemisphere’s Winter Solstice occurred while the sun was in Capricorn.

Mesopotamian low relief depicting Sumerian sun-god Shamash rising in the center. From left to right, he is flanked by Ninurta (thunderstorms),  Ishtar (morning star), Enki (water) and Usmu (Enki’s vizier). Credit: britannica.com

The concern for the Sun’s rebirth might have rendered astronomical and astrological observation of this region of space very important. For the same reason, the Sun’s most southerly position, which is attained at the northern hemisphere’s winter solstice, is now called the Tropic of Capricorn, a term which also applies to the line on Earth where the Sun is directly overhead at noon on that solstice.

The earliest recorded evidence of this constellation is dated to the 21st century BCE, where the “Sea Goat” was depicted on a Sumerian cylinder-seal. In the Babylonian star catalogues, which are dated to ca. 1000 BCE, Capricornus was named suhurmašu (“The Goat Fish”). The constellation would later become the symbol of Ea (Enki) and was associated with the winter solstice.

In Greek mythology, the constellation was sometimes identified as Amalthea, the goat that suckled Zeus after Rhea saved him from Cronos. The goat’s broken horn was transformed into the cornucopia or horn of plenty, and ancient sources claim that this derives from the sun “taking nourishment” while in the constellation, in preparation for its climb back northward.

However, the constellation is often depicted as a sea-goat (i.e. a goat with a fish’s tail). One myth that deals with this says that when the goat-god Pan was attacked by the monster Typhon, he dived into the Nile. The parts of him that were above the water remained a goat, but those under the water transformed into a fish.

Johannes Hevelius’ depiction of Capricornus, from Uranographia (1690). Credit: chandra.harvard.edu

The Greeks regarded the constellation area with an alternative interpretation, namely the Augean Stable – a stable full uncleanliness – representing the concept of sin accumulated during the year. The Aquarius constellation, who was said to have poured out a river, then represent the yearly cleaning rains, associating to one of The Twelve Labors of Hercules.

History of Observation:

Despite being a faint constellation, Capricornus is one of the oldest recognized constellations. As with the other constellations associated with the Zodiac, Capricornus was catalogued by Ptolemy in the 2nd century CE and included in his treatise the Almagest. Despite its faintness, the constellation has also been recognized by other cultures around the world.

For example, in Chinese astronomy, Capriconus lies in The Black Tortoise of the North, one of the four symbols of the Chinese constellations. In 1922, Capricornus included in the list of 88 modern constellations recognized by the International Astronomical Union.

Capricornus as a sea-goat, from Urania’s Mirror (1825). Credit: US Library of Congress/
Sidney Hall

Notable Features:

In terms of stars few bright stars or Deep Sky Objects. It’s brightest star is also not its primary, but Delta Capricorni. Also known as its traditional names Deneb Algedi and Sheddi (from the Arabic danab al-jady, “the tail of the goat”), this magnitude 2.85 star is actually a four-star system located approximately 39 light years from Earth. Its brightest star (Delta Capricorni A) being a white giant with a luminosity 8.5 times that of the Sun.

It’s second brightest star, Beta Capricorni, is also known by the traditional name Dabih – which comes from the Arabic al-dhibii (which means “the butcher”). Located 328 light years way, this star system consists of Dabih Major (Beta-1) and Dabih Minor (Beta-2); both of which is actually composed of multiple stars – Beta-1 is composed of a three stars while Beta-2 is a double star.

It’s primary star, Alpha Capricorni, is also known as Algiedi (or Algedi), which is derived from the Arabic al-jady (“the billy goat”.) It is composed of two star systems, Prima Giedi (Alpha-2 Capricorni) and Secunda Giedi (Alpha-2 Capricorni); the former being a double star located 690 light-years away, and the latter is a G-type yellow giant 109 light years away.

The only Deep Sky Object associated with this constellation is Messier 30, a globular cluster located approximately 28,000 light years from Earth. This cluster is currently approaching us at a speed of about 180 km per second, and was one of the first Deep Sky Objects discovered by Charles Messier in 1764 (and included in The Messier Catalog).

Messier 30, imaged by the Hubble Telescope. Credit: NASA/Wikisky

Finding Capricornus:

The constellation is located in an area of sky called the Sea or Water, consisting of many watery constellations such as Aquarius, Pisces, and Eridanus. For binocular observers, the best place to start is to the northwestern corner first to find Alpha Capricorni. This is an absolutely beautiful optical double star that goes by the traditional name of Algiedi. The more western of the pair is Alpha¹ Capricorni, or Prima Giedi.

Put a telescope on it, because Prima Giedi is a true binary star. Located 690 light years from Earth, Alpha¹ Capricorni A, is a yellow G-type supergiant with an apparent magnitude of +4.30. Its companion, Alpha¹ Capricorni B, is an eighth magnitude star, separated by 0.65 arcseconds from the primary. Now go back and look at Alpha² Capricorni, aka. Secunda Giedi. Alpha² Capricorni is a yellow G-type giant with an apparent magnitude of +3.58.

For even more fun, aim your telescope all the way across the constellation at the northeastern corner for Delta Capricorni. Now you’re in for a real treat because Deneb Algedi is a a quaternary star system. Located 39 light years away, Delta Capricorni A, is classified a white giant star of the spectral type “A”. The system is a spectroscopic binary whose two components are of magnitude +3.2 and +5.2, and separated by 0.0018 arc seconds.

Similar to Algol, Delta Capricorni A is an eclipsing binary. Its unresolved companion orbits with Capricorni A around their common centre of mass every 1.022768 days, causing the brightness to drop 0.2 magnitudes during eclipses. Two other stars are thought to orbit further out in the system. The sixteenth magnitude Delta Capricorni C is one arc minute away, while the thirteenth magnitude Delta Capricorni D is two arc minutes away from the primary.

Location of the constellation Capricornus. Credit: IAU/Sky&Telescope magazine

Now go back to binoculars and hop one bright star west to take a look at Gamma Capricorni. Nashira, or “the bearer of good news” is one of those really cool stars right on the ecliptic that’s often occulted by the Moon. Gamma Capricorni is also a blue-white A-type (A7III) giant star with a mean apparent magnitude of +3.69. It is approximately 139 light years from Earth.

It is classified as an Alpha2 Canum Venaticorum type variable star and its brightness varies by 0.03 magnitudes. Now, go right in the center for Theta. It’s name is Dorsum – the Latin word for “Back”. Theta Capricorni is a white A-type main sequence dwarf with an apparent magnitude of +4.08. It is approximately 158 light years from our solar system. Want more viewing opportunities? Then go back west with binoculars and look at Beta.

Now, keep your binoculars handy and use the chart to help you located Messier 30. This one is rather hard to see in binoculars. But with a telescope, its stars can be resolved. It’s brightest red giant stars are about of apparent visual magnitude 12.1, its horizontal branch giants at magnitude 15.1. Only about 12 variable stars have been found in this globular cluster.

The core of M30 exhibits an extremely dense stellar population, and has undergone a core collapse. Despite its compressed core, close encounters of the member stars of globular cluster M30 seem to have occurred comparatively rare, as it appears to contain only few X-ray binary stars.

The NGC 6907 spiral galaxy, located in the direction of the Capricornus constellation. Credit: NOAO/KPNO

For more advanced telescope observing, try the NGC 7103 galaxy group (RA 21 39 51 Dec -22 28 24). Averaging about 15th magnitude elliptical is extremely faint and a definite big scope challenge. It pairs with NGC 7104, which is also 15th magnitude and has no classification. More realistically, try NGC 6907 (RA 20 25 1 Dec -24 49).

At slightly fainter than magnitude 11, this classy spiral galaxy shows some nice arm structure to even mid-sized telescopes. Why? Because it is doing a little galaxy interaction with background lenticular galaxy NGC 6908. This pair of spirals is engaging in some galaxy cannibalism! This act has caused some nice supernovae events within recent history and makes for some great observing – as well as astro-imaging opportunities!

The constellation of Capricornus also has a meteor shower associated with it. The Capricornid meteor stream peaks on or about July 30 and is active about a week before and after that date. The average fall rate is about 10 to 30 per hour and it is know to produce bolides.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

The Moon is Older than We Thought, says New Study

Astronaut Alan Shepard poses next to the American flag on the Moon during the Apollo 14 mission. Credit: NASA

For decades, scientists have been of the belief that the Moon, Earth’s only natural satellite, was four and a half billion years old. According to this theory, the Moon was created from a fiery cataclysm produced by a collision between the Earth with a Mars-sized object (named Theia) roughly 100 million years after the formation of primordial Earth.

But according to a new study by researchers from UCLA (who re-examined some of the Apollo Moon Rocks), these estimates may have been off by about 40 to 140 million years. Far from simply adjusting our notions of the Moon’s proper age, these findings are also critical to our understanding of the Solar System and the formation and evolution of its rocky planets.

This study, titled “Early formation of the Moon 4.51 billion years ago“, was published recently in the journal Science Advances. Led by Melanie Barboni – a professor from the Department of Earth, Planetary, and Space Sciences at UCLA – the research team conducted uranium-lead dating on fragments of the Moon rocks that were brought back by the Apollo 14 astronauts.

Artist’s concept of a collision that is believed to have taken place in the HD 172555 star system between a moon-sized object and a Mercury-sized planet. Credit: NASA/JPL-Caltech

These fragments were of a compound known as zircon, a type of silicate mineral that contains trace amounts of radioactive elements (like uranium, thorium, and lutetium). As Kevin McKeegan, a UCLA professor of geochemistry and cosmochemistry and a co-author of the study, explained, “Zircons are nature’s best clocks. They are the best mineral in preserving geological history and revealing where they originated.”

By examining the radioactive decay of these elements, and correcting for cosmic ray exposure, the research team was able to get highly precise estimates of the zircon fragments ages. Using one of UCLA’s mass spectrometers, they were able to measure the rate at which the deposits of uranium in the zircon turned into lead, and the deposits of lutetium turned into hafnium.

In the end, their data indicated that the Moon formed about 4.51 billion years ago, which places its birth within the first 60 million years of the Solar System or so. Previously, dating Moon rocks proved difficult, mainly because most of them contained fragments of many different kinds of rocks, and these samples were determined to be tainted by the effects of multiple impacts.

However, Barboni and her team were able to examine eight zircons that were in good condition. More importantly, these silicate deposits are believed to have formed shortly after the collision between Earth and Theia, when the Moon was still an unsolidified mass covered in oceans of magma.  As these oceans gradually cooled, the Moon’s body became differentiated between its crust, mantle and core.

Zircon deposits found in the Moon rocks returned by the Apollo 17 mission. Credit: NASA//Nicholas E. Timms.

Because zircon minerals were formed during the initial magma ocean, uranium-lead dating reaches all the way back to a time before the Moon became a solidified mass. As Edward Young, a UCLA professor of geochemistry and cosmochemistry and a co-author of the study, put it, “Mélanie was very clever in figuring out the Moon’s real age dates back to its pre-history before it solidified, not to its solidification.”

These findings have not only determined the age of the Moon with a high degree of accuracy (and for the first time), it also has implications for our understanding of when and how rocky planes formed within the Solar System. By placing accurate dates on when certain bodies formed, we are able to understand the context in which they formed, which also helps to determine what mechanisms were involved.

And this was just the first revelation produced by the research team, which hopes to continue studying the zircon fragments to see what they can learn about the Moon’s early history.

Further Reading: UCLA

Stars at the Edge of our Galaxy May Have Been Stolen

Artist's impression of The Milky Way Galaxy. Based on current estimates and exoplanet data, it is believed that there could be tens of billions of habitable planets out there. Credit: NASA

Our Milky Way is a pretty vast and highly-populated space. All told, its stars number between 100 and 400 billion, with some estimates saying that it may have as many as 1 trillion. But just where did all these stars come from? Well, as it turns out, in addition to forming many of its own and merging with other galaxies, the Milky Way may have stolen some of its stars from other galaxies.

Such is the argument made by two astronomers from Harvard-Smithsonian Center for Astrophysics. According to their study, which has been accepted for publication in the The Astrophysical Journal, they claim that roughly half of the stars that orbit at the extreme outer edge of the Milky Way were actually stolen from the nearby Sagittarius dwarf galaxy.

At one time, the Sagittarius Dwarf Elliptical Galaxy was thought to be the closest galaxy to our own (a position now held by the Canis Major dwarf galaxy). As one of several dozen dwarf galaxies that surround the Milky Way, it has orbited our galaxy several times in the past. With each passing orbit, it becomes subject to our galaxy’s strong gravity, which has the effect of pulling it apart.

A model of the tidally shredded Sagittarius dwarf galaxy wrapping around a 3-D representation of the Milky Way disk. Credit: UCLA/D.R. Law

The long-term effects of this can be seen by looking to the farthest stars in our galaxy, which consist of the eleven stars that are at a distance of about 300,000 light-years from Earth (well beyond the Milky Way’s spiral disk). According the study produced by Marion Dierickx, a graduate student at Harvard University’s Department of Astronomy, half of these stars were taken from the Sagittarius dwarf galaxy in the past.

Professor Avi Loeb, the Frank B. Baird, Jr. Professor of Science at Harvard and Marion Dierickx PhD advisor, co-authored the study – titled, “Predicted Extension of the Sagittarius Stream to the Milky Way Virial Radius“. As he told Universe Today via email:

“We see evidence for streams of stars connected to the core of the galaxy, and indicating that this dwarf galaxy passed multiple times around the Milky Way center and was ripped apart by the tidal gravitational field of the Milky Way. We are all familiar with the tide in the ocean caused by the gravitational pull of the moon, but if the moon was a much more massive object – it would have pulled the oceans apart from the Earth and we would see a stream of vapor stretched away from the Earth.”

For the sake of their study, Dierickx and Loeb ran computer models to simulate the movements of the Sagittarius dwarf over the past 8 billion years. These simulations reproduced the streams of stars stretching away from the Sagittarius dwarf galaxy to the center of our galaxy. They also varied Sagittarius’ velocity and angle of approach to see if the resulting exchanges would match current observations.

Computer-generated image showing the disc of the Milky Way (red oval) and the Sagittarius dwarf galaxy (red dot). The yellow circles represent stars that have been ripped from the Sagittarius dwarf and flung far across space. Credit: Marion Dierickx / CfA

“We attempted to match the distance and velocity data for the core of the Sagitarrius galaxy, and then compared the resulting prediction for the position and velocity of the streams of stars,” said Loeb. “The results were very encouraging for some particular set of initial conditions regarding the start of the Sagittarius galaxy journey when the universe was roughly half its present age.”

What they found was that over time, the Sagittarius dwarf lost about one-third of its stars and nine-tenths of its dark matter to the Milky Way. The end result of this was the creation of three distinct streams of stars that reach one million light-years from galactic center to the very edge of the Milky Way’s halo. Interestingly enough, one of these streams has been predicted by simulations conducted by projects like the Sloan Digital Survey.

The simulations also showed that five of Sagittarius’ stars would end becoming part of the Milky Way. What’s more,  the positions and velocities of these stars coincided with five of the most distant stars in our galaxy. The other six do not appear to be from Sagittarius dwarf, and may be the result of gravitational interactions with another dwarf galaxy in the past.

“The dynamics of stars in the extended arms we predict (which is the largest Galactic structure on the sky ever predicted) can be used to measure the mass and structure of the Milky Way,” said Loeb. “The outer envelope of the Milky Way was never probed directly, because no other stream was known to extend that far.”

Computer model of the Milky Way, the Sagittarius dwarf galaxy, and the looping stream of material between the two. Credit: Tollerud, Purcell and Bullock/UC Irvine

Given the way the simulations match up with current observations, Dierickx is confident that more Sagittarius dwarf interlopers are out there, just waiting to be found. For instance, future instruments – like the Large Synoptic Survey Telescope (LSST), which is expected to begin full-survey operations by 2022 – may be able to detect the two remaining streams of stars which were predicted by the survey.

Given the time scales and the distances involved, it is rather difficult to probe our galaxy (and by extension, the Universe) to see exactly how it evolved over time. Pairing observational data with computer models, however, has been proven to test our best theories of how things came to be. In the future, thanks to improved instruments and more detailed surveys, we just might know for certain!

And sure to check out this animation of the computer simulation, which shows the effects on the Milky Way’s gravity on the Sagittarius dwarf galaxy’s stars and dark matter.

Further Reading: CfA

A “Breakthrough” to Search for Planets in Closest Star System to Earth

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

Ever since the European Southern Observatory (ESO) announced that they had discovered an exoplanet in the nearby system of Proxima Centauri, there have been a lot of questions about this exoplanet. In addition to whether or not this planet could actually support life, astronomers have also been eager to see if its companion stars – Alpha Centauri A and B – have exoplanets too.

Prior to the discovery of Proxima b, Alpha Centauri was thought to host the closest exoplanets to Earth (Alpha Bb and Bc). However, time has cast doubt on the existence of the first, while the second’s existence remains unconfirmed. But thanks to a recent agreement between the ESO and Breakthrough Initiatives, we may yet find out if there are exoplanets in Alpha Centauri – which will come in handy when it comes time to explore there!

In accordance with this agreement, Breakthrough Initiatives will provide additional funds so that the ESO’s Very Large Telescope (VLT), located at the La Silla Paranal Observatory in Chile, can be modified to conduct a special search program of Alpha Centauri. This will involve upgrading the VLT Imager and Spectrometer for mid-Infrared (VISIR) instrument with new equipment that will enhance its planet-hunting abilities.

Image of the Alpha Centauri AB system and its distant and faint companion, Proxima Centauri. Credit: ESO

This includes a new instrument module that will allow the VLT to use a technique known as coronagraphy – a form of adaptive optics that corrects for a star’s brightness, thus making it easier for a telescope to spot the thermal glow of orbiting planets around them. While the Breakthrough Prize Foundation will pay a large fraction of the upgrade costs, the ESO will be making the VLT and its staff available to conduct the survey – which is scheduled for 2019.

Such an agreement is truly a win-win scenario. For the ESO, this will not only improve the VLT’s imaging abilities, but will also assist with the development of the European Extremely Large Telescope (E-ELT). This proposed array, which is scheduled for completion by 2024, will rely on the Mid-infrared E-ELT Imager and Spectrograph (METIS) instrument to hunt for potentially habitable exoplanets.

Any lessons learned from the upgrade of VISIR will allow them to develop the necessary expertise to run METIS, and will also allow them to test the effectiveness of the technology beforehand. For Breakthrough Initiatives, determining if there are any planets in the Alpha Centauri system will go a long way towards helping them mount their historic mission to this star.

In the coming years, Breakthrough Initiatives hopes to mount the first interstellar voyage in history using a lightsail and nanocraft that would rely on lasers to push it up to relativistic speeds (20% the speed of light). Known as Breakthrough Starshot, this craft could be ready to launch in a few years time, and would reach Alpha Centauri in just 20 years time.

The ESO’s Very Large Telescope (VLT) at the Paranal Observatory in Chile and a stellar backdrop showing the location of Alpha Centauri. Credit: ESO

Once there, the nanocraft (using a series of microsensors) would relay information back to Earth about the Alpha Centauri system – which would include any information on its system of planets, and whether or not they are habitable. Hence, determining if there’s anything there to study in the first place will help lay the groundwork for the mission.

As Professor Avi Loeb – the Frank B. Baird, Jr. Professor of Science at Harvard and a member of the Breakthrough Starshot Advisory Committee – told Universe Today via email:

“We hope that the partnership between the Breakthrough Prize Foundation and ESO will lead to the discovery of new habitable planets around the nearest stars. Once discovered, we could search for the molecular signatures of life in the atmosphere of these planets, and potentially even send a spacecraft that will reach them within our lifetime. The latter is the driver for the Starshot Initiative. The discovery of habitable nearby planets will provide us with targets for photography by gram-scale spacecrafts, launched at a fraction of the speed of light and  equipped with cameras. For example, we would like to find out whether such planets are covered by blue oceans, green vegetation or yellow deserts.”

It’s one of the hallmarks of the new space age: a private and public organization coming together for the sake of mutual benefit. But when those benefits include advancing scientific research, space exploration, and the hunt for habitable planets other than our own, it truly is a win-win situation!

In the meantime, enjoy this video provided by ESO about their new partnership with Breakthrough Initiatives:

Further Reading: ESO, Breakthrough Initiatives

Finally, An Explanation for the Alien Megastructure?

Ever since it was first announced in 2015, there has been speculation as to what could account for the dimming of KIC 8462852. Credit: SentientDevelopments.com

Back in October of 2015, astronomers shook the world when they reported how the Kepler mission had noticed a strange and sudden drop in brightness coming from KIC 8462852 (aka. Tabby’s Star). This was followed by additional studies that showed how the star appeared to be consistently dimming over time. All of this led to a flurry of speculation, with possibilities ranging from large asteroids and a debris disc to an alien megastructure.

But in what may be the greatest explanation yet, a team of researchers from Columbia University and the University of California, Berkley, have suggested that the star’s strange flickering could be the result of a planet it consumed at some point in the past. This would have resulted in a big outburst of brightness from which the star is now recovering; and the remains of this planet could be transiting in front of the star, thus causing periodic drops. Continue reading “Finally, An Explanation for the Alien Megastructure?”

What is the International Space Station?

The International Space Station orbiting Earth. Credit: NASA

After the historic Apollo Missions, which saw humans set foot on another celestial body for the first time in history, NASA and the Russian Space Agency (Roscosmos) began to shift their priorities away from pioneering space exploration and began to focus on developing long-term capabilities in space. In the ensuing decades (from the 1970s to 1990s), both agencies began to build and deploy space stations, each one bigger and more complex than the last.

The latest and greatest of these is the International Space Station (ISS), a scientific facility that resides in Low-Earth Orbit around our planet. This space station is the largest and most sophisticated orbiting research facility ever built and is so large that it can actually be seen with the naked eye. Central to its mission is the idea of fostering international cooperation for the sake of advancing science and space exploration.

Origin:

Planning for the ISS began in the 1980s and was based in part on the successes of Russia’s Mir space station, NASA’s Skylab, and the Space Shuttle Program. This station, it was hoped, would allow for the future utilization of  low-Earth Orbit and its resources, and serve as an intermediate base for renewed exploration efforts to the Moon, mission to Mars, and beyond.

The Mir space station hangs above the Earth in 1995 (photo taken by the mission crew of the Space Shuttle Atlantis, STS-71). Credit: NASA

In May of 1982, NASA established the Space Station task force, which was charged with creating a conceptual framework for such a space station. In the end, the ISS plan that emerged was a culmination of several different plans for a space station – which included NASA’s Freedom and the Soviet’s Mir-2 concepts, as well as Japan’s Kibo laboratory, and the European Space Agency’s Columbus laboratory.

The Freedom concept called for a modular space station to be deployed to orbit, where it would serve as the counterpart to the Soviet Salyut and Mir space stations. That same year, NASA approached the Japanese Aerospace and Exploration Agency (JAXA) to participate in the program with the creation of the Kibo, also known as the Japanese Experiment Module.

The Canadian Space Agency was similarly approached in 1982 and was asked to provide robotic support for the station. Thanks to the success of the Canadarm, which was an integral part of the Space Shuttle Program, the CSA agreed to develop robotic components that would assist with docking, perform maintenance, and assist astronauts with spacewalks.

In 1984, the ESA was invited to participate in the construction of the station with the creation of the Columbus laboratory – a research and experimental lab specializing in materials science. The construction of both the Kibo and Columbus modules was approved in 1985. As the most ambitious space program in either agency’s history, the development of these laboratories was seen as central to Europe and Japan’s emerging space capability.

Skylab, America’s First manned Space Station. Photo taken by departing Skylab 4 crew in Feb. 1974. Credit: NASA

In 1993, American Vice-President Al Gore and Russian Prime Minister Viktor Chernomyrdin announced that they would be pooling the resources intended to create Freedom and Mir-2. Instead of two separate space stations, the programs would be working collaboratively to create a single space station – which was later named the International Space Station.

Construction:

Construction of the ISS was made possible with the support of multiple federal space agencies, which included NASA, Roscosmos, JAXA, the CSA, and members of the ESA – specifically Belgium, Denmark, France, Spain, Italy, Germany, the Netherlands, Norway, Switzerland, and Sweden. The Brazilian Space Agency (AEB) also contributed to the construction effort.

The orbital construction of the space station began in 1998 after the participating nations signed the Space Station Intergovernmental Agreement (IGA), which established a legal framework that stressed cooperation based on international law. The participating space agencies also signed the Four Memoranda of Understandings (MoUs), which laid out their responsibilities in the design, development, and use of the station.

The assembly process began in 1998 with the deployment of the ‘Zarya’ (“Sunrise” in Russian) Control Module, or Functional Cargo Block. Built by the Russians with funding from the US, this module was designed to provide the station’s initial propulsion and power. The pressurized module – which weighed over 19,300 kg (42,600 pounds) – was launched aboard a Russian Proton rocket in November 1998.

On Dec. 4th, the second component – the ‘Unity’ Node – was placed into orbit by the Space Shuttle Endeavour (STS-88), along with two pressurized mating adapters. This node was one of three – Harmony and Tranquility being the other two – that would form the ISS’ main hull. On Sunday, Dec. 6th, it was mated to Zarya by the STS-88 crew inside the shuttle’s payload bay.

The next installments came in the year 2000, with the deployment of the Zvezda Service Module (the first habitation module) and multiple supply missions conducted by the Space Shuttle Atlantis.  The Space Shuttle Discovery (STS-92) also delivered the station’s third pressurized mating adapted and a Ku-band antenna in October. By the end of the month, the first Expedition crew was launched aboard a Soyuz rocket, which arrived on Nov. 2nd.

In 2001, the ‘Destiny’ Laboratory Module and the ‘Pirs’ Docking Compartment were delivered. The modular racks that are part of Destiny were also shipped using the Raffaello Multi-Purpose Logistic Modules (MPLM) aboard the Space Shuttle Endeavour and put into place using the Canadarm2 robotic arm. In 2002, additional racks, truss segments, solar arrays, and the Mobile Base System for the Station’s Mobile Servicing System were all delivered.

In 2007, the European Harmony module was installed, which allowed for the addition of the Columbus and Kibo laboratories – both of which were added in 2008. Between 2009 and 2011, construction was finalized with the addition of the Russian Mini-Research Module-1 and -2 (MRM1 and MRM2), the ‘Tranquility’ Node, the Cupola Observation Module, the Leonardo Permanent Multipurpose Module, and the Robonaut 2 technology suite.

The structure of the ISS (exploded in this diagram) showing the various components and how they are assembled together. Credit: NASA

No additional modules or components were added until 2016 when Bigelow Aerospace installed their experimental Bigelow Expandable Activity Module (BEAM). All told, it took 13 years to construct the space station, an estimated $100 billion and required more than 100 rocket and Space Shuttle launches, and 160 spacewalks.

As of the penning of this article, the station has been continuously occupied for a period of 16 years and 74 days since the arrival of Expedition 1 on November 2nd, 2000. This is the longest continuous human presence in low Earth orbit, having surpassed Mir’s record of 9 years and 357 days.

Purpose and Aims:

The main purpose of the ISS is fourfold: conducting scientific research, furthering space exploration, facilitating education and outreach, and fostering international cooperation. These goals are backed by NASA, the Russian Federal Space Agency (Roscomos), the Japanese Aerospace Exploration Agency (JAXA), the Canadian Space Agency (CSA), and the European Space Agency (ESA), with additional support from other nations and institutions.

As far as scientific research goes, the ISS provides a unique environment to conduct experiments under microgravity conditions. Whereas crewed spacecraft provide a limited platform that is only deployed to space for a limited amount of time, the ISS allows for long-term studies that can last for years (or even decades).

Many different and continuous projects are being conducted aboard the ISS, which are made possible with the support of a full-time crew of six astronauts, and a continuity of visiting vehicles (which also allows for resupply and crew rotations). Scientists on Earth have access to their data and are able to communicate with the science teams through a number of channels.

The many fields of research conducted aboard the ISS include astrobiology, astronomy, human research, life sciences, physical sciences, space weather, and meteorology. In the case of space weather and meteorology, the ISS is in a unique position to study these phenomena because of its position in LEO. Here, it has a short orbital period, allowing it to witness weather across the entire globe many times in a single day.

It is also exposed to things like cosmic rays, solar wind, charged subatomic particles, and other phenomena that characterize a space environment. Medical research aboard the ISS is largely focused on the long-term effects of microgravity on living organisms – particularly its effects on bone density, muscle degeneration, and organ function – which is intrinsic to long-range space exploration missions.

The ISS also conducts research that is beneficial to space exploration systems. Its location in LEO also allows for the testing of spacecraft systems that are required for long-range missions. It also provides an environment where astronauts can gain vital experience in terms of operations, maintenance, and repair services – which are similarly crucial for long-term missions (such as missions to the Moon and Mars).

The ISS also provides opportunities for education thanks to participation in experiments, where students are able to design experiments and watch as ISS crews carry them out. ISS astronauts are also able to engage classrooms through video links, radio communications, email, and educational videos/web episodes. Various space agencies also maintain educational materials for download based on ISS experiments and operations.

Educational and cultural outreach also fall within the ISS’ mandate. These activities are conducted with the help and support of the participating federal space agencies and are designed to encourage education and career training in the STEM (Science, Technical, Engineering, Math) fields.

One of the best-known examples of this is the educational videos created by Chris Hadfield – the Canadian astronaut who served as the commander of Expedition 35 aboard the ISS – which chronicled the everyday activities of ISS astronauts. He also directed a great deal of attention to ISS activities thanks to his musical collaboration with the Barenaked Ladies and Wexford Gleeks – titled “I.S.S. (Is Somebody Singing)” (shown above).

His video, a cover of David Bowie’s “Space Oddity”, also earned him widespread acclaim. Along with drawing additional attention to the ISS and its crew operations, it was also a major feat since it was the only music video ever to be filmed in space!

Operations Aboard the ISS:

As noted, the ISS is facilitated by rotating crews and regular launches that transport supplies, experiments, and equipment to the station. These take the form of both crewed and uncrewed vehicles, depending on the nature of the mission. Crews are generally transported aboard Russian Progress spacecraft, which are launched via Soyuz rockets from the Baikonur Cosmodrome in Kazakhstan.

Roscosmos has conducted a total of 60 trips to the ISS using Progress spacecraft, while 40 separate launches were conducted using Soyuz rockets. Some 35 flights were also made to the station using the now-retired NASA Space Shuttles, which transported crew, experiments, and supplies. The ESA and JAXA have both conducted 5 cargo transfer missions, using the Automated Transfer Vehicle (ATV) and the H-II Transfer Vehicle (HTV), respectively.

In more recent years, private aerospace companies like SpaceX and Orbital ATK have been contracted to provide resupply missions to the ISS, which they have done using their Dragon and Cygnus spacecraft. Additional spacecraft, such as SpaceX’s Crew Dragon spacecraft, are expected to provide crew transportation in the future.

Alongside the development of reusable first-stage rockets, these efforts are being carried out in part to restore domestic launch capability to the US. Since 2014, tensions between the Russian Federation and the US have led to growing concerns over the future of Russian-American cooperation with programs like the ISS.

Crew activities consist of conducting experiments and research considered vital to space exploration. These activities are scheduled from 06:00 to 21:30 hours UTC (Universal Coordinated Time), with breaks being taken for breakfast, lunch, dinner, and regular crew conferences. Every crew member has their own quarters (which includes a tethered sleeping bag), two of which are located in the Zvezda Module and four more installed in Harmony.

During “night hours”, the windows are covered to give the impression of darkness. This is essential since the station experiences 16 sunrises and sunsets a day. Two exercise periods of 1 hour each are scheduled every day to ensure that the risks of muscle atrophy and bone loss are minimized. The exercise equipment includes two treadmills, the Advanced Resistive Exercise Device (ARED) for simulated weight training, and a stationary bicycle.

Hygiene is maintained thanks to water jets and soap dispensed from tubes, as well as wet wipes, rinseless shampoo, and edible toothpaste. Sanitation is provided by two space toilets – both of Russian design – aboard the Zvezda and Tranquility Modules. Similar to what was available aboard the Space Shuttle, astronauts fasten themselves to the toilet seat and the removal of waste is accomplished with a vacuum suction hole.

Liquid waste is transferred to the Water Recovery System, where it is converted back into drinking water (yes, astronauts drink their own urine, after a fashion!). Solid waste is collected in individual bags that are stored in an aluminum container, which are then transferred to the docked spacecraft for disposal.

Food aboard the station consists mainly of freeze-dried meals in vacuum-sealed plastic bags. Canned goods are available, but are limited due to their weight (which makes them more expensive to transport). Fresh fruit and vegetables are brought during resupply missions, and a large array of spices and condiments are used to ensure that food is flavorful – which is important since one of the effects of microgravity is a diminished sense of taste.

To prevent spillage, drinks and soups are contained in packets and consumed with a straw. Solid food is eaten with a knife and fork, which are attached to a tray with magnets to prevent them from floating away, while drinks are provided in dehydrated powder form and then mixed with water. Any food or crumbs that floats away must be collected to prevent them from clogging the air filters and other equipment.

Hazards:

Life aboard the station also carries with it a high degree of risk. These come in the form of radiation, the long-term effects of microgravity on the human physique, the psychological effects of being in space (i.e. stress and sleep disturbances), and the danger of collision with space debris.

In terms of radiation, objects within the Low-Earth Orbit environment are partially protected from solar radiation and cosmic rays by the Earth’s magnetosphere. However, without the protection of the Earth’s atmosphere, astronauts are still exposed to about 1 millisievert a day, which is the equivalent of what a person on Earth is exposed to during the course of a year.

As a result, astronauts are at higher risk for developing cancer, suffering DNA and chromosomal damage, and diminished immune system function. Hence why protective shielding and drugs are a must aboard the station, as well as protocols for limiting exposure. For instance, during solar flare activity, crews are able to seek shelter in the more heavily shielded Russian Orbital Segment of the station.

As already noted, the effects of microgravity also take a toll on muscle tissues and bone density. According to a 2001 study conducted by NASA’s Human Research Program (HRP) – which researched the effects on an astronaut Scott Kelly’s body after he spent a year aboard the ISS – bone density loss occurs at a rate of over 1% per month.

Similarly, a report by the Johnson Space Center – titled “Muscle Atrophy” – stated that astronauts experience up to a 20% loss of muscle mass on spaceflights lasting just five to 11 days. In addition, more recent studies have indicated that the long-term effects of being in space also include diminished organ function, decreased metabolism, and reduced eyesight.

Because of this, astronauts exercise regularly in order to minimize muscle and bone loss, and their nutritional regimen is designed to make sure they the appropriate nutrients to maintain proper organ function. Beyond that, the long-term health effects, and additional strategies to combat them, are still being investigated.

But perhaps the greatest hazard comes in the form of orbiting junk – aka. space debris. At present, there are over 500,000 pieces of debris that are being tracked by NASA and other agencies as they orbit the Earth. An estimated 20,000 of these are larger than a softball, while the remainder are about the size of a pebble. All told, there are likely to be many millions of pieces of debris in orbit, but most are so small they can’t be tracked.

These objects can travel at speeds of up to 28,163 km/h (17,500 mph), while the ISS orbits the Earth at a speed of 27,600 km/h (17,200 mph). As a result, a collision with one of these objects could be catastrophic to the ISS. The station is naturally shielded to withstand impacts from tiny bits of debris and well as micro-meteoroids – and this shielding is divided between the Russian Orbital Segment and the US Orbital Segment.

On the USOS, the shielding consists of a thin aluminum sheet that is held apart from the hull. This sheet causes objects to shatter into a cloud, thereby dispersing the kinetic energy of the impact before it reaches the main hull. On the ROS, shielding takes the form of a carbon plastic honeycomb screen, an aluminum honeycomb screen, and glass cloth, all of which are spaced over the hull.

The ROS’ shielding is less likely to be punctured, hence why the crew moves to the ROS whenever a more serious threat presents itself. But when faced with the possibility of an impact from a larger object that is being tracked, the station performs what is known as a Debris Avoidance Manoeuvre (DAM). In this event, the thrusters on the Russian Orbital Segment fire in order to alter the station’s orbital altitude, thus avoiding the debris.

Future of the ISS:

Given its reliance on international cooperation, there have been concerns in recent years – in response to growing tensions between Russia, the United States, and NATO – about the future of the International Space Station. However, for the time being, operations aboard the station are secure, thanks to commitments made by all of the major partners.

In January of 2014, the Obama Administration announced that it would be extending funding for the US portion of the station until 2024. Roscosmos has endorsed this extension but has also voiced approval for a plan that would use elements of the Russian Orbital Segment to construct a new Russian space station.

Known as the Orbital Piloted Assembly and Experiment Complex (OPSEK), the proposed station would serve as an assembly platform for crewed spacecraft traveling to the Moon, Mars, and the outer Solar System. There have also been tentative announcements made by Russian officials about a possible collaborative effort to build a future replacement for the ISS. However, NASA has yet to confirm these plans.

In April of 2015, the Canadian government approved a budget that included funding to ensure the CSA’s participation with the ISS through 2024. In December of 2015, JAXA and NASA announced their plans for a new cooperative framework for the International Space Station (ISS), which included Japan extending its participation until 2024. As of December 2016, the ESA has also committed to extending its mission to 2024.

The ISS represents one of the greatest collaborative and international efforts in history, not to mention one of the greatest scientific undertakings. In addition to providing a location for crucial scientific experiments that cannot be conducted here on Earth, it is also conducting research that will help humanity make its next great leaps in space – i.e. mission to Mars and beyond!

On top of all that, it has been a source of inspiration for countless millions who dream of going to space someday! Who knows what great undertakings the ISS will allow for before it is finally decommissioned – most likely decades from now?

We have written many interesting articles about the ISS here at Universe Today. Here’s International Space Station Achieves 15 Years of Continuous Human Presence in Orbit, Beginner’s Guide to Seeing the International Space Station, Take a Virtual 3-D Spacewalk Outside the International Space Station, International Space Station Viewing, and Space Station Pictures.

For more information, check out the NASA Reference Guide to the ISS and this article about the 10th anniversary of the space station.

Astronomy Cast also has relevant episodes on the subject. Here’s Questions: An Unlocked Moon, Energy Into Black Holes, and the Space Station’s Orbit, and Episode 298: Space Stations, Part 3 – International Space Station.

Sources: