Stephen Hawking Issues A Wake Up Call

Stephen Hawking recently issued some more dire warnings for humanity, saying that we have 1000 years to find a new planet. Credit: Public Domain/photo by Alexandar Vujadinovic

It has been argued that the greatest reason our species should explore space and colonize other planets is so that a cataclysmic fate won’t be able to claim all of humanity. That is the driving force behind Elon Musk’s plan to colonize Mars. And it has certainly been the driving point behind Stephen Hawking’s belief that humanity should become an interplanetary-species.

And according to Hawking, becoming interplanetary is something of a time-sensitive issue. During a recent speech presented at the Oxford Union Society (Oxford University’s prestigious debating society) Hawking laid it out plainly for the audience. Humanity has 1000 years to locate and colonize new planets, he claimed, or we will likely go extinct.

For almost 200 years, the Oxford Union Society has been a forum for intellectual debate. In the past, it has also hosted such speakers as the Dalai Lama, Stephen Fry, Morgan Freeman, Richard Dawkins, and Buzz Aldrin. On this occasion, Hawking addressed a crowd of students and professors about space exploration and humanity’s future – two subjects he’s well versed in!

Stephen Hawking is a major proponent for colonizing other worlds, mainly to ensure humanity does not go extinct. Credit: educatinghumanity.com
Stephen Hawking is a major proponent for colonizing other worlds, mainly to ensure humanity does not go extinct. Credit: educatinghumanity.com

As Hawking made clear, humanity faces a number of existential threats, many of which are going to become a serious problem during the 21 century century. These include, but are not limited to, the threat of Climate Change, nuclear holocaust, terrorism, and the rise of artificial intelligence. The solution, Hawking argued, is to get into space and establish colonies as soon as possible.

As he was quoted as saying by the Christian Science Monitor, this will need to take place within the next 1000 years:

“Although the chance of a disaster to planet Earth in a given year may be quite low, it adds up over time, and becomes a near certainty in the next 1,000 or 10,000 years. By that time we should have spread out into space, and to other stars, so a disaster on Earth would not mean the end of the human race.”

This was not the first time Hawking has expressed concerns about the future. In January of 2015, Hawking joined Elon Musk and many other AI experts to pen the “Research Priorities for Robust and Beneficial Artificial Intelligence” – aka. the “Open Letter on Artificial Intelligence”. In this letter, he and the other signatories raised concerns about the short-term and long-term implications of AI, and urged that steps be taken to address them.

President Barack Obama talks with Stephen Hawking in the Blue Room of the White House before a ceremony presenting him and 15 others the Presidential Medal of Freedom, August 12, 2009. The Medal of Freedom is the nation's highest civilian honor. (Official White House photo by Pete Souza)
President Barack Obama talks with Stephen Hawking in the Blue Room of the White House before a ceremony presenting him and 15 others the Presidential Medal of Freedom on August 12th, 2009. Credit: whitehouse.gov/Pete Souza

In addition, back in January of 2016, Hawking warned that humanity’s technological progress has the power to outstrip us. This occurred during his speech at the 2016 Leith Lectures, where Hawking spoke about black holes and why they are fascinating. During the Q&A period that followed, Hawking turned to the much more dour subject of whether or not humanity has a future. As he said at the time:

“We face a number of threats to our survival, from nuclear war, catastrophic global warming, and genetically engineered viruses. The number is likely to increase in the future, with the development of new technologies, and new ways things can go wrong. However, we will not establish self-sustaining colonies in space for at least the next hundred years, so we have to be very careful in this period. Most of the threats we face come from the progress we have made in science and technology. We are not going to stop making progress, or reverse it, so we have to recognize the dangers and control them. I am an optimist, and I believe we can.”

Similarly, Hawking indicated back in 2010 that humanity’s survival beyond the next century would require that we become a space-faring race. In an interview with Big Think, Hawking claimed the odds of humanity making it to the 22nd century was bad enough for a single-planet species, let alone the 31st:

“I believe that the long-term future of the human race must be in space. It will be difficult enough to avoid disaster on planet Earth in the next hundred years, let alone the next thousand, or million. The human race shouldn’t have all its eggs in one basket, or on one planet. Let’s hope we can avoid dropping the basket until we have spread the load.”

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. Credit: NASA/MSFC
Hawking has repeatedly advocated space exploration and colonization as a way of ensuring humanity’s survival. Credit: NASA/MSFC

But before anyone gets all gloomy, it should be noted that between our plans to colonize Mars, and the success of the Kepler mission, we have found hundreds of planets that could serve as potential homes for humanity. But as Hawking has stated in the past, we will need at least 100 years to develop all the necessary technologies to build colonies on even the closest of these planets (Mars).

Beyond our survival as a species, Professor Hawking also advocates space travel as a way of improving humanity’s understanding of itself. This was made evident in a direct quote that the Union live-tweeted during the speech, in which he said: “We must continue exploring space in order to improve our knowledge of humanity. We must go beyond our humble planet.”

And as he has done so often before, Hawking ended his speech on an optimistic note. According to the Independent, he wrapped up his Oxford lecture with the following words of advice:

“Remember to look up at the stars and not down at your feet. Try to make sense of what you see, wonder about what makes the universe exist. Be curious. However difficult life may seem, there is always something you can do and succeed at. It matters that you don’t just give up.”

It seems we have our work cut out for us. Extra-terrestrial and/or extra-solar colonies by 3016… or bust!

Further Reading: Oxford Mail, CS Monitor, Independent

How Bad is the Radiation on Mars?

Image taken by the Viking 1 orbiter in June 1976, showing Mars thin atmosphere and dusty, red surface. Credits: NASA/Viking 1

Human exploration of Mars has been ramping up in the past few decades. In addition to the eight active missions on or around the Red Planet, seven more robotic landers, rovers and orbiters are scheduled to be deployed there by the end of the decade. And by the 2030s and after, several space agencies are planning to mount crewed missions to the surface as well.

On top of that, there are even plenty of volunteers who are prepared to make a one-way journey to Mars, and people advocating that we turn it into a second home. All of these proposals have focused attention on the peculiar hazards that come with sending human beings to Mars. Aside from its cold, dry environment, lack of air, and huge sandstorms, there’s also the matter of its radiation.

Causes:

Mars has no protective magnetosphere, as Earth does. Scientists believe that at one time, Mars also experienced convection currents in its core, creating a dynamo effect that powered a planetary magnetic field. However, roughly 4.2 billions year ago – either due to a massive impact from a large object, or rapid cooling in its core – this dynamo effect ceased.

Artist’s rendering of a solar storm hitting Mars and stripping ions from the planet's upper atmosphere. Credits: NASA/GSFC
Artist’s rendering of a solar storm hitting Mars and stripping ions from the planet’s upper atmosphere. Credits: NASA/GSFC

As a result, over the course of the next 500 million years, Mars atmosphere was slowly stripped away by solar wind. Between the loss of its magnetic field and its atmosphere, the surface of Mars is exposed to much higher levels of radiation than Earth. And in addition to regular exposure to cosmic rays and solar wind, it receives occasional lethal blasts that occur with strong solar flares.

Investigations:

NASA’s 2001 Mars Odyssey spacecraft was equipped with a special instrument called the Martian Radiation Experiment (or MARIE), which was designed to measure the radiation environment around Mars. Since Mars has such a thin atmosphere, radiation detected by Mars Odyssey would be roughly the same as on the surface.

Over the course of about 18 months, the Mars Odyssey probe detected ongoing radiation levels which are 2.5 times higher than what astronauts experience on the International Space Station – 22 millirads per day, which works out to 8000 millirads (8 rads) per year. The spacecraft also detected 2 solar proton events, where radiation levels peaked at about 2,000 millirads in a day, and a few other events that got up to about 100 millirads.

For comparison, human beings in developed nations are exposed to (on average) 0.62 rads per year. And while studies have shown that the human body can withstand a dose of up to 200 rads without permanent damage, prolonged exposure to the kinds of levels detected on Mars could lead to all kinds of health problems – like acute radiation sickness, increased risk of cancer, genetic damage, and even death.

Diagram showing the amount of cosmic radiation the surface of Mars is exposed to. Credit: NASA
Diagram showing the amount of cosmic radiation the surface of Mars is exposed to. Credit: NASA

And given that exposure to any amount of radiation carries with it some degree of risk, NASA and other space agencies maintain a strict policy of ALARA (As-Low-As-Reasonable-Achievable) when planning missions.

Possible Solutions:

Human explorers to Mars will definitely need to deal with the increased radiation levels on the surface. What’s more, any attempts to colonize the Red Planet will also require measures to ensure that exposure to radiation is minimized. Already, several solutions – both short term and long- have been proposed to address this problem.

For example, NASA maintains multiple satellites that study the Sun, the space environment throughout the Solar System, and monitor for galactic cosmic rays (GCRs), in the hopes of gaining a better understanding of solar and cosmic radiation. They’ve also been looking for ways to develop better shielding for astronauts and electronics.

In 2014, NASA launched the Reducing Galactic Cosmic Rays Challenge, an incentive-based competition that awarded a total of $12,000 to ideas on how to reduce astronauts’ exposure to galactic cosmic rays. After the initial challenge in April of 2014, a follow-up challenge took place in July that awarded a prize of $30,000 for ideas involving active and passive protection.

When it comes to long-term stays and colonization, several more ideas have been floated in the past. For instance, as Robert Zubrin and David Baker explained in their proposal for a low-cast “Mars Direct” mission, habitats built directly into the ground would be naturally shielded against radiation. Zubrin expanded on this in his 1996 book The Case for Mars: The Plan to Settle the Red Planet and Why We Must.

Proposals have also been made to build  habitats above-ground using inflatable modules encased in ceramics created using Martian soil. Similar to what has been proposed by both NASA and the ESA for a settlement on the Moon, this plan would rely heavily on robots using 3D printing technique known as “sintering“, where sand is turned into a molten material using x-rays.

MarsOne, the non-profit organization dedicated to colonizing Mars in the coming decades, also has proposals for how to shield Martian settlers. Addressing the issue of radiation, the organization has proposed building shielding into the mission’s spacecraft, transit vehicle, and habitation module. In the event of a solar flare, where this protection is insufficient, they advocate creating a dedicated radiation shelter (located in a hollow water tank) inside their Mars Transit Habitat.

But perhaps the most radical proposal for reducing Mars’ exposure to harmful radiation involves jump-starting the planet’s core to restore its magnetosphere. To do this, we would need to liquefy the planet’s outer core so that it can convect around the inner core once again. The planet’s own rotation would begin to create a dynamo effect, and a magnetic field would be generated.

Artist impression of a Mars settlement with cutaway view. Credit: NASA Ames Research Center
Artist impression of a Mars settlement with cutaway view. Credit: NASA Ames Research Center

According to Sam Factor, a graduate student with the Department of Astronomy at the University of Texas, there are two ways to do this. The first would be to detonate a series of thermonuclear warheads near the planet’s core, while the second involves running an electric current through the planet, producing resistance at the core which would heat it up.

In addition, a 2008 study conducted by researchers from the National Institute for Fusion Science (NIFS) in Japan addressed the possibility of creating an artificial magnetic field around Earth. After considering continuous measurements that indicated a 10% drop in intensity in the past 150 years, they went on to advocate how a series of planet-encircling superconducting rings could compensate for future losses.

With some adjustments, such a system could be adapted for Mars, creating an artificial magnetic field that could help shield the surface from some of the harmful radiation it regularly receives. In the event that terraformers attempt to create an atmosphere for Mars, this system could also ensure that it is protected from solar wind.

Lastly, a study in 2007 by researchers from the Institute for Mineralogy and Petrology in Switzerland and the Faculty of Earth and Life Sciences at Vrije University in Amsterdam managed to replicate what Mars’ core looks like. Using a diamond chamber, the team was able to replicate pressure conditions on iron-sulfur and iron-nickel-sulfur systems that correspond to the center of Mars.

What they found was that at the temperatures expected in the Martian core (~1500 K, or 1227 °C; 2240 °F), the inner core would be liquid, but some solidification would occur in the outer core. This is quite different from Earth’s core, where the solidification of the inner core releases heat that keeps the outer core molten, thus creating the dynamo effect that powers our magnetic field.

The absence of a solid inner core on Mars would mean that the once-liquid outer core must have had a different energy source. Naturally, that heat source has since failed, causing the outer core to solidify, thus arresting any dynamo effect. However, their research also showed that planetary cooling could lead to core solidification in the future, either due to iron-rich solids sinking towards the center or iron-sulfides crystallizing in the core.

In other words, Mars’ core might become solid someday, which would heat the outer core and turn it molten. Combined with the planet’s own rotation, this would generate the dynamo effect that would once again fire up the planet’s magnetic field. If this is true, then colonizing Mars and living there safely could be a simple matter of waiting for the core to crystallize.

There’s no way around it. At present, the radiation on the surface of Mars is pretty hazardous! Therefore, any crewed missions to the planet in the future will need to take into account radiation shielding and counter-measures. And any long-term stays there – at least for the foreseeable future – are going to have to be built into the ground, or hardened against solar and cosmic rays.

Approximate true-color rendering of the central part of the "Columbia Hills", taken by NASA's Mars Exploration Rover Spirit panoramic camera. Credit: NASA/JPL
Approximate true-color rendering of the central part of the “Columbia Hills”, taken by NASA’s Mars Exploration Rover Spirit panoramic camera. Credit: NASA/JPL

But you know what they say about necessity being the mother of invention, right? And with such luminaries as Stephen Hawking saying that we need to start colonizing other worlds in order to survive as a species, and people like Elon Musk and Bas Lansdrop looking to make it happen, we’re sure to see some very inventive solutions in the coming generations!

We have written many interesting articles about Mars and the dangers of radiation here at Universe Today. Here’s How Much Radiation Would You Get During A Mars Mission?, How Can We Live on Mars?, Human Voyages to Mars Pose Higher Cancer Risks, and Radiation Sickness, Cellular Damage and Increased Cancer Risk for Long-term Missions to Mars.

If you want, learn more about the MARIE instrument on board NASA’s Mars Odyssey spacecraft, and the radiation risks humans will face trying to go to Mars.

Finally, if you’d like to learn more about Mars in general, we have done several podcast episodes about the Red Planet at Astronomy Cast. Episode 52: Mars, and Episode 91: The Search for Water on Mars.

Sources:

 

This Star Is The Roundest Natural Object Ever Seen

The star Kepler 11145123 is the roundest natural object ever measured in the universe, with a difference of just 3 km between the radius at the equator and the poles. Credit and ©: Mark A. Garlick

At one time, scientists believed that the Earth, the Moon, and all the other planets in our Solar System were perfect spheres. The same held true for the Sun, which they considered to be the heavenly orb that was the source of all our warmth and energy. But as time and research showed, the Sun is far from perfect. In addition to sunspots and solar flares, the Sun is not completely spherical.

For some time, astronomers believed this was the case with other stars as well. Owing to a number of factors, all stars previously studied by astronomers appeared to experience some bulging at the equator (i.e. oblateness). However, in a study published by a team of international astronomers, it now appears that a slowly rotating star located 5000 light years away is as close to spherical as we’ve ever seen!

Until now, observation of stars has been confined to only a few of the fastest-rotating nearby stars, and was only possible through interferometry. This technique, which is typically used by astronomers to obtain stellar size estimates, relies on multiple small telescopes obtaining electromagnetic readings on a star. This information is then combined to create a higher-resolution image that would be obtained by a large telescope.

Artist's impression of a white dwarf star in orbit around Sirius (a white supergiant). Credit: NASA, ESA and G. Bacon (STScI)
Artist’s impression of a Sirius, an A-type Main Sequence White star. Credit: NASA, ESA and G. Bacon (STScI)

However, by conducting asteroseismic measurements of a nearby star, a team of astronomers – from the Max Planck Institute, the University of Tokyo, and New York University Abu Dhabi (NYUAD) – were able to get a much more precise idea of its shape. Their results were published in a study titled “Shape of a Slowly Rotating Star Measured by Asteroseismology“, which recently appeared in the American Association for the Advancement of Science.

Laurent Gizon, a researcher with the Max Planck Institute, was the lead authjor on the paper. As he explained their research methodology to Universe Today via email:

“The new method that we propose in this paper to measure stellar shapes, asteroseismology, can be several orders of magnitude more precise than optical interferometry. It applies only to stars that oscillate in long-lived non-radial modes. The ultimate precision of the method is given by the precision on the measurement of the frequencies of the modes of oscillation. The longer the observation duration (four years in the case of Kepler), the better the precision on the mode frequencies. In the case of  KIC 11145123 the most precise mode frequencies can be determined to one part in 10,000,000. Hence the astonishing precision of asteroseismology.”

Located 5000 light years away from Earth, KIC 11145123 was considered a perfect candidate for this method. For one, Kepler 11145123 is a hot and luminous, over twice the size of our Sun, and rotates with a period of 100 days. Its oscillations are also long-lived, and correspond directly to fluctuations in its brightness. Using data obtained by NASA’s Kepler mission over a more than four year period, the team was able to get very accurate shape estimates.

The variations in brightness can be interpreted as vibrations, or oscillations within the stars, using a technique called asteroseismology. The oscillations reveal information about the internal structure of the stars, in much the same way that seismologists use earthquakes to probe the Earth's interior. Credit: Kepler Astroseismology team.
The variations in brightness can be interpreted as vibrations, or oscillations within the stars, using a technique called asteroseismology. Credit: Kepler Astroseismology team.

“We compared the frequencies of the modes of oscillation that are more sensitive to the low-latitude regions of the star to the frequencies of the modes that are more sensitive to higher latitudes,” said Gizon. “This comparison showed that the difference in radius between the equator and the poles is only 3 km with a precision of 1 km. This makes Kepler 11145123 the roundest natural object ever measured, it is even more round than the Sun.”

For comparison, our Sun has a rotational period of about 25 days, and the difference between its polar and equatorial radii is about 10 km. And on Earth, which has a rotational period of less than a day (23 hours 56 minutes and 4.1 seconds), there is a difference of over 23 km (14.3 miles) between its polar and equator. The reason for this considerable difference is something of a mystery.

In the past, astronomers have found that the shape of a star can come down to multiple factors – such as their rotational velocity, magnetic fields, thermal asphericities, large-scale flows, strong stellar winds, or the gravitational influence of stellar companions or giant planets. Ergo, measuring the “asphericity” (i.e. the degree to which a star is NOT a sphere) can tell astronomers much about the star structures and its system of planets.

Ordinarily, rotational velocity has been seen to have a direct bearing on the stars asphericity – i.e. the faster it rotates, the more oblate it is. However, when looking at data obtained by the Kepler probe over a period of four years, they noticed that its oblateness was only a third of what they expected, given its rotational velocity.

Laurent Gizon, the lead researcher of the study, pictured comparing images of our Sun and Kepler 11145123. Credit: Max Planck Institute for Solar System Research, Germany.
Laurent Gizon, the lead researcher of the study, pictured with asteroseismic readings of Kepler 11145123. Credit: Max Planck Institute for Solar System Research, Germany.

As such, they were forced to conclude that something else was responsible for the star’s highly spherical shape. “”We propose that the presence of a magnetic field at low latitudes could make the star look more spherical to the stellar oscillations,” said Gizon. “It is known in solar physics that acoustic waves propagate faster in magnetic regions.”

Looking to the future, Gizon and his colleagues hope to examine other stars like Kepler 11145123. In our Galaxy alone, there are many stars who’s oscillations can be accurately measured by observing changes in their brightness. As such, the international team hopes to apply their asteroseismology method to other stars observed by Kepler, as well as upcoming missions like TESS and PLATO.

“Just like helioseismology can be used to study the Sun’s magnetic field, asteroseismology can be used to study magnetism on distant stars,” Gizon added. “This is the main message of this study.”

Further Reading: ScienceMag, Max Planck Institute

Colonizing the Inner Solar System

Colonizing The Inner Solar System
Colonizing The Inner Solar System


Science fiction has told us again and again, we belong out there, among the stars. But before we can build that vast galactic empire, we’ve got to learn how to just survive in space. Fortunately, we happen to live in a Solar System with many worlds, large and small that we can use to become a spacefaring civilization.

This is half of an epic two-part article that I’m doing with Isaac Arthur, who runs an amazing YouTube channel all about futurism, often about the exploration and colonization of space. Make sure you subscribe to his channel.

This article is about colonizing the inner Solar System, from tiny Mercury, the smallest planet, out to Mars, the focus of so much attention by Elon Musk and SpaceX.  In the other article, Isaac will talk about what it’ll take to colonize the outer Solar System, and harness its icy riches. You can read these articles in either order, just read them both.

At the time I’m writing this, humanity’s colonization efforts of the Solar System are purely on Earth. We’ve exploited every part of the planet, from the South Pole to the North, from huge continents to the smallest islands. There are few places we haven’t fully colonized yet, and we’ll get to that.

But when it comes to space, we’ve only taken the shortest, most tentative steps. There have been a few temporarily inhabited space stations, like Mir, Skylab and the Chinese Tiangong Stations.

Our first and only true colonization of space is the International Space Station, built in collaboration with NASA, ESA, the Russian Space Agency and other countries. It has been permanently inhabited since November 2nd, 2000.  Needless to say, we’ve got our work cut out for us.

NASA astronaut Tracy Caldwell Dyson, an Expedition 24 flight engineer in 2010, took a moment during her space station mission to enjoy an unmatched view of home through a window in the Cupola of the International Space Station, the brilliant blue and white part of Earth glowing against the blackness of space. Credits: NASA
NASA astronaut Tracy Caldwell Dyson, an Expedition 24 flight engineer in 2010, took a moment during her space station mission to enjoy an unmatched view of home through a window in the Cupola of the International Space Station, the brilliant blue and white part of Earth glowing against the blackness of space. Credits: NASA

Before we talk about the places and ways humans could colonize the rest of the Solar System, it’s important to talk about what it takes to get from place to place.

Just to get from the surface of Earth into orbit around our planet, you need to be going about 10 km/s sideways. This is orbit, and the only way we can do it today is with rockets. Once you’ve gotten into Low Earth Orbit, or LEO, you can use more propellant to get to other worlds.

If you want to travel to Mars, you’ll need an additional 3.6 km/s in velocity to escape Earth gravity and travel to the Red Planet. If you want to go to Mercury, you’ll need another 5.5 km/s.

And if you wanted to escape the Solar System entirely, you’d need another 8.8 km/s. We’re always going to want a bigger rocket.

The most efficient way to transfer from world to world is via the Hohmann Transfer. This is where you raise your orbit and drift out until you cross paths with your destination. Then you need to slow down, somehow, to go into orbit.

One of our primary goals of exploring and colonizing the Solar System will be to gather together the resources that will make future colonization and travel easier. We need water for drinking, and to split it apart for oxygen to breathe. We can also turn this water into rocket fuel. Unfortunately, in the inner Solar System, water is a tough resource to get and will be highly valued.

We need solid ground. To build our bases, to mine our resources, to grow our food, and to protect us from the dangers of space radiation. The more gravity we can get the better, since low gravity softens our bones, weakens our muscles, and harms us in ways we don’t fully understand.

Each world and place we colonize will have advantages and disadvantages. Let’s be honest, Earth is the best place in the Solar System, it’s got everything we could ever want and need. Everywhere else is going to be brutally difficult to colonize and make self-sustaining.

We do have one huge advantage, though. Earth is still here, we can return whenever we like. The discoveries made on our home planet will continue to be useful to humanity in space through communications, and even 3D printing. Once manufacturing is sophisticated enough, a discovery made on one world could be mass produced half a solar system away with the right raw ingredients.

We will learn how to make what we need, wherever we are, and how to transport it from place to place, just like we’ve always done.

Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Mercury is the closest planet from the Sun, and one of the most difficult places that we might attempt the colonize. Because it’s so close to the Sun, it receives an enormous amount of energy. During the day, temperatures can reach 427 C, but without an atmosphere to trap the heat, night time temperatures dip down to -173 C. There’s essentially no atmosphere, 38% the gravity of Earth, and a single solar day on Mercury lasts 176 Earth days.

Mercury does have some advantages, though. It has an average density almost as high as Earth, but because of its smaller size, it actually means it has a higher percentage of metal than Earth. Mercury will be incredibly rich in metals and minerals that future colonists will need across the Solar System.

With the lower gravity and no atmosphere, it’ll be far easier to get that material up into orbit and into transfer trajectories to other worlds.

But with the punishing conditions on the planet, how can we live there? Although the surface of Mercury is either scorching or freezing, NASA’s MESSENGER spacecraft turned up regions of the planet which are in eternal shadow near the poles. In fact, these areas seem to have water ice, which is amazing for anywhere this close to the Sun.

Images of Mercury's northern polar region, provided by MESSENGER. Credit: NASA/JPL
Images of Mercury’s northern polar region, provided by MESSENGER. Credit: NASA/JPL

You could imagine future habitats huddled into those craters, pulling in solar power from just over the crater rim, using the reservoirs of water ice for air, fuel and water.

High powered solar robots could scour the surface of Mercury, gathering rare metals and other minerals to be sent off world. Because it’s bathed in the solar winds, Mercury will have large deposits of Helium-3, useful for future fusion reactors.

Over time, more and more of the raw materials of Mercury will find their way to the resource hungry colonies spread across the Solar System.

It also appears there are lava tubes scattered across Mercury, hollows carved out by lava flows millions of years ago. With work, these could be turned into safe, underground habitats, protected from the radiation, high temperatures and hard vacuum on the surface.

With enough engineering ability, future colonists will be able to create habitats on the surface, wherever they like, using a mushroom-shaped heat shield to protect a colony built on stilts to keep it off the sun-baked surface.

Mercury is smaller than Mars, but is a good deal denser, so it has about the same gravity, 38% of Earth’s. Now that might turn out to be just fine, but if we need more, we have the option of using centrifugal force to increase it. Space Stations can generate artificial gravity by spinning, but you can combine normal gravity with spin-gravity to create a stronger field than either would have.

So our mushroom habitat’s stalk could have an interior spinning section with higher gravity for those living inside it. You get a big mirror over it, shielding you from solar radiation and heat, you have stilts holding it off the ground, like roots, that minimize heat transfer from the warmer areas of ground outside the shield, and if you need it you have got a spinning section inside the stalk. A mushroom habitat.

Venus as photographed by the Pioneer spacecraft in 1978. Some exoplanets may suffer the same fate as this scorched world. Credit: NASA/JPL/Caltech
Venus as photographed by the Pioneer spacecraft in 1978. Credit: NASA/JPL/Caltech

Venus is the second planet in the Solar System, and it’s the evil twin of Earth. Even though it has roughly the same size, mass and surface gravity of our planet, it’s way too close to the Sun. The thick atmosphere acts like a blanket, trapping the intense heat, pushing temperatures at the surface to 462 C.

Everywhere on the planet is 462 C, so there’s no place to go that’s cooler. The pure carbon dioxide atmosphere is 90 times thicker than Earth, which is equivalent to being a kilometer beneath the ocean on Earth.

In the beginning, colonizing the surface of Venus defies our ability. How do you survive and stay cool in a thick poisonous atmosphere, hot enough to melt lead? You get above it.

One of the most amazing qualities of Venus is that if you get into the high atmosphere, about 52.5 kilometers up, the air pressure and temperature are similar to Earth. Assuming you can get above the poisonous clouds of sulphuric acid, you could walk outside a floating colony in regular clothes, without a pressure suit. You’d need a source of breathable air, though.

Even better, breathable air is a lifting gas in the cloud tops of Venus. You could imagine a future colony, filled with breathable air, floating around Venus. Because the gravity on Venus is roughly the same as Earth, humans wouldn’t suffer any of the side effects of microgravity. In fact, it might be the only place in the entire Solar System other than Earth where we don’t need to account for low gravity.

Artist's concept of a Venus cloud city — a possible future outcome of the High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab at NASA Langley Research Center
Artist’s concept of a Venus cloud city — a possible future outcome of the High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab at NASA Langley Research Center

Now the day on Venus is incredibly long, 243 earth days, so if you stay over the same place the whole time it would be light for four months then dark for four months. Not ideal for solar power on a first glance, but Venus turns so slowly that even at the equator you could stay ahead of the sunset at a fast walk.

So if you have floating colonies it would take very little effort to stay constantly on the light side or dark side or near the twilight zone of the terminator. You are essentially living inside a blimp, so it may as well be mobile. And on the day side it would only take a few solar panels and some propellers to stay ahead. And since it is so close to the Sun, there’s plenty of solar power. What could you do with it?

The atmosphere itself would probably serve as a source of raw materials. Carbon is the basis for all life on Earth. We’ll need it for food and building materials in space. Floating factories could process the thick atmosphere of Venus, to extract carbon, oxygen, and other elements.

Heat resistant robots could be lowered down to the surface to gather minerals and then retrieved before they’re cooked to death.

Venus does have a high gravity, so launching rockets up into space back out of Venus’ gravity well will be expensive.

Over longer periods of time, future colonists might construct large solar shades to shield themselves from the scorching heat, and eventually, even start cooling the planet itself.

Earth as seen on July 6, 2015 from a distance of one million miles by a NASA scientific camera aboard the Deep Space Climate Observatory spacecraft. Credits: NASA
Earth as seen on July 6, 2015 from a distance of one million miles by a NASA scientific camera aboard the Deep Space Climate Observatory spacecraft. Credits: NASA

The next planet from the Sun is Earth, the best planet in the Solar System. One of the biggest advantages of our colonization efforts will be to get heavy industry off our planet and into space. Why pollute our atmosphere and rivers when there’s so much more space… in space.

Over time, more and more of the resource gathering will happen off world, with orbital power generation, asteroid mining, and zero gravity manufacturing. Earth’s huge gravity well means that it’s best to bring materials down to Earth, not carry them up to space.

However, the normal gravity, atmosphere and established industry of Earth will allow us to manufacture the lighter high tech goods that the rest of the Solar System will need for their own colonization efforts.

But we haven’t completely colonized Earth itself. Although we’ve spread across the land, we know very little about the deep ocean. Future colonies under the oceans will help us learn more about self-sufficient colonies, in extreme environments. The oceans on Earth will be similar to the oceans on Europa or Enceladus, and the lessons we learn here will teach us to live out there.

As we return to space, we’ll colonize the region around our planet. We’ll construct bigger orbital colonies in Low Earth Orbit, building on our lessons from the International Space Station.

One of the biggest steps we need to take, is understanding how to overcome the debilitating effects of microgravity: the softened bones, weakened muscles and more. We need to perfect techniques for generating artificial gravity where there is none.

A 1969 station concept. The station was to rotate on its central axis to produce artificial gravity. The majority of early space station concepts created artificial gravity one way or another in order to simulate a more natural or familiar environment for the health of the astronauts. Credit: NASA
A 1969 station concept. The station was to rotate on its central axis to produce artificial gravity. The majority of early space station concepts created artificial gravity one way or another in order to simulate a more natural or familiar environment for the health of the astronauts. Credit: NASA

The best technique we have is rotating spacecraft to generate artificial gravity. Just like we saw in 2001, and The Martian, by rotating all or a portion of a spacecraft, you can generated an outward centrifugal force that mimics the acceleration of gravity. The larger the radius of the space station, the more comfortable and natural the rotation feels.

Low Earth Orbit also keeps a space station within the Earth’s protective magnetosphere, limiting the amount of harmful radiation that future space colonists will experience.

Other orbits are useful too, including geostationary orbit, which is about 36,000 kilometers above the surface of the Earth. Here spacecraft orbit the Earth at exactly the same rate as the rotation of Earth, which means that stations appear in fixed positions above our planet, useful for communication.

Geostationary orbit is higher up in Earth’s gravity well, which means these stations will serve a low-velocity jumping off points to reach other places in the Solar System. They’re also outside the Earth’s atmospheric drag, and don’t require any orbital boosting to keep them in place.

By perfecting orbital colonies around Earth, we’ll develop technologies for surviving in deep space, anywhere in the Solar System. The same general technology will work anywhere, whether we’re in orbit around the Moon, or out past Pluto.

When the technology is advanced enough, we might learn to build space elevators to carry material and up down from Earth’s gravity well. We could also build launch loops, electromagnetic railguns that launch material into space. These launch systems would also be able to loft supplies into transfer trajectories from world to world throughout the Solar System.

Earth orbit, close to the homeworld gives us the perfect place to develop and perfect the technologies we need to become a true spacefaring civilization. Not only that, but we’ve got the Moon.

Sample collection on the surface of the Moon. Apollo 16 astronaut Charles M. Duke Jr. is shown collecting samples with the Lunar Roving Vehicle in the left background. Image: NASA
Sample collection on the surface of the Moon. Apollo 16 astronaut Charles M. Duke Jr. is shown collecting samples with the Lunar Roving Vehicle in the left background. Image: NASA

The Moon, of course, is the Earth’s only natural satellite, which orbits us at an average distance of about 400,000 kilometers. Almost ten times further than geostationary orbit.

The Moon takes a surprising amount of velocity to reach from Low Earth Orbit. It’s close, but expensive to reach, thrust speaking.

But that fact that it’s close makes the Moon an ideal place to colonize. It’s close to Earth, but it’s not Earth. It’s airless, bathed in harmful radiation and has very low gravity. It’s the place that humanity will learn to survive in the harsh environment of space.

But it still does have some resources we can exploit. The lunar regolith, the pulverized rocky surface of the Moon, can be used as concrete to make structures. Spacecraft have identified large deposits of water at the Moon’s poles, in its permanently shadowed craters. As with Mercury, these would make ideal locations for colonies.

Here, a surface exploration crew begins its investigation of a typical, small lava tunnel, to determine if it could serve as a natural shelter for the habitation modules of a Lunar Base. Credit: NASA's Johnson Space Center
Here, a surface exploration crew begins its investigation of a typical, small lava tunnel, to determine if it could serve as a natural shelter for the habitation modules of a Lunar Base. Credit: NASA’s Johnson Space Center

Our spacecraft have also captured images of openings to underground lava tubes on the surface of the Moon. Some of these could be gigantic, even kilometers high. You could fit massive cities inside some of these lava tubes, with room to spare.

Helium-3 from the Sun rains down on the surface of the Moon, deposited by the Sun’s solar wind, which could be mined from the surface and provide a source of fuel for lunar fusion reactors. This abundance of helium could be exported to other places in the Solar System.

The far side of the Moon is permanently shadowed from Earth-based radio signals, and would make an ideal location for a giant radio observatory. Telescopes of massive size could be built in the much lower lunar gravity.

We talked briefly about an Earth-based space elevator, but an elevator on the Moon makes even more sense. With the lower gravity, you can lift material off the surface and into lunar orbit using cables made of materials we can manufacture today, such as Zylon or Kevlar.

One of the greatest threats on the Moon is the dusty regolith itself. Without any kind of weathering on the surface, these dust particles are razor sharp, and they get into everything. Lunar colonists will need very strict protocols to keep the lunar dust out of their machinery, and especially out of their lungs and eyes, otherwise it could cause permanent damage.

Artist's impression of a Near-Earth Asteroid passing by Earth. Credit: ESA
Artist’s impression of a Near-Earth Asteroid passing by Earth. Credit: ESA

Although the vast majority of asteroids in the Solar System are located in the main asteroid belt, there are still many asteroids orbiting closer to Earth. These are known as the Near Earth Asteroids, and they’ve been the cause of many of Earth’s great extinction events.

These asteroids are dangerous to our planet, but they’re also an incredible resource, located close to our homeworld.

The amount of velocity it takes to get to some of these asteroids is very low, which means travel to and from these asteroids takes little energy. Their low gravity means that extracting resources from their surface won’t take a tremendous amount of energy.

And once the orbits of these asteroids are fully understood, future colonists will be able to change the orbits using thrusters. In fact, the same system they use to launch minerals off the surface would also push the asteroids into safer orbits.

These asteroids could be hollowed out, and set rotating to provide artificial gravity. Then they could be slowly moved into safe, useful orbits, to act as space stations, resupply points, and permanent colonies.

There are also gravitationally stable points at the Sun-Earth L4 and L5 Lagrange Points. These asteroid colonies could be parked there, giving us more locations to live in the Solar System.

Mosaic of the Valles Marineris hemisphere of Mars, similar to what one would see from orbital distance of 2500 km. Credit: NASA/JPL-Caltech
Mosaic of the Valles Marineris hemisphere of Mars, similar to what one would see from orbital distance of 2500 km. Credit: NASA/JPL-Caltech

The future of humanity will include the colonization of Mars, the fourth planet from the Sun. On the surface, Mars has a lot going for it. A day on Mars is only a little longer than a day on Earth. It receives sunlight, unfiltered through the thin Martian atmosphere. There are deposits of water ice at the poles, and under the surface across the planet.

Martian ice will be precious, harvested from the planet and used for breathable air, rocket fuel and water for the colonists to drink and grow their food. The Martian regolith can be used to grow food. It does have have toxic perchlorates in it, but that can just be washed out.

The lower gravity on Mars makes it another ideal place for a space elevator, ferrying goods up and down from the surface of the planet.

The area depicted is Noctis Labyrinthus in the Valles Marineris system of enormous canyons. The scene is just after sunrise, and on the canyon floor four miles below, early morning clouds can be seen. The frost on the surface will melt very quickly as the Sun climbs higher in the Martian sky. Credit: NASA
The area depicted is Noctis Labyrinthus in the Valles Marineris system of enormous canyons. The scene is just after sunrise, and on the canyon floor four miles below, early morning clouds can be seen. The frost on the surface will melt very quickly as the Sun climbs higher in the Martian sky. Credit: NASA

Unlike the Moon, Mars has a weathered surface. Although the planet’s red dust will get everywhere, it won’t be toxic and dangerous as it is on the Moon.

Like the Moon, Mars has lava tubes, and these could be used as pre-dug colony sites, where human Martians can live underground, protected from the hostile environment.

Mars has two big problems that must be overcome. First, the gravity on Mars is only a third that of Earth’s, and we don’t know the long term impact of this on the human body. It might be that humans just can’t mature properly in the womb in low gravity.

Researchers have proposed that Mars colonists might need to spend large parts of their day on rotating centrifuges, to simulate Earth gravity. Or maybe humans will only be allowed to spend a few years on the surface of Mars before they have to return to a high gravity environment.

The second big challenge is the radiation from the Sun and interstellar cosmic rays. Without a protective magnetosphere, Martian colonists will be vulnerable to a much higher dose of radiation. But then, this is the same challenge that colonists will face anywhere in the entire Solar System.

That radiation will cause an increased risk of cancer, and could cause mental health issues, with dementia-like symptoms. The best solution for dealing with radiation is to block it with rock, soil or water. And Martian colonists, like all Solar System colonists will need to spend much of their lives underground or in tunnels carved out of rock.

Two astronauts explore the rugged surface of Phobos. Mars, as it would appear to the human eye from Phobos, looms on the horizon. The mother ship, powered by solar energy, orbits Mars while two crew members inside remotely operate rovers on the Martian surface. The explorers have descended to the surface of Phobos in a small "excursion" vehicle, and they are navigating with the aid of a personal spacecraft, which fires a line into the soil to anchor the unit. The astronaut on the right is examining a large boulder; if the boulder weighed 1,000 pounds on Earth, it would weigh a mere pound in the nearly absent gravity field of Phobos. Credit: NASA/Pat Rawlings (SAIC)
Two astronauts explore the rugged surface of Phobos. Mars, as it would appear to the human eye from Phobos, looms on the horizon. The mother ship, powered by solar energy, orbits Mars while two crew members inside remotely operate rovers on the Martian surface. Credit: NASA/Pat Rawlings (SAIC)

In addition to Mars itself, the Red Planet has two small moons, Phobos and Deimos. These will serve as ideal places for small colonies. They’ll have the same low gravity as asteroid colonies, but they’ll be just above the gravity well of Mars. Ferries will travel to and from the Martian moons, delivering fresh supplies and sending Martian goods out to the rest of the Solar System.

We’re not certain yet, but there are good indicators these moons might have ice inside them, if so that is an excellent source of fuel and could make initial trips to Mars much easier by allowing us to send a first expedition to those moons, who then begin producing fuel to be used to land on Mars and to leave Mars and return home.

According to Elon Musk, if a Martian colony can reach a million inhabitants, it’ll be self-sufficient from Earth or any other world. At that point, we would have a true, Solar System civilization.

Now, continue on to the other half of this article, written by Isaac Arthur, where he talks about what it will take to colonize the outer Solar System. Where water ice is plentiful but solar power is feeble. Where travel times and energy require new technologies and techniques to survive and thrive.

What is Moon Mining?

Chris Hadfield recently explained how humanity should create a Moon base before attempting to colonize Mars. Credit: Foster + Partners is part of a consortium set up by the European Space Agency to explore the possibilities of 3D printing to construct lunar habitations. Credit: ESA/Foster + Partners

Ever since we began sending crewed missions to the Moon, people have been dreaming of the day when we might one day colonize it. Just imagine, a settlement on the lunar surface, where everyone constantly feels only about 15% as heavy as they do here on Earth. And in their spare time, the colonists get to do all kinds of cool research trek across the surface in lunar rovers. Gotta admit, it sounds fun!

More recently, the idea of prospecting and mining on the Moon has been proposed. This is due in part to renewed space exploration, but also the rise of private aerospace companies and the NewSpace industry. With missions to the Moon schedules for the coming years and decades, it seems logical to thinking about how we might set up mining and other industries there as well?

Proposed Methods:

Several proposals have been made to establish mining operations on the Moon; initially by space agencies like NASA, but more recently by private interests. Many of the earliest proposals took place during the 1950s, in response to the Space Race, which saw a lunar colony as a logical outcome of lunar exploration.

Building a lunar base might be easier if astronauts could harvest local materials for the construction, and life support in general. Credit: NASA/Pat Rawlings
Building a lunar base might be easier if astronauts could harvest local materials for the construction, and life support in general. Credit: NASA/Pat Rawlings

For instance, in 1954 Arthur C. Clarke proposed a lunar base where inflatable modules were covered in lunar dust for insulation and communications were provided by a inflatable radio mast. And in 1959, John S. Rinehart – the director of the Mining Research Laboratory at the Colorado School of Mines – proposed a tubular base that would “float” across the surface.

Since that time, NASA, the US Army and Air Force, and other space agencies have issued proposals for the creation of a lunar settlement. In all cases, these plans contained allowances for resource utilization to make the base as self-sufficient as possible. However, these plans predated the Apollo program, and were largely abandoned after its conclusion. It has only been in the past few decades that detailed proposals have once again been made.

For instance, during the Bush Administration (2001-2009), NASA entrtained the possibility of creating a “lunar outpost”. Consistent with their Vision for Space Exploration (2004), the plan called for the construction of a base on the Moon between 2019 and 2024. One of the key aspects of this plan was the use of ISRU techniques to produce oxygen from the surrounding regolith.

These plans were cancelled by the Obama administration and replaced with a plan for a Mars Direct mission (known as NASA’s “Journey to Mars“). However, during a workshop in 2014, representatives from NASA met with Harvard geneticist George Church, Peter Diamandis from the X Prize Foundation and other experts to discuss low-cost options for returning to the Moon.

The workshop papers, which were published in a special issue of New Space, describe how a settlement could be built on the Moon by 2022 for just $10 billion USD. According to their papers, a low-cost base would be possible thanks to the development of the space launch business, the emergence of the NewSpace industry, 3D printing, autonomous robots, and other recently-developed technologies.

In December of 2015, an international symposium titled “Moon 2020-2030 – A New Era of Coordinated Human and Robotic Exploration” took place at the the European Space Research and Technology Center. At the time, the new Director General of the ESA (Jan Woerner) articulated the agency’s desire to create an international lunar base using robotic workers, 3D printing techniques, and in-situ resources utilization.

In 2010, NASA established the Robotic Mining Competition, an annual incentive-based competition where university students design and build robots to navigate a simulated Martian environment. One of the most-important aspects of the competition is creating robots that can rely on ISRU to turn local resources into usable materials. The applications produced are also likely to be of use during future lunar missions.

Other space agencies also have plans for lunar bases in the coming decades. The Russian space agency (Roscosmos) has issued plans to build a lunar base by the 2020s, and the China National Space Agency (CNSA) proposed to build such a base in a similar timeframe, thanks to the success of its Chang’e program.

An early lunar outpost design based on a module design (1990). Credit: NASA/Cicorra Kitmacher
An early lunar outpost design based on a module design (1990). Credit: NASA/Cicorra Kitmacher

And the NewSpace industry has also been producing some interesting proposals of late. In 2010, a group of Silicon Valley entrepreneurs came together for create Moon Express, a private company that plans to offer commercial lunar robotic transportation and data services, as well as the a long-term goal of mining the Moon. In December of 2015, they became the first company competing for the Lunar X Prize to build and test a robotic lander – the MX-1.

In 2010, Arkyd Astronautics (renamed Planetary Resources in 2012) was launched for the purpose of developing and deploying technologies for asteroid mining. In 2013, Deep Space Industries was formed with the same purpose in mind. Though these companies are focused predominantly on asteroids, the appeal is much the same as lunar mining – which is expanding humanity’s resource base beyond Earth.

Resources:

Based on the study of lunar rocks, which were brought back by the Apollo missions, scientists have learned that the lunar surface is rich in minerals. Their overall composition depends on whether the rocks came from lunar maria (large, dark, basaltic plains formed from lunar eruptions) or the lunar highlands.

Moon rocks from the Apollo 11 mission. Credit: NASA
Moon rocks from the Apollo 11 mission. Credit: NASA

Rocks obtained from lunar maria showed large traces of metals, with 14.9% alumina (Al²O³), 11.8% calcium oxide (lime), 14.1% iron oxide, 9.2% magnesia (MgO), 3.9% titanium dioxide (TiO²) and 0.6% sodium oxide (Na²O). Those obtained from the lunar highlands are similar in composition, with 24.0% alumina, 15.9% lime, 5.9% iron oxide, 7.5% magnesia, and 0.6% titanium dioxide and sodium oxide.

These same studies have shown that lunar rocks contain large amounts of oxygen, predominantly in the form of oxidized minerals. Experiments have been conducted that have shown how this oxygen could be extracted to provide astronauts with breathable air, and could be used to make water and even rocket fuel.

The Moon also has concentrations of Rare Earth Metals (REM), which are attractive for two reasons. On the one hand, REMs are becoming increasingly important to the global economy, since they are used widely in electronic devices. On the other hand, 90% of current reserves of REMs are controlled by China; so having a steady access to an outside source is viewed by some as a national security matter.

Similarly, the Moon has significant amounts of water contained within its lunar regolith and in the permanently shadowed areas in its north and southern polar regions.This water would also be valuable as a source of rocket fuel, not to mention drinking water for astronauts.

Water in Polar Regions on the Moon Credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS
Spectra gathered by the NASA Moon Mineralogy Mapper (M3) on India’s Chandrayaan-1 mission, showing the presence of water in Moon’s polar regions. Credit: ISRO/NASA/JPL-Caltech/Brown University/USGS

In addition, lunar rocks have revealed that the Moon’s interior may contain significant sources of water as well. And from samples of lunar soil, it is calculated that adsorbed water could exist at trace concentrations of 10 to 1000 parts per million. Initially, it was though that concentrations of water within the moon rocks was the result of contamination.

But since that time, multiple missions have not only found samples of water on the lunar surface, but revealed evidence of where it came from. The first was India’s Chandrayaan-1 mission, which sent an impactor to the lunar surface on Nov. 18th, 2008. During its 25-minute descent, the impact probe’s Chandra’s Altitudinal Composition Explorer (CHACE) found evidence of water in the Moon’s thin atmosphere.

In March of 2010, the Mini-RF instrument on board Chandrayaan-1 discovered more than 40 permanently darkened craters near the Moon’s north pole that are hypothesized to contain as much as 600 million metric tonnes (661.387 million US tons) of water-ice.

In November 2009, the NASA LCROSS space probe made similar finds around the southern polar region, as an impactor it sent to the surface kicked up material shown to contain crystalline water. In 2012, surveys conducted by the Lunar Reconnaissance Orbiter (LRO) revealed that ice makes up to 22% of the material on the floor of the Shakleton crater (located in the southern polar region).

Evidence of water on the Moon? Image credit: NASA
Hydrogen detected in the polar regions of the Moon point towards the presence of water. Credit: NASA

It has been theorized that all this water was delivered by a combination of mechanisms. For one, regular bombardment by water-bearing comets, asteroids and meteoroids over geological timescales could have deposited much of it. It has also been argued that it is being produced locally by the hydrogen ions of solar wind combining with oxygen-bearing minerals.

But perhaps the most valuable commodity on the surface of the Moon might be helium-3. Helium-3 is an atom emitted by the Sun in huge amounts, and is a byproduct of the fusion reactions that take place inside. Although there is little demand for helium-3 today, physicists think they’ll serve as the ideal fuel for fusion reactors.

The Sun’s solar wind carries the helium-3 away from the Sun and out into space – eventually out of the Solar System entirely. But the helium-3 particles can crash into objects that get in their way, like the Moon. Scientists haven’t been able to find any sources of helium-3 here on Earth, but it seems to be on the Moon in huge quantities.

Benefits:

From a commercial and scientific point of view, there are several reasons why Moon mining would be beneficial to humanity. For starters, it would be absolutely essential to any plans to build a settlement on the Moon, as in-situ resource utilization (ISRU) would be far more cost effective than transporting materials from Earth.

Artist concept of a base on the Moon. Credit: NASA, via Wikipedia
Artist concept of a base on the Moon. Credit: NASA, via Wikipedia

Also, it is predicted that the proposed space exploration efforts for the 21st century will require large amounts of materiel. That which is mined on the Moon would be launched into space at a fraction of the cost of what is mined here on Earth, due to the Moon’s much lower gravity and escape velocity.

In addition, the Moon has an abundance of raw materials that humanity relies on. Much like Earth, it is composed of silicate rocks and metals that are differentiated between a geochemically distinct layers. These consist of is iron-rich inner core, and iron-rich fluid outer core, a partially molten boundary layer, and a solid mantle and crust.

In addition, it has been recognized for some time that a lunar base – which would include resource operations – would be a boon for missions farther into the Solar System. For missions heading to Mars in the coming decades, the outer Solar System, or even Venus and Mercury, the ability to be resupplied from an lunar outpost would cut the cost of individual missions drastically.

Challenges:

Naturally, the prospect of setting up mining interests on the Moon also presents some serious challenges. For instance, any base on the Moon would need to be protected from surface temperatures, which range from very low to high – 100 K (-173.15 °C;-279.67 °F) to 390 K (116.85 °C; 242.33 °F) – at the equator and average 150 K (-123.15 °C;-189.67 °F) in the polar regions.

Schematic showing the stream of charged hydrogen ions carried from the Sun by the solar wind. One possible scenario to explain hydration of the lunar surface is that during the daytime, when the Moon is exposed to the solar wind, hydrogen ions liberate oxygen from lunar minerals to form OH and H2O, which are then weakly held to the surface. At high temperatures (red-yellow) more molecules are released than adsorbed. When the temperature decreases (green-blue) OH and H2O accumulate. [Image courtesy of University of Maryland/F. Merlin/McREL]
Schematic showing the stream of charged hydrogen ions carried from the Sun by the solar wind.Credit: University of Maryland/F. Merlin/McREL]
Radiation exposure is also an issue. Due to the extremely thin atmosphere and lack of a magnetic field, the lunar surface experiences half as much radiation as an object in interplanetary space. This means that astronauts and/or lunar workers would at a high risk of exposure to cosmic rays, protons from solar wind, and the radiation caused by solar flares.

Then there’s the Moon dust, which is an extremely abrasive glassy substance that has been formed by billions of years of micrometeorite impacts on the surface. Due to the absence of weathering and erosion, Moon dust is unrounded and can play havoc with machinery, and poses a health hazard. Worst of all, its sticks to everything it touches, and was a major nuisance for the Apollo crews!

And while the lower gravity is attractive as far as launches are concerned, it is unclear what the long-term health effects of it will be on humans. As repeated research has shown, exposure to zero-gravity over month-long periods causes muscular degeneration and loss of bone density, as well as diminished organ function and a depressed immune system.

In addition, there are the potential legal hurdles that lunar mining could present. This is due to the “The Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies” – otherwise known as “The Outer Space Treaty”. In accordance with this treaty, which is overseen by the United Nations Office for Outer Space Affairs, no nation is permitted to own land on the Moon.

A lunar base, as imagined by NASA in the 1970s. Image Credit: NASA
A lunar base, as imagined by NASA in the 1970s. Image Credit: NASA

And while there has been plenty of speculation about a “loophole” which does not expressly forbid private ownership, there is no legal consensus on this. As such, as lunar prospecting and mining become more of a possibility, a legal framework will have to be worked out that ensures everything is on the up and up.

Though it might be a long way off, it is not unreasonable to think that someday, we could be mining the Moon. And with its rich supplies of metals (which includes REMs) becoming part of our economy, we could be looking at a future characterized by post-scarcity!

We have written many articles on Moon mining and colonization here at Universe Today. Here’s Who Were the First Men on the Moon?, What were the First Lunar Landings?, How Many People have Walked on the Moon?, Can you Buy Land on the Moon?, and Building A Space Base, Part 1: Why Mine On The Moon Or An Asteroid?

For more information, be sure to check out this infographic on Moon Mining from NASA’s Jet Propulsion Laboratory.

Astronomy Cast also has some interesting episodes on the subject. Listen here – Episode 17: Where Did the Moon Come From? and Episode 113: The Moon – Part I.

Sources:

New Theory of Gravity Does Away With Need for Dark Matter

University of Amsterdam


Erik Verlinde explains his new view of gravity

Let’s be honest. Dark matter’s a pain in the butt. Astronomers have gone to great lengths to explain why is must exist and exist in huge quantities, yet it remains hidden. Unknown. Emitting no visible energy yet apparently strong enough to keep galaxies in clusters from busting free like wild horses, it’s everywhere in vast quantities. What is the stuff – axions, WIMPS, gravitinos, Kaluza Klein particles?

Estimated distribution of matter and energy in the universe. Credit: NASA
Estimated distribution of matter and energy in the universe. Credit: NASA

It’s estimated that 27% of all the matter in the universe is invisible, while everything from PB&J sandwiches to quasars accounts for just 4.9%.  But a new theory of gravity proposed by theoretical physicist Erik Verlinde of the University of Amsterdam found out a way to dispense with the pesky stuff.

formation of complex symmetrical and fractal patterns in snowflakes exemplifies emergence in a physical system.
Snowflakes exemplify the concept of emergence with their complex symmetrical and fractal patterns created when much simpler pieces join together. Credit: Bob King

Unlike the traditional view of gravity as a fundamental force of nature, Verlinde sees it as an emergent property of space.  Emergence is a process where nature builds something large using small, simple pieces such that the final creation exhibits properties that the smaller bits don’t. Take a snowflake. The complex symmetry of a snowflake begins when a water droplet freezes onto a tiny dust particle. As the growing flake falls, water vapor freezes onto this original crystal, naturally arranging itself into a hexagonal (six-sided) structure of great beauty. The sensation of temperature is another emergent phenomenon, arising from the motion of molecules and atoms.

So too with gravity, which according to Verlinde, emerges from entropy. We all know about entropy and messy bedrooms, but it’s a bit more subtle than that. Entropy is a measure of disorder in a system or put another way, the number of different microscopic states a system can be in. One of the coolest descriptions of entropy I’ve heard has to do with the heat our bodies radiate. As that energy dissipates in the air, it creates a more disordered state around us while at the same time decreasing our own personal entropy to ensure our survival. If we didn’t get rid of body heat, we would eventually become disorganized (overheat!) and die.

The more massive the object, the more it distorts spacetime. Credit: LIGO/T. Pyle
The more massive the object, the more it distorts space-time, shown here as the green mesh. Earth orbits the Sun by rolling around the dip created by the Sun’s mass in the fabric of space-time. It doesn’t fall into the Sun because it also possesses forward momentum. Credit: LIGO/T. Pyle

Emergent or entropic gravity, as the new theory is called, predicts the exact same deviation in the rotation rates of stars in galaxies currently attributed to dark matter. Gravity emerges in Verlinde’s view from changes in fundamental bits of information stored in the structure of space-time, that four-dimensional continuum revealed by Einstein’s general theory of relativity. In a word, gravity is a consequence of entropy and not a fundamental force.

Space-time, comprised of the three familiar dimensions in addition to time, is flexible. Mass warps the 4-D fabric into hills and valleys that direct the motion of smaller objects nearby. The Sun doesn’t so much “pull” on the Earth as envisaged by Isaac Newton but creates a great pucker in space-time that Earth rolls around in.

In a 2010 article, Verlinde showed how Newton’s law of gravity, which describes everything from how apples fall from trees to little galaxies orbiting big galaxies, derives from these underlying microscopic building blocks.

His latest paper, titled Emergent Gravity and the Dark Universe, delves into dark energy’s contribution to the mix.  The entropy associated with dark energy, a still-unknown form of energy responsible for the accelerating expansion of the universe, turns the geometry of spacetime into an elastic medium.

“We find that the elastic response of this ‘dark energy’ medium takes the form of an extra ‘dark’ gravitational force that appears to be due to ‘dark matter’,” writes Verlinde. “So the observed dark matter phenomena is a remnant, a memory effect, of the emergence of spacetime together with the ordinary matter in it.”

Rotation curve of the typical spiral galaxy M 33 (yellow and blue points with errorbars) and the predicted one from distribution of the visible matter (white line). The discrepancy between the two curves is accounted for by adding a dark matter halo surrounding the galaxy. Credit: Public domain / Wikipedia
This diagram shows rotation curves of stars in M33, a typical spiral galaxy. The vertical scale is speed and the horizontal is distance from the galaxy’s nucleus. Normally, we expect stars to slow down the farther they are from galactic center (bottom curve), but in fact they revolve much faster (top curve). The discrepancy between the two curves is accounted for by adding a dark matter halo surrounding the galaxy. Credit: Public domain / Wikipedia

I’ll be the first one to say how complex Verlinde’s concept is, wrapped in arcane entanglement entropy, tensor fields and the holographic principal, but the basic idea, that gravity is not a fundamental force, makes for a fascinating new way to look at an old face.

Physicists have tried for decades to reconcile gravity with quantum physics with little success. And while Verlinde’s theory should be rightly be taken with a grain of salt, he may offer a way to combine the two disciplines into a single narrative that describes how everything from falling apples to black holes are connected in one coherent theory.

A New Prototype Telescope Proves Itself Worthy

The Cherenkov Telescope Array prototype, located at the Serra La Nave observing stationon Mount Etna, Sicily. Credit: cta-observatory.org

In 2013, the Cherenkov Telescope Array (CTA) was established with the intention of building the world’s largest and most sensitive high-energy gamma ray observatory. Consisting of over 1350 scientists from 210 research institutes in 32 countries, this observatory will use 100 telescopes across the northern and southern hemispheres to explore the high-energy Universe.

Key to their efforts is a prototype dual-mirror Schwarzschild-Couder telescope, known as the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI). Since it was first created in 2014, this prototype has been undergoing tests at the Serra La Nave Observing Station on Mount Etna, Sicily. And as of October of 2016, it passed its most important test to date, demonstrating a constant point-spread function across its full field of view.

The ASTRI telescope is essentially a revolutionary kind of Imaging Atmospheric Cherenkov Telescope (IACT). These ground-based telescopes are used by astronomers to detect cosmic high-energy gamma rays. These rays are produced by the most energetic objects in the universe (i.e. pulsars, supernovae, regions around black holes), and are only detectable because of the Cherenkov Effect, which they undergo once they pass into our atmosphere.

A IACT telescope at the Whipple Observatory, Mount Hopkins, Arizona. Credit: magic.mpp.mpg.de
A IACT telescope at the Whipple Observatory, Mount Hopkins, Arizona. Credit: magic.mpp.mpg.de

This effect occurs when particles of light achieve speeds greater than the phase velocity of light in their particular medium. In this case, the effect is produced when light particles pass from the vacuum of space into our atmosphere, temporarily exceeding the speed of light in air and producing a glow in the blue to UV range. In the case of very-high-energy gamma rays, indirect observations of this Cherenkov radiation is the only way to detect them.

Typically, Cherenkov telescopes use a mirror to collect light and focus it on a camera. The ASTRI telescope is something quite different, in that it is based on the Schwarzschild-Couder model. As Giovanni Pareschi, an astronomer at the INAF-Brera Astronomical Observatory and the principal investigator of the ASTRI project, told Universe Today via email:

“The ASTRI telescope for the first time is based on a two mirror imaging configuration (while in general Cherenkov telescopes work with in single mirror configuration, i.e. just a big primary mirror with the camera put in the Newtonian focus and a  f-number close to 1). ASTRI is a prototype of the telescopes of the Small Size Telescope sub-array of the CTA Observatory. The sub-array is devoted to detect the gamma rays with the highest energy (up to 100 Tev).  In order to properly work, the sub-array has to be based on a large number of telescopes (70 units) with a distance from each other of a 250 m distributed and with a large field (10 deg x 10 deg) of view with a constant angular resolution of a few arc minutes across the field of view.

This idea for such a telescope was first proposed in 1905 by German astronomer Karl Schwarzschild, but remained dormant for almost a century since it was deemed too difficult and too expensive to construct. It was not until 2007 that it was considered as a viable means for creating a new type of IACT. And in 2014, the INAF-Brera Astronomical Observatory commissioned the first of its kind to be built.

Polaris, the North Star, as observed by ASTRI with different offsets from the optical axis of the telescope. Credits: Enrico Giro/Rodolfo Canestrari/Salvo Scuderi/Giorgia Sironi/INAF
Polaris, the North Star, as observed by ASTRI with different offsets from the optical axis of the telescope. Credits: Enrico Giro/Rodolfo Canestrari/Salvo Scuderi/Giorgia Sironi/INAF

“[W]e have for the first time adopted a two reflection design based on the Schwarzschild-Couder configuration never realized before (also for telescopes operating in the visible band),” added Pareschi. “This configuration allows us to optimize the angular resolution across the field of view and to use focal plane cameras of small dimensions (thanks to this property, we could use new solid-state technology based Silicon photomultiplier sensors instead of the “old” classical photomultiplier tubes used so far in Cherenkov astronomy).”

These advantages, and the advances they allow for, will make ASTRI telescope approximately ten times more sensitive than current instruments. And with this latest test – which demonstrating a constant point-spread function of a few arc minutes over a large field of view of 10 degrees – the team behind it now has proof that it will work. As Pareschi explained:

“The test demonstrated for the first time that a telescope based on the Schwarzschild-Couder configuration correctly works and that a two-mirror configuration can be adopted for making Cherenkov telescopes for gamma ray astronomy. In addition, the ASTRI prototype has been completely characterized and validated from the opto-mechanical point of view, demonstrating that we can now proceed with the construction of the Small-Sized Telescopes (SSTs) of the array based on the ASTRI design.”

With this important test complete, the INAF-Brera team hopes to spend the next few months prepping the telescope. This will include mounting the Cherenkov camera onto the prototype and testing its gamma-ray performance. Then they will start to produce the first set of ASTRI telescopes to create a mini-array, which will serve as a precursor to the planned CTA sub-array that is scheduled to be built in Chile.

Artist’s impression of a gamma-ray burst. Credit: ESO/A. Roquette
Artist’s impression of a gamma-ray burst. Credit: ESO/A. Roquette

Once the camera is tested and mounted, the ASTRI team will conduct their first observations of gamma-rays at very high energies. These observations will allow scientists to determine the direction of gamma-ray photons that are the result of celestial sources, such as neutron stars, pulsars, supernovae, and black holes, tracing them back to their respective sources.

And with the planned construction of 100 SSTs to be spread out over the northern and southern hemispheres, the CTA array will outnumber all other telescopes in the world. The wide coverage and large number of these telescopes, spread over a wide area, will improve astronomers chances of detecting very high-energy gamma rays as they pass into our atmosphere.

Further Reading: CTA

When Good Showers Turn Bad: The 2016 Leonids

Leonid Meteor
A 2001 Leonid over Puerto Rico. Image credit and copyright: Frankie Lucena.

A flash of light recently reminded us of the most stunning sight we ever saw.

We managed to catch an early Leonid meteor this past Saturday morning while waiting for the new Chinese space station Tiangong-2 to pass over southern Spain. The Leonids are active this week, and although the light-polluting just past Super Moon lurks nearby, we’ve learned to never ignore this shower, even on an off year.

First though, here’s a rundown on what’s up with the Leonids in 2016:

The Leonid meteors are expected to peak on the night of Thursday, November 17th into the morning of Friday, November 18th. The shower is active for a 25 day span from November 5th to November 30th and though the Leonids can vary with an Zenithal Hourly Rate (ZHR) of thousands of meteors per hour, and short outbursts briefly topping hundreds of thousands per hour, in 2016, the Leonids are expected to produce a maximum ideal ZHR of only 10 to 15 meteors per hour. The radiant of the Leonids is located at right ascension 10 hours 8 minutes, declination 21.6 degrees north at the time of the peak, in the Sickle or backwards Question Mark asterism of the astronomical constellation of Leo the Lion.

The rising radiant of the Leonids versus the nearby waning gibbous Moon. image credit: Stellarium.
The rising radiant of the Leonids versus the nearby waning gibbous Moon. Image credit: Stellarium.

The source of the Leonids is periodic Comet 55P/Tempel-Tuttle.

Now, for the bad news. The Moon is an 82% illuminated, waning gibbous phase at the peak of the Leonids, making 2016 an unfavorable year for this shower. In fact, the Moon is located just 42 degrees from the shower’s radiant in the nearby constellation of Gemini at the shower’s peak on Friday morning. In previous years, the Leonids produced a ZHR numbering in the 15-20 per hour. The estimated ZHR last topped 100 in 2008.

The Leonid meteors strike the Earth at a moderate/fast velocity of 71 km/s, and produce many fireballs with an r value of 2.5.

The Leonids are notorious for producing storms of epic proportions every 33 years. This last occurred in years surrounding 1999, and isn’t expected to occur again until around 2032. Some older observers still remember the great Leonid meteor storm over the southwestern United States in 1966, and the U.S. East Coast witnessed a massive storm in 1833.

A woodcut engraving depicting the 1833 Leonids over Niagara Falls. Public Domain image.
A woodcut engraving depicting the 1833 Leonids over Niagara Falls. Public Domain image.

We can attest to what the Leonids are capable of. We saw an amazing display from the shower in 1998 from Al Jaber Air Base in Kuwait, with an estimated rate of around 900 per hour towards dawn. When a shower edges towards a zenithal hourly rate of 1,000, you’re seeing meteors every few seconds, with fireballs lighting up the desert night.

And it is possible to defeat the waning gibbous Moon. Though the Moon is near the zenith as seen from the mid-northern latitudes in the early AM hours (the best time to watch the shower,) its almost always possible to view the shower with the Moon blocked behind a house or hill… unless you have the bad luck of viewing from latitude 20 degrees north, where the Moon crosses directly through the zenith on Friday morning.

But take heart, as we’re past the halfway mark in 2014, headed to the Leonid ‘storm years’ of the early 2030s.

Don’t miss the 2016 Leonids… if for no other reason, to catch a flash of storms to come.

Carl Sagan’s Crazy Idea: Life Inside A Comet?

Comet 2012 S1 ISON in outburst, seen on November 15, 2013. Credit and copyright: Damian Peach.

Establishing a sustained human presence somewhere other than Earth is a vital part of humanity’s future, no matter what. We know that Earth won’t last forever. We don’t know exactly which one of the many threats that Earth faces will ultimately extinguish life here, but life will be extinguished completely at some future point.

Colonizing moons or planets is one way to do it. But that’s really hard. We may make it to Mars before too long, but we don’t know how successful we’ll be at establishing a presence there. There are an awful lot of ‘ifs’ when it comes to Mars.

The only other option is space habitats. That makes sense; there’s much more space out there than there is surface area on planets and moons. And space habitats have been on the minds of thinkers, writers, and scientists for a long time.

Gerard K. O’Neill is probably the most well-known thinker when it comes to space habitats. In 1977 he published the seminal book on space habitats, called “The High Frontier: Human Colonies in Space.” O’Neill in his time popularized what is now called the “O’Neill Cylinder.”

The O’Neill Cylinder

Interior view of an O'Neill Cylinder. There are alternating strips of livable surface and "windows" to let light in. Image: Rick Guidice, NASA Ames Research Center
Interior view of an O’Neill Cylinder. There are alternating strips of livable surface and “windows” to let light in. Image: Rick Guidice, NASA Ames Research Center

The O’Neill Cylinder lay the groundwork for space habitat design. It consisted of two counter-rotating cylinders, one nested inside the other. The counter-rotation provided stability and gravity. The atmosphere would be controlled, and the habitat would be powered by solar, and perhaps fusion.

An illustration of two O'Neill Cylinder's. Image: Rick Guidice NASA Ames Research Center
An illustration of two O’Neill Cylinder’s. Image: Rick Guidice NASA Ames Research Center

The McKendree Cylinder

Other designs from other people followed O’Neill’s. Notable among them is the McKendree Cylinder. The McKendree would be gargantuan compared to the O’Neill Cylinder. Thanks to carbon nanotubes, it would have more surface area than the United States. It was designed by NASA Engineer Tom McKendree and introduced in the year 2,000 at the NASA “Turning Goals into Reality Conference.”

There’ve been other ideas for massive, high-tech space habitats, including the Bernal Sphere and the Stanford Torus. All of these designs are typical of engineers and technologists. Lots of high-tech, lots of steel, lots of machinery. But the engineers and scientists behind those designs weren’t the only ones thinking about humans in space.

Carl Sagan was too. And he had a very different idea of what space habitats could be.

So Crazy It Just Might Work

But the craziest idea for space habitats has got to be Carl Sagan’s, from his 1985 book “Comet.”In “Comet” Sagan suggested that humans could seek refuge in, and even colonize, actual comets travelling through our Solar System. Using all the advanced technologies thought about in Sagan’s time—but which don’t exist yet—comets could be transformed into humanity’s salvation. His idea is a world apart from the high-tech, highly-engineered, gleaming habitat designs that most people think of when they think of space habitats.

I’m a fan of Sagan’s. Like many in my generation, I was influenced by his TV series Cosmos. I loved it and it’s stuck with me. His book “The Demon-Haunted World” taught us what scientific skepticism can be, and how useful it is.

"Comet" was published only months before Halley's Comet arrived in our inner Solar System in 1986. Image: Jon Lomberg, Random House New York.
“Comet” was published only months before Halley’s Comet arrived in our inner Solar System in 1986. Image: Jon Lomberg, Random House New York.

Sagan’s is the most surprising—and perhaps bleakest—view of space habitats. Life inside comets sounds shocking, and maybe even foolish, but as Sagan explains, there is some reasoning behind the idea.

Remember that when Sagan wrote about this, thermonuclear war between the superpowers was a “thing,” and thinkers like Sagan felt a sense of imminent danger. That sense of foreboding may have contributed to his “comets-as-space-habitas” idea. Plus, he was just an innovative thinker.

Carl Sagan in 1980.
Carl Sagan in 1980.

Sagan’s thinking behind using comets as space habitats starts out something like this: if there are about a hundred thousand comets crossing Earth’s orbit, and another hundred trillion in the Oort Cloud, their combined surface area is roughly equal to about a hundred million Earths. And with advanced technology, Sagan proposed that these comets could be captured and colonized and sent on orbits and trajectories desirable to humans.

Comet Lovejoy and its spectacular "lively" ion tail photographed on January 8th by Nick Howes at Tzec Muan Network at Siding Spring Australia. Could Lovejoy and its brethren one day provide a home for humanity?
Comet Lovejoy and its spectacular “lively” ion tail photographed on January 8th by Nick Howes at Tzec Muan Network at Siding Spring Australia. Could Lovejoy and its brethren one day provide a home for humanity?

Comets are rich in minerals, water ice, and biological compounds. Or so it was thought at the time. That means raw material for manufacturing, water to drink and to supply oxygen, biological compounds for bio-engineering, and even the raw material for rocket fuel. Add a fusion reactor for power, and
comets could end up being the convenience stores of the Solar System.

Physicist Freeman Dyson, an innovative thinker himself, had something to add to Sagan’s comet idea. In “Comet,” Sagan tells of Dyson’s ideas around genetic engineering, and that one day we should be able to engineer forms of life that could thrive on comets, and meet some of our needs. Dyson talks about a giant, genetically engineered tree that could grow on a comet, planted in snow rich in organic chemicals. The tree would supply us with fresh oxygen.

The OSIRIS narrow-angle camera aboard the Rosetta spacecraft captured this image of comet 67P/Churyumov-Gerasimenko on September 30, 2016. Does it look habitable, or potentially habitable, to you? Credits: ESA/Rosetta/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The OSIRIS narrow-angle camera aboard the Rosetta spacecraft captured this image of comet 67P/Churyumov-Gerasimenko on September 30, 2016. Does it look habitable, or potentially habitable, to you? Credits: ESA/Rosetta/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

This sounds extremely far-fetched: humans living inside comets travelling through space, with giant genetically engineered trees and fusion power plants. I try to remind myself that many things we take for granted now were once thought to be laughable. But even though parts of the comet-as-space-habitat idea sound fanciful—like the giant tree—there may be the seed of a practical idea here, with humans hitching rides on comets, molding them to our purposes, and extracting resources like minerals and fuel from them.

High cliffs on the surface of Comet Churyumov–Gerasimenko as imaged by the Rosetta spacecraft. Image Credit & Licence (CC BY-SA 3.0 IGO): ESA, Rosetta spacecraft, NAVCAM; Additional Processing: Stuart Atkinson
High cliffs on the surface of Comet Churyumov–Gerasimenko as imaged by the Rosetta spacecraft. Image Credit & Licence (CC BY-SA 3.0 IGO): ESA, Rosetta spacecraft, NAVCAM; Additional Processing: Stuart Atkinson

Sagan was an agile creative thinker. He’s clearly riffing when he outlines his ideas for life on comets. He’s like the John Coltrane of space science.

It seems doubtful that we would go to the trouble to turn comets into actual habitats. It’s probably more science fiction that science. But the future is unwritten, and given enough time, almost anything might be possible.

Detector With Real-time Alert Capability Waits Patiently For Supernova Neutrinos

Super-Kamiokande, a neutrino detector in Japan, holds 50,000 tons of ultrapure water surrounded by light tubes. Credit: Super-Kamiokande Observatory
Super-Kamiokande, a neutrino detector in Japan, holds 50,000 tons of ultrapure water surrounded by light tubes. Credit: Super-Kamiokande Observatory

Under Mount Ikeno, Japan, in an old mine that sits one-thousand meters (3,300 feet) beneath the surface, lies the Super-Kamiokande Observatory (SKO). Since 1996, when it began conducting observations, researchers have been using this facility’s Cherenkov detector to look for signs of proton decay and neutrinos in our galaxy. This is no easy task, since neutrinos are very difficult to detect.

But thanks to a new computer system that will be able to monitor neutrinos in real-time, the researchers at the SKO will be able to research these mysteries particles more closely in the near future. In so doing, they hope to understand how stars form and eventually collapse into black holes, and sneak a peak at how matter was created in the early Universe.

Neutrinos, put simply, are one of the fundamental particles that make up the Universe. Compared to other fundamental particles, they have very little mass, no charge, and only interact with other types of particles via the weak nuclear force and gravity. They are created in a number of ways, most notably through radioactive decay, the  nuclear reactions that power a star, and in supernovae.

The Big Bang timeline of the Universe. Cosmic neutrinos affect the CMB at the time it was emitted, and physics takes care of the rest of their evolution until today. Image credit: NASA / JPL-Caltech / A. Kashlinsky (GSFC).
Timeline of the Big Bang, which unleashed cosmic neutrinos that can still be detected today. Credit: NASA / JPL-Caltech / A. Kashlinsky (GSFC).

In accordance with the standard Big Bang model, the neutrinos left over from the creation of the Universe are the most abundant particles in existence. At any given moment, trillions of these particles are believed to be moving around us and through us. But because of the way they interact with matter (i.e. only weakly) they are extremely difficult to detect.

For this reason, neutrino observatories are built deep underground to avoid interference from cosmic rays. They also rely on Cherenkov detectors, which are essentially massive water tanks that have thousands of sensors lining their walls. These attempt to detect particles as they are slowed down to the local speed of light (i.e. the speed of light in water), which is made evident by the presence of a glow – known as Cherenkov radiation.

The detector at the SKO is currently the largest in the world. It consists of a cylindrical stainless steel tank that is 41.4 m (136 ft) tall and 39.3 m (129 ft) in diameter, and holds over 45,000 metric tons (50,000 US tons) of ultra-pure water. In the interior, 11,146 photomultiplier tubes are mounted, which detect light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum with extreme sensitivity.

For years, researchers at the SKO have used the facility to examine solar neutrinos, atmospheric neutrinos and man-made neutrinos. However, those that are created by supernovas are very difficult to detect, since they appear suddenly and difficult to distinguish from other kinds. However, with the newly-added computer system, the Super Komiokande researchers are hoping that will change.

Cherenkov radiation glowing in the core of the Advanced Test Reactor at the Idaho National Laboratory Credit: Wikipedia Commons/Argonne National Laboratory
Cherenkov radiation glowing in the core of the Advanced Test Reactor at the Idaho National Laboratory Credit: Wikipedia Commons/Argonne National Laboratory

As Luis Labarga, a physicist at the Autonomous University of Madrid (Spain) and a member of the collaboration, explained in a recent statement to the Scientific News Service (SINC):

“Supernova explosions are one of the most energetic phenomena in the universe and most of this energy is released in the form of neutrinos. This is why detecting and analyzing neutrinos emitted in these cases, other than those from the Sun or other sources, is very important for understanding the mechanisms in the formation of neutron stars –a type of stellar remnant– and black holes”.

Basically, the new computer system is designed to analyze the events recorded in the depths of the observatory in real-time. If it detects an abnormally large flows of neutrinos, it will quickly alert the experts manning the controls. They will then be able to assess the significance of the signal within minutes and see if it is actually coming from a nearby supernova.

“During supernova explosions an enormous number of neutrinos is generated in an extremely small space of time – a few seconds – and this why we need to be ready,” Labarga added. “This allows us to research the fundamental properties of these fascinating particles, such as their interactions, their hierarchy and the absolute value of their mass, their half-life, and surely other properties that we still cannot even imagine.”

The Super-Kamiokande experiment is located at the Kamioka Observatory, 1,000 m below ground in a mine near the Japanese city of Kamioka. Credit: Kamioka Observatory/ICRR/University of Tokyo
The Super-Kamiokande experiment is located at the Kamioka Observatory, 1,000 m below ground in a mine near the Japanese city of Kamioka. Credit: Kamioka Observatory/ICRR/University of Toky

Equally as important is the fact this system will give the SKO the ability to issue early warnings to research centers around the world. Ground-based observatories, where astronomers are keen to watch the creation of cosmic neutrinos by supernova, will then be able to point all of their optical instruments towards the source in advance (since the electromagnetic signal will take longer to arrive).

Through this collaborative effort, astrophysicists may be able to better understand some of the most elusive neutrinos of all. Discerning how these fundamental particles interact with others could bring us one step closer to a Grand Unified Theory – one of the major goals of the Super-Kamiokande Observatory.

To date, only a few neutrino detectors exist in the world. These include the Irvine-Michigan-Brookhaven (IMB) detector in Ohio, the Subdury Neutrino Observatory (SNOLAB) in Ontario, Canada, and the Super Kamiokande Observatory in Japan.

Further Reading: SINC