Messier 18 (M18) – The NGC 6613 Star Cluster

Messier 18, shown in proximity to M17 (Omega Nebula), and Messier 24 (Sagittarius Star Cloud). Credit: Wikisky

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Messier 18 open star cluster. Enjoy!

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier began noticing a series of “nebulous objects” in the night sky. Hoping to ensure that other astronomers did not make the same mistake, he began compiling a list of these objects,. Known to posterity as the Messier Catalog, this list has come to be one of the most important milestones in the research of Deep Sky objects.

One of these objects was Messier 18 (aka. NGC 6613), a relatively dim open star cluster located in the constellation Sagittarius. Located in close proximity to Messier 17 (the Omega Nebula), it is possible that these two clusters formed together.

Description:

Located about 4,900 light years from Earth, and spread over an expanse measuring 17 light-years across, this group of around 20 stars is only about 32 million years old. Its hottest members are spectral type B3, yet you will also see many yellow and orange stars as well. But as already noted, M18 may not be alone in space.

According to research done by R. and C. R. de la Fuente Marcos, M18 may very well be a binary cluster, paired with the open cluster – NGC 6618 – which is harbored inside M17:

“We have shown that binary open clusters appear to constitute a statistically significant sample and that the fraction of possible binary clusters in the Galactic disk is comparable to that in the Magellanic Clouds. The spatial proximity of two almost coeval open clusters, compared to the large distances which typically separate these objects, suggests that both objects were formed together. In starforming complexes, one star cluster might capture another to form a bound state in the presence of a third body or of energy dissipation. This mechanism may also be at work within orbital resonances for non-coeval clusters.”

Messier 18 location. Image: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)
The location of Messier 18 in the Sagittarius constellation. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

History of Observation:

M18 was one of Charles Messier’s original discoveries, which took place in 1764. As he wrote in his notes upon observing the cluster:

“In the same night [June 3 to 4, 1764], I have discovered a bit below the nebula reported here above, a cluster of small stars, environed in a thin nebulosity; its extension may be 5 minutes of arc: its appearances are less sensible in an ordinary refractor of 3 feet and a half [FL] than that of the two preceding [M16 and M17]: with a modest refractor, this star cluster appears in the form of a nebula; but when employing a good instrument, as I have done, one sees well many of the small stars: after my observations I have determined its position: its right ascension is 271d 34′ 3″, and its declination 17d 13′ 14″ south.”

In this circumstance, we must give Messier great credit considering his observations were performd long before the nature of open clusters and stellar movement were understood. While Messier seems to have spotted some nebulosity around the cluster (which may have belonged to M17), he takes a later historic cut from Smyth:

“A neat double star, in a long and straggling assemblage of stars,below the Polish shield. A 9 and B 11 [mag], both blueish. This cluster was discovered by Messier in 1764, and registered as a mass of small stars appearing like a nebula in a 3 1/2-foot telescope; which affords another instance that the means of that very zealous observer did not quadrate with his diligence.”

What a shame Smyth wasn’t around to later know that M18 could be paired with its nebulous neighbor!

Credit: Two Micron All Sky Survey (2MASS), a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.
The open cluster Messier 18 (NGC 6613), as observed by the Two Micron All Sky Survey (2MASS). Credit: University of Massachusetts/IPAC/Caltech/NASA/NSF

Locating Messier 18:

Because Messier 18 is nothing more than a small collection of stars which are slightly brighter than the background Milky Way stars, it isn’t easy to distinguish it using binoculars or a finderscope if you’ve never seen it before. One of the most sure ways of locating it is to become familiar with Messier 17 and simply aim a couple of degrees (about a field of view) south.

While it won’t strike you as a grand object, you will notice that the stars are compressed in this area and that there are several dozen of them which appear brighter than the rest. In a telescope, use your lowest magnification. Since this is a very well spread cluster, it is easily resolved in even modest instruments.

And here are the quick facts on M18 to get you started:

Object Name: Messier 18
Alternative Designations: M18, NGC 6613
Object Type: Open Star Cluster
Constellation: Sagittarius
Right Ascension: 18 : 19.9 (h:m)
Declination: -17 : 08 (deg:m)
Distance: 4.9 (kly)
Visual Brightness: 7.5 (mag)
Apparent Dimension: 9.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

A Planet With A 27,000 Year Orbit & That’s Just Where The Strangeness Begins

The star system CVSO 30, which was found to have two exoplanets with extreme orbital periods. If you look closely, you can see 30c to the upper left of the star. Credit: ESO

Every planet in the Solar System has its own peculiar orbit, and these vary considerably. Whereas planet Earth takes 365.25 days to complete a single orbit about our Sun, Mars takes almost twice as long – 686.971 days. Then you have Jupiter and the other gas giants, which take between 11.86 and 164.8 years to orbit our Sun. But even with these serving as examples, astronomers were not prepared for what they found when they looked at CVSO 30.

This star system, which lies some 1200 light years from Earth, has been found in recent years to have two candidate exoplanets. These planets, which are many times the mass of Jupiter, were discovered by an international team of astronomers using both the Transit Method and Direct Imaging. And what they found was very interesting: one planet has an orbital period of less than 11 days while the other takes a whopping 27,000 years to orbit its parent star!

In addition to being a big surprise, the detection of these two planets using different methods was an historic achievement. Up until now, the vast majority of the over 2,000 exoplanets discovered have been detected thanks to indirect methods. These include the aforementioned Transit Method, which detects planets by measuring the dimming effect they cause when crossing their parent star’s path, and the Radial Velocity Method, which measures the gravitational effect planets have on their parent star.

In 2012, astronomers used the Transit Method to detect CVSO 30b, a planet with 5 to 6 times the mass of Jupiter, and which orbits its star at a distance of only 1.2 million kilometers (by comparison, Mercury orbits our Sun at a distance of 58 million kilometers). From these characteristics, CVSO 30b can be described as a particularly “hot-Jupiter”.

In contrast, Direct Imaging has been used to spot only a few dozen exoplanets. The reason for this is because it is typically quite difficult to detect the light reflected by a planet’s atmosphere due it being drowned out by the light of its parent star. It can also be quite demanding when it comes to the instrument involved. Still, compared to indirect methods, it can be more effective when it comes to exploring the remote regions of a star.

Thanks to the efforts of an international team of astronomers, who combined the use of the Keck Observatory in Hawaii, the ESO’s Very Large Telescope in Chile, and the Spanish National Research Council’s (CSIC) Calar Alto Observatory, CVSO 30c was spotted in remote regions around its parent star, orbiting at a distance of around 666 AU.

The details of the discovery were published in a paper titled “Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30“. In it, the researchers – who hail from such prestigious institutions as the Cerro Tololo Inter-American Observatory, the Jena Observatory, the European Space Agency and the Max Planck Institute for Astronomy – explained the methods used to find the exoplanet, and the significance of its discovery.

The star CVSO30, showing the two detection methods that revealed its exoplanet candidates. Credit: Keck Observatory/ESO/VLT/NACO
The star CVSO30, showing the two detection methods that revealed its exoplanet candidates. Credit: Keck Observatory/ESO/VLT/NACO

As Tobias Schmidt – of the University of Hamburg, the Astrophysical Institute and University Observatory Jena, and the lead author of the paper – told Universe Today via email:

“[30b and 30c] are both unusual on their own. CVSO 30b is the first transiting planet around a star as young as 2.5 million years. Published in 2012, all previously detected transiting planets were older than few hundred million years… It has been a surprise to find a planetary mass companion at 662 AU, or 662 times the distance from Earth to the Sun, from a primary star having only about 0.4 solar masses. According to the standard model, planets form in disks around the star. But none of the observed disks around such low-mass stars is large enough to form such an object.”

In other words, it is surprising to find two exoplanet candidates with several times the mass of Jupiter (aka. Super-Jupiters) orbiting a star as small as CVSO 30. But to find two exoplanets with such a disparity in terms of their respective distance from their star (despite being similar in mass) was particularly surprising.

Relying on high-contrast photometric and spectroscopic observations from the Very Large Telescope, the Keck telescopes and the Calar Alto observatory, the international team was able to spot 30c using a technique known as lucky imaging. This process, which is used by ground-based telescopes, involves many high-speed, quick exposure photos being taken to minimize atmospheric interference.

An artist's conception of a T-type brown dwarf. (Credit: Tyrogthekreeper under a Wikimedia Commons Attribution-Share Alike 3.0 Unported license).
An artist’s conception of a T-type brown dwarf. Credit: Tyrogthekreeper/Wikimedia Commons.

What they found was an exoplanet with a wide orbit that was between 4 and 5 Jupiter masses, and was also very young – less than 10 million years old. What’s more, the spectroscopic data indicated that it is unusually blue for a planet, as most other planet candidates of its kind are very red. The researchers concluded from this that it is likely that 30c is the first young planet of its kind to be directly imaged.

They further concluded that 30 c is also likely the first “L-T transition object” younger than 10 million years to be found orbiting a star. L-T transition objects are a type of brown dwarf – objects that are too large to be considered planets, but too small to be considered stars. Typically they are found embedded in large clouds of gas and dust, or on their own in space.

Paired with its companion – 30 b, which is impossibly close to its parent star – 30 c is not believed to have formed at its current position, and is likely not stable in the long-term. At least, not where current models of planetary formation and orbit are concerned. However, as Prof. Schmidt indicated, this offers a potential explanation for the odd nature of these exoplanets.

“We do think this is a very good hint,” he said, “that the two objects might have formed regularly around the star at a separation comparable to Jupiter or Saturn’s separation from the Sun, then interacted gravitationally and were scattered to their current orbits. However this is still speculation, further investigations will try to prove this. Both have about the same mass of few Jupiter masses, the inner one might be even lower.”

The Very Large Telescoping Interferometer firing it's adaptive optics laser. Credit: ESO/G. Hüdepohl
The Very Large Telescoping Interferometer firing it’s adaptive optics laser. Credit: ESO/G. Hüdepohl

The discovery is also significant since it was the first time that these two detection methods – Transit and Direct Imaging – were used to confirm exoplanet candidates around the same star. In this case, the methods were quite complimentary, and present opportunities to learn more about exoplanets. As Professor Schmidt explained:

“Both Transit method and radial velocity method have problems finding planets around young stars, as the activity of young stars is disturbing the search for them. CVSO 30 b was the first very young planet found with these methods, currently a hand full of candidates exist. Direct imaging, on the other hand, is working best for young planets as they still contract and are thus self-luminous. It is therefore great luck that a far out planet was found around the very first young star hosting a inner planet…

“However, the real advantage of transit and direct imaging methods is that the two objects can now be investigated in greater detail. While we can use the direct light from the imaging for spectroscopy, i.e. split the light according to its wavelength, we hope to achieve the same for the inner planet candidate. This is possible as the light passes through the atmosphere of the planet during transits and some of the elements are absorbed by the composition material of the atmosphere. So we do hope to learn a lot about planet formation, thus also formation of the early Solar System and about young planets in particular from the CVSO 30 system.”

Since astronomers first began began to find exoplanet candidates in distant star systems, we have come to learn just how diverse our Universe really is. Many of the discoveries have challenged our notions about where planets can form around their parent star, while others have showed us that planets can take many different forms.

As time goes on and our exploration of the local Universe advances, we will be challenged to find explanations for how it all fits together. And from that, new and more comprehensive models will no doubt emerge.

Further Reading: IAA, arXiv

What if Earth Stopped Orbiting the Sun?

What if Earth Stopped Orbiting the Sun?

In a previous article I investigated what would happen if the Earth stopped turning entirely, either locking to the Sun or the background stars.

If it happened quickly, then results would be catastrophic, turning the whole planet into a blended slurry of mountains, oceans and trees, hurting past a hundreds of kilometers per hour. And if it happened slowly, it would still be unpleasant, as we stopped having a proper day/night cycle. But it wouldn’t be immediately lethal.

But would happen if the Earth somehow just stopped in its tracks as it was orbiting the Sun, as if it ran into an invisible wall? As with the Earth turning question, it’s completely and totally impossible; it’s not going to happen. And with the unspun Earth, it would be totally devastating and super interesting to imagine.

A view of Earth on October 24, 2014 from the Chinese Chang’e-5 T1 spacecraft. Credit: Xinhua News, via UnmannedSpaceflight.com.
Credit: Xinhua News, via UnmannedSpaceflight.com.

Before we begin to imagine the horrifying consequences of a total loss of orbital velocity, let’s examine the physics involved.

The Earth is traveling around the Sun with an orbital velocity of 30 kilometers per second. This is exactly the speed it needs to be going to counteract the force of gravity from the Sun pulling it inward. If the Sun were to suddenly disappear, Earth would travel in a perfectly straight line at 30 km/s. This is how orbits work.

If the Earth’s orbital velocity sped up, then it would go into a higher orbit to compensate. And if the Earth’s orbital velocity slowed down, then it fall into a lower orbit to compensate. And if the Earth’s orbital velocity was slowed all the way down to zero? Now we’re cooking, literally.

First, let’s imagine what would happen if the Earth just suddenly stopped.

As I mentioned above, the Earth’s orbital velocity is 30 km/s, which means that if it suddenly stopped, everything on it would still have 30 km/s worth of inertia. The escape velocity of the Earth is about 11 km/s.

In other words, anything on the Earth’s leading side would fly off into space, continuing along the Earth’s orbital path around the Sun. Anything on the trailing side would be pulverized against the Earth. It would be a horrible, gooey mess.

But even if the Earth slowed gently to a stop, it would still be a horrible mess. Without the outward centripetal force to counteract the inward pull of gravity, the Earth would begin falling towards the Sun.

How long would it take? My integral calculus is a little rusty, so I’ll draw upon the calculations of Dave Rothstein from Cornell’s Ask an Astronomer. According to Dr. Rothstein, the whole journey would take about 65 days. It would take 41 days to cross the orbit of Venus, and on day 57, we’d cross the orbit of Mercury.

As they days went by, the Earth would get hotter and hotter as it got closer to the Sun. Aatish Bhatia over at WIRED did some further calculations to figure out the temperature. A month into the freefall, and the average temperature on Earth would have risen to 50 degrees C. 50 days in and we’d be about 125 C. On the final day, we’d get up to 3,000 C… and then, that would be that.

Of course, this is completely and totally impossible. There’s no force that could just stop the Earth in its tracks like that. There is, however, a plausible scenario that might drag the Earth into the Sun.

In the far future, the Sun will turn into a red giant and expand outward, engulfing the orbits of Mercury and Venus. There’s still an argument among astronomers on whether it’s going to gobble up Earth as well.

Illustration of the red supergiant Betelgeuse, as seen from a fictional orbiting world. © Digital Drew.
Poor Earth. © Digital Drew.

Let’s say it does. In that case, the Earth will be inside the atmosphere of the Sun, and experience a friction from the solar material as it orbits around, and spiral inward. Of course, at this point you’re orbiting inside the Sun, so falling into the Sun already happened.

There you go. If the Earth happened to stop dead in its orbit, it would take about 65 days to plunge down into the Sun, disappearing in a puff of plasma.

Astronomers Discover Exoplanet With Triple Sunrises and Sunsets

This graphic shows the orbit of the planet in the HD 131399 system (red line) and the orbits of the stars (blue lines). The planet orbits the brightest star in the system, HD 131399A. Credit: ESO
This graphic shows the orbit of the planet in the HD 131399 system (red line) and the orbits of the stars (blue lines). The planet orbits the brightest star in the system, HD 131399A. Credit: ESO
This graphic shows the orbit of the planet in the HD 131399 system (red oval) and the orbits of the stars (blue arcs). The planet orbits the brightest star in the triple system, HD 131399A with a period of about 550 years. Credit: ESO

In the famous scene from the Star Wars movie “A New Hope” we recall young Luke Skywalker contemplating his future in the light of a binary sunset on the planet Tatooine. Not so many years later in 2011, astronomers using the Kepler Space Telescope discovered Kepler-16b, the first Tatooine-like planet known to orbit two suns in a binary system. Now astronomers have found a planet in a triple star system where an observer would either experience constant daylight or enjoy triple sunrises and sunsets each day, depending on the seasons, which last longer than human lifetimes.

They used the SPHERE instrument on the European Southern Observatory’s Very Large Telescope to directly image the planet, the first ever found inside a triple-star system. The three stars are named HD 131399A, HD 131399B and HD 131399C in order of decreasing brightness; the planet orbits the brightest and goes by the chunky moniker HD 131399Ab.

This annotated composite image shows the newly discovered exoplanet HD 131399Ab in the triple-star system HD 131399. The image of the planet was obtained with the SPHERE imager on the ESO Very Large Telescope in Chile. This is the first exoplanet to be discovered by SPHERE and one of very few directly-imaged planets. With a temperature of around 580 degrees Celsius and an estimated mass of four Jupiter masses, it is also one of the coldest and least massive directly-imaged exoplanets. This picture was created from two separate SPHERE observations: one to image the three stars and one to detect the faint planet. The planet appears vastly brighter in this image than in would in reality in comparison to the stars. Credit: ESO/K. Wagner et al.
This composite image shows the newly discovered exoplanet HD 131399Ab in the triple-star system HD 131399. The image of the planet was obtained with the SPHERE imager.  This is the first exoplanet to be discovered by SPHERE and one of very few directly-imaged planets. This picture was created from two separate SPHERE observations: one of the three stars and one to detect the faint planet. The planet appears vastly brighter in this image than in would in reality in comparison to the stars. Credit: ESO/K. Wagner et al.

Located about 320 light-years from Earth in the constellation of Centaurus the Centaur HD 131399Ab is about 16 million years old, making it also one of the youngest exoplanets discovered to date, and one for which we have a direct image. With a temperature of around 1,075° F (580° C) and the mass about four times that of Jupiter, it’s also one of the coldest and least massive directly-imaged exoplanets.

This infrared image of Saturn’s largest moon, Titan, was one of the first produced by the SPHERE instrument soon after it was installed on ESO’s Very Large Telescope in May 2014. This picture shows how effective the adaptive optics system is at revealing fine detail on this tiny disc (just 0.8 arc seconds across). Credit: ESO/J.-L. Beuzit et al./SPHERE Consortium
This infrared image of Saturn’s largest moon, Titan, was one of the first produced by the SPHERE instrument soon after it was installed on ESO’s Very Large Telescope in May 2014. This picture shows how effective the adaptive optics system is at revealing fine detail on this tiny disc (just 0.8 arc seconds across). Credit: ESO/J.-L. Beuzit et al./SPHERE Consortium

To pry it loose from the glare of its host suns, a team of astronomers led by the University of Arizona used a state of the art adaptive optics system to give razor-sharp images coupled with SPHERE, an instrument that blocks the light from the central star(s) similar to the way a coronagraph blocks the brilliant solar disk and allows study of the Sun’s corona. Finally, the region around the star is photographed in infrared polarized light to make any putative planets stand out more clearly against the remaining glare.

The planet, HD 131399Ab, is unlike any other known world — its orbit around the brightest of the three stars is by far the widest known within a multi-star system. It was once thought that planets orbiting a multi-star system would be unstable because of the changing gravitational tugs on the planet from the other two stars. Yet this planet remains in orbit instead of getting booted out of the system, leading astronomers to think that planets orbiting multiple stars might be more common that previously thought.

This artist's impression shows a view of the triple star system HD 131399 from close to the giant planet orbiting in the system. The planet is known as HD 131399Ab and appears at the lower-left of the picture. Credit: ESO / L. Calcada
This artist’s impression shows a view of the triple star system HD 131399 from close to the giant planet orbiting in the system. The planet is known appears at the lower-left of the picture. Credit: ESO / L. Calcada

HD 131399Ab orbits HD 131399A, estimated to be 80% more massive than the Sun. Its double-star companions orbit about 300 times the Earth-Sun distance away. For much of the planet’s 550 year orbit, all three stars would appear close together in the sky and set one after the other in unique triple sunsets and sunrises each day. But when the planet reached the other side of its orbit around its host sun, that star and the pair would lie in opposite parts of the sky. As the pair set, the host would rise, bathing HD 131399Ab in near-constant daytime for about one-quarter of its orbit, or roughly 140 Earth-years.


Click to see a wonderful simulation showing how the planet orbits within the trinary system

Planets in multi-star systems are of special interest to astronomers and planetary scientists because they provide an example of how the mechanism of planetary formation functions in these more extreme scenarios. Since multi-star systems are just as common as single stars, so planets may be too.

How would our perspective of the cosmos change I wonder if Earth orbited triple suns instead of a single star? Would the sight deepen our desire for adventure like the fictional Skywalker? Or would we suffer the unlucky accident of being born at the start of a multi-decade long stretch of constant daylight? Wonderful musings for the next clear night under the stars.

Now, Witness The Power Of This Fully Operational Radio Telescope!

The Five-hundred-metre Aperture Spherical Telescope (FAST) has just finished construction in the southwestern province of Guizhou. Credit: FAST

Relax, its not a space station! And according to the Chinese government, it’s for entirely peaceful purposes. It’s known as the Five-hundred-meter Aperture Spherical Telescope (FAST), a massive array that just finished construction in the southerwestern province of Guizhou, China. Equivalent in size to over 20 football fields joined end to end, it is the world’s largest radio telescope – thus ending the Arecibo Observatory’s 53 year reign.

As part of China’s growing commitment to space exploration, the FAST telescope will spend the coming decades exploring space and assisting in the hunt for extraterrestrial life. And once it commences operations this coming September, the Chinese expect it will remain the global leader in radio astronomy for the next ten or twenty years.

In addition to being larger than the Arecibo Observatory (which measures 305 meters in diameter), the telescope is reportedly 10 times more sensitive than its closest competitor – the steerable 100-meter telescope near Bonn, Germany. What’s more, unlike Arecibo (which has a fixed spherical curvature), FAST is capable of forming a parabolic mirror. That will allow researchers a greater degree of flexibility.

The Chinese Academy of Sciences (CAS) has spent the past five years building the telesccope, to the tune of 1.2-billion-yuan (180 million U.S. dollars). As the deputy head of the National Astronomical Observation, which is overseen by the CAS, Zheng Xiaonian was present at the celebrations marking the completion of the massive telescope.

As he was paraphrased as saying by the Xinhua News Agency: “The project has the potential to search for more strange objects to better understand the origin of the universe and boost the global hunt for extraterrestrial life.” Zheng was also quoted as saying that he expects FAST to be the global leader in radio astronomy for the next 10 to 20 years.

The construction of this array has also been a source of controversy. To protect the telescope from radio interference, Chinese authorities built FAST in Guizhou province’s isolated Dawodang depression, directly into the mountainside. However, to ensure that no magnetic disruptions are nearby, roughly 9,000 people are being removed from their homes and rehoused in the neighboring counties of Pingtang and Luodian.

FAST_overheadLi Yuecheng is the secretary-general of the Guizhou Provincial Committee, which is part of the Chinese People’s Political Consultative Conference (CPPCC). As he was quoted as saying by the Xinhua News Agency, the move comes with compensation:

“The proposal asked the government to relocate residents within 5 kilometers of the Five-hundred-meter Aperture Spherical Telescope, or FAST, to create a sound electromagnetic wave environment… Each of the involved residents will get 12,000 yuan (1,838 U.S. dollars) subsidy from the provincial reservoir and eco-migration bureau, and each involved ethnic minority household with housing difficulties will get 10,000 yuan subsidy from the provincial ethnic and religious committee.”

Mosaic of the Chang'e-3 moon lander and the lunar surface taken by the camera on China’s Yutu moon rover from a position south of the lander during Lunar Day 3. Note the landing ramp and rover tracks at left. Credit: CNSA/SASTIND/Xinhua/Marco Di Lorenzo/Ken Kremer
China’s recent forays into space include the Chang’e-3 moon lander, seen here by the Yutu moon rover. Credit: CNSA/SASTIND/Xinhua/Marco Di Lorenzo/Ken Kremer

In addition, the construction of this telescope is seen by some as part of a growing desire on behalf of China to press its interests in the geopolitical realm. For instance, in their 2016 Annual Report to Congress, the Department of Defense indicated that China is looking to develop its space capabilities to prevent adversaries from being able to use space-based assets in a crisis. As the report states:

“In parallel with its space program, China continues to develop a variety of counterspace capabilities designed to limit or to prevent the use of space-based assets by the [Peoples’ Liberation Army’s] adversaries during a crisis or conflict… Although China continues to advocate the peaceful use of outer space, the report also noted China would ‘secure its space assets to serve its national economic and social development, and maintain outer space security.'”

However, for others, FAST is merely the latest step in China’s effort to become a superpower in the all-important domain of space exploration and research. Their other ambitions include mounting a crewed mission to the Moon by 2036 and building a space station (for which work has already begun). In addition, FAST will enable China to take part in another major area of space research, which is the search for extra-terrestrial life.

For decades, countries like the United States have leading this search through efforts like the SETI Institute and the Nexus for Exoplanet System Science (NExSS). But with the completion of this array, China now has the opportunity to make significant contributions in the hunt for alien intelligence.

In the meantime, the CAS’ scientists will be debugging the telescope and conducting trials in preparation for its activation, come September. Once it is operational, it will assist in other areas of research as well, which will include conducting surveys of neutral hydrogen in the Milky Way and other galaxies, as well as detecting pulsars and gravitational waves.

Further Reading: Xinhuanet

Jovians Distressed At Strange, Tiny & Silent Creatures Aboard Spacecraft

The three Lego figures inside: Galileo, Juno and Jupiter. Source: NASA

Given its historic importance – being just the second spacecraft to conduct a long-term mission to Jupiter – NASA was sure to outfit the Juno probe with some high-end memorabilia. These include the Galileo commemorative plaque*, which shows Galileo’s face and the words he wrote when he first observed Jupiter’s four largest moons in 1610 (known today as the Galilean Moons).

In addition, three commemorative figures (each measuring 4 cm high) were created especially for the mission. Created by Lego, these figurines depict the Roman god Jupiter, his wife Juno, and the astronomer Galileo Galilei – each holding an identifying object. Constructed from aluminum so they could withstand the trip and the radiation of the gas giant, these figures arrived with the probe around Jupiter on Monday, July 4th.

Much like the Juno spacecraft that is ferrying them, these figurines have spent the past 5 years in space and traversing the 869 million kilometers that lie between Earth from Jupiter. As part of Lego’s “Build Your Future” campaign,  the trio are part of an educational outreach program to inspire kids around the world to learn about science and technology.

A key part of this effort is the Building Challenge launched by Lego to raise awareness about space exploration. For this challenge, participants are asked to build their vision of the future of space exploration using Lego bricks, take pictures of their creation, and then upload them to the Lego website’s “Mission to Space” gallery. The winning creations will be featured on LEGO.com and the Gallery homepage.

NASA's Juno spacecraft launched on August 6, 2011 and should arrive at Jupiter on July 4, 2016. Credit: NASA / JPL
NASA’s Juno spacecraft launched on August 6, 2011 and should arrive at Jupiter on July 4, 2016. Credit: NASA / JPL

In addition, Lego’s website has new content that encourages children to learn more about the Solar System. As they state on the webpage:

“Have you ever wondered what it would be like if you could visit other planets and travel through space? Well, here’s your chance to go on a mission to Space through a partnership between NASA and LEGO Group! Pack your space lunch, and get ready to fly the International Space Station, pass the Moon, to Mars and Jupiter! Learn fun facts about our solar system, play quizzes, and get a taste of life as an astronaut and space pioneer! Round off the trip by entering an out-of-this-world building challenge.”

True to their mythological roots, the figurine of Jupiter (the Roman equivalent of Zeus) is holding a lightning bolt. Juno, his wife, is holding a magnifying glass, which represents her ability to see through the clouds that Jupiter surrounded himself with. And Galileo, the famed astronomer who was the first to view Jupiter’s moons, holds his famed telescope and an orb representing Jupiter.

These three figurines are the closest thing the Juno spacecraft has to a crew. During the next two years, they will be with the probe as it orbits Jupiter a total of 37 times, conducting surveys of Jupiter’s atmosphere, interior, magnetosphere, and gravitational field. When the mission is over, they will deorbit with the probe, crashing into Jupiter’s atmosphere to prevent any contamination of Jupiter’s moons.

Three LEGO figurines representing the Roman god Jupiter, his wife Juno and Galileo Galilei are shown here aboard the Juno spacecraft. Credits: NASA/JPL-Caltech/KSC
Three LEGO figurines representing the Roman god Jupiter, his wife Juno and Galileo Galilei are shown here aboard the Juno spacecraft. Credits: NASA/JPL-Caltech/KSC

Over the course of the past three days, numerous memes have popped up across the internet, claiming that: “When Galileo first spotted Jupiter’s largest moons, he named them after Jove’s (Zeus’) mistresses. Now, a probe named after his wife will arrive in the system, thus fulfilling a joke astronomers have been setting up for the past 400 years!” – I’m paraphrasing, of course!

Nevertheless, the observation is an apt one. And to make this witty statement complete, all those figures who had a hand in lending Jupiter the cultural significant it has (be they historical or mythological) will be represented as Juno tries to unveil Jupiter’s mysteries. Sure, those likenesses are just 4 cm in height, and they are built out of aluminum instead of marble, but it’s the thought that counts!

*The Galileo commemorative plague contains script written in Italian by Galileo’s own hand. It reads:

“On the 11th it was in this formation, and the star closest to Jupiter was half the size than the other and very close to the other so that during the previous nights all of the three observed stars looked of the same dimension and among them equally afar; so that it is evident that around Jupiter there are three moving stars invisible till this time to everyone.”

And be sure to enjoy this video of NASA’s Juno team celebrating the probe’s arrival at Jupiter:

Further Reading: NASA June, Lego

First Detection of Water Clouds Outside Our Solar System

Artist's conception of how WISE 0855 might appear if viewed close-up in infrared light. Artwork by Joy Pollard, Gemini Observatory/AURA.

Brown dwarfs – those not-quite-a-planet and not-quite-a-star objects – are intriguing oddities that are too low in mass to burn hydrogen, but are more massive than planets. They only emit a faint amount of light, so they are hard to detect, making scientists unsure of how many of them might be out there in our galaxy.

But astronomers have been keeping an eye one particular brown dwarf known called WISE 0855. Just 7.2 light-years from Earth, it is the coldest known object outside of our Solar System and is just barely visible at infrared wavelengths. But with some crafty spectroscopic observing techniques, astronomers have now determined this object has some exciting characteristics: its atmosphere is full of clouds of water vapor. This is the first time water clouds have been detected outside of our Solar System.

“It’s five times fainter than any other object detected with ground-based spectroscopy at this wavelength,” said Andrew Skemer, assistant professor of astronomy and astrophysics at UC Santa Cruz and the first author on a paper on WISE 0855 published in Astrophysical Journal Letters (paper is available on arXiv here). “Now that we have a spectrum, we can really start thinking about what’s going on in this object. Our spectrum shows that WISE 0855 is dominated by water vapor and clouds, with an overall appearance that is strikingly similar to Jupiter.”

This brown dwarf’s full name is WISE J085510.83-071442.5, but we’re among friends, so it’s W0855 for short. It has about five times the mass of Jupiter and is the coldest brown dwarf ever detected, with an average temperature of about 250 degrees Kelvin, or minus 10 degrees F, minus 20 C. That makes it nearly as cold as Jupiter, which is 130 degrees Kelvin.

“WISE 0855 is our first opportunity to study an extrasolar planetary-mass object that is nearly as cold as our own gas giants,” Skemer said.

Skemer and his team used the Gemini-North telescope in Hawaii and the Gemini Near Infrared Spectrograph to observe WISE 0855 over 13 nights for a total of about 14 hours. Skemer was part of a team that studied this object in 2014 found tentative indications of water clouds based on very limited photometric data. Skemer said obtaining a spectrum (which separates the light from an object into its component wavelengths) was the only way to detect this object’s molecular composition.

A video about the 2014 discovery and study of WISE 0855:

WISE 0855 is too faint for conventional spectroscopy at optical or near-infrared wavelengths, but the team took up a challenge and looked at the thermal emissions from the object at wavelengths in a narrow window around 5 microns.

“I think everyone on the research team really believed that we were dreaming to think we could obtain a spectrum of this brown dwarf because its thermal glow is so feeble,” said Skemer. WISE 0855, is so cool and faint that many astronomers thought it would be years before a spectrum could be obtained. “I thought we’d have to wait until the James Webb Space Telescope was operating to do this,” Skemer said.

This spectroscopic view provided a glimpse into the environment of WISE 0855’s atmosphere. With the data in hand, the researchers then developed atmospheric models of the equilibrium chemistry for a brown dwarf at 250 degrees Kelvin and calculated the resulting spectra under different assumptions, including cloudy and cloud-free models. The models predicted a spectrum dominated by features resulting from water vapor, and the cloudy model yielded the best fit to the features in the spectrum of WISE 0855.

While the spectra of this object are strikingly similar to Jupiter, WISE 0855 appears to have a less turbulent atmosphere.

“The spectrum allows us to investigate dynamical and chemical properties that have long been studied in Jupiter’s atmosphere, but this time on an extrasolar world,” Skemer said.

The scientists say WISE 0855 looks more similar to Jupiter than any exoplanet yet discovered, which is especially intriguing since the Juno mission has just begun its exploration at the giant world. Jupiter, along with the other gas planets in our Solar System, all have clouds and storms, although Jupiter’s clouds are mainly made of ammonia with lower level clouds perhaps containing water. One of Juno’s goals is to determine the global water abundance at Jupiter.

Sources: UC Santa Cruz, Gemini

Life On Titan Possible Without Water

In this near-infrared mosaic, the sun shines off of the seas on Saturn's moon, Titan. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

Saturn’s largest moon Titan is a truly fascinating place. Aside from Earth, it is the only place in the Solar System where rainfall occurs and there are active exchanges between liquids on the surface and fog in the atmosphere – albeit with methane instead of water. It’s atmospheric pressure is also comparable to Earth’s, and it is the only other body in the Solar System that has a dense atmosphere that is nitrogen-rich.

For some time, astronomers and planetary scientists have speculated that Titan might also have the prebiotic conditions necessary for life. Others, meanwhile, have argued that the absence of water on the surface rules out the possibility of life existing there. But according to a recent study  produced by a research team from Cornell University, the conditions on Titan’s surface might support the formation of life without the need for water.

When it comes to searching for life beyond Earth, scientists focus on targets that possess the necessary ingredients for life as we know it – i.e. heat, a viable atmosphere, and water. This is essentially the “low-hanging fruit” approach, where we search for conditions resembling those here on Earth. Titan – which is very cold, quite distant from our Sun, and has a thick, hazy atmosphere – does not seem like a viable candidate, given these criteria.

Diagram of the internal structure of Titan according to the fully differentiated dense-ocean model. Credit: Wikipedia Commons/Kelvinsong
Diagram of the internal structure of Titan according to the fully differentiated dense-ocean model. Credit: Wikipedia Commons/Kelvinsong

However, according to the Cornell research team – which is led by Dr. Martin Rahm – Titan presents an opportunity to see how life could emerge under different conditions, one which are much colder than Earth and don’t involve water.

Their study – titled “Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan” – appeared recently in the Proceedings of the National Academy of Sciences (PNAS). In it, Rahm and his colleagues examined the role that hydrogen cyanide, which is believed to be central to the origin of life question, may play in Titan’s atmosphere.

Previous experiments have shown that hydrogen cyanide (HCN) molecules can link together to form polyimine, a polymer that can serve as a precursor to amino acids and nucleic acids (the basis for protein cells and DNA). Previous surveys have also shown that hydrogen cyanide is the most abundant hydrogen-containing molecule in Titan’s atmosphere.

As Professor Lunine – the David C. Duncan Professor in the Physical Sciences and Director of the Cornell Center for Astrophysics and Planetary Science and co-author of the study – told Universe Today via email: “Organic molecules, liquid lakes and seas (but of methane, not water) and some amount of solar energy reaches the surface. So this suggests the possibility of an environment that might host an exotic form of life.”

What other surprises may be found beneath Titan's thick haze and clouds? (NASA/JPL/SSI/J. Major)
Titan’s thick, hazy atmosphere may conceal clues as to the possibility of life-giving conditions on its surface. Credit: NASA/JPL/SSI/J. Major

Using quantum mechanical calculations, the Cornell team showed that polyimine has electronic and structural properties that could facilitate prebiotic chemistry under very cold conditions. These involve the ability to absorb a wide spectrum of light, which is predicted to occur in a window of relative transparency in Titan’s atmosphere.

Another is the fact that polyimine has a flexible backbone, and can therefore take on many different structures (aka. polymorphs). These range from flat sheets to complex coiled structures, which are relatively close in energy. Some of these structures, according to the team, could work to accelerate prebiotic chemical reactions, or even form structures that could act as hosts for them.

“Polyimine can form sheets,” said Lunine, “which like clays might serve as a catalytic surface for prebiotic reactions. We also find the polyimine absorbs sunlight where Titan’s atmosphere is quite transparent, which might help to energize reactions.”

In short, the presence of polyimine could mean that Titan’s surface gets the energy its needs to drive photochemical reactions necessary for the creation of organic life, and that it could even assist in the development of that life. But of course, no evidence has been found that polyimine has been produced on the surface of Titan, which means that these research findings are still academic at this point.

On the left is TALISE (Titan Lake In-situ Sampling Propelled Explorer), the ESA proposal. This would have it's own propulsion, in the form of paddlewheels. Credit: bisbos.com
Proposed missions to Titan have included (from left to right) the TALISE (Titan Lake In-situ Sampling Propelled Explorer) and NASA’s Titan Mare Explorer. Credit: bisbos.com

However, Lunine and his team indicate that hydrogen cyanide may very well have lead to the creation of polyimine on Titan, and that it might have simply escaped detection because of Titan’s murky atmosphere. They also added that future missions to Titan might be able to look for signs of the polymer, as part of ongoing research into the possibility of exotic life emerging in other parts of the Solar System.

“We would need an advanced payload on the surface to sample and search for polyimines,” answered Lunine, “or possibly by a next generation spectrometer from orbit. Both of these are “beyond Cassini”, that is, the next generation of missions.”

Perhaps when Juno is finished surveying Jupiter’s atmosphere in two years time, NASA might consider retasking it for a flyby of Titan? After all, Juno was specifically designed to peer beneath a veil of thick clouds. They don’t come much thicker than on Titan!

Further Reading: PNAS

What are the Jovian Planets?

The Jovian planets of the Solar System. Credit: bork.hampshire.edu

Beyond our Solar System’s “Frost Line” – the region where volatiles like water, ammonia and methane begin to freeze – four massive planets reside. Though these planets – Jupiter, Saturn, Uranus and Neptune – vary in terms of size, mass, and composition, they all share certain characteristics that cause them to differ greatly from the terrestrial planets located in the inner Solar System.

Officially designated as gas (and/or ice) giants, these worlds also go by the name of “Jovian planets”. Used interchangeably with terms like gas giant and giant planet, the name describes worlds that are essentially “Jupiter-like”. And while the Solar System contains four such planets, extra-solar surveys have discovered hundreds of Jovian planets, and that’s just so far…

Definition:

The term Jovian is derived from Jupiter, the largest of the Outer Planets and the first to be observed using a telescope  – by Galileo Galilei in 1610. Taking its name from the Roman king of the gods – Jupiter, or Jove – the adjective Jovian has come to mean anything associated with Jupiter; and by extension, a Jupiter-like planet.

The giant planets of the Solar System (aka. Jovians). Credit: spiff.rit.edu
The giant planets of the Solar System (aka. the Jovians). Credit: spiff.rit.edu

Within the Solar System, four Jovian planets exist – Jupiter, Saturn, Uranus and Neptune. A planet designated as Jovian is hence a gas giant, composed primarily of hydrogen and helium gas with varying degrees of heavier elements. In addition to having large systems of moons, these planets each have their own ring systems as well.

Another common feature of gas giants is their lack of a surface, at least when compared to terrestrial planets. In all cases, scientists define the “surface” of a gas giant (for the sake of defining temperatures and air pressure) as being the region where the atmospheric pressure exceeds one bar (the pressure found on Earth at sea level).

Structure and Composition:

In all cases, the gas giants of our Solar System are composed primarily of hydrogen and helium with the remainder being taken up by heavier elements. These elements correspond to a structure that is differentiated between an outer layer of molecular hydrogen and helium that surrounds a layer of liquid (or metallic) hydrogen or volatile elements, and a probable molten core with a rocky composition.

Due to difference in their structure and composition, the four gas giants are often differentiated, with Jupiter and Saturn being classified as “gas giants” while Uranus and Neptune are “ice giants”. This is due to the fact that Neptune and Uranus have higher concentrations of methane and heavier elements  – like oxygen, carbon, nitrogen, and sulfur – in their interior.

These cut-aways illustrate interior models of the giant planets. Jupiter is shown with a rocky core overlaid by a deep layer of metallic hydrogen. Credit: NASA/JPL
Interior models of the giant planets, showing rocky cores overlaid by solid and gaseous envelopes. Credit: NASA/JPL

In stark contrast to the terrestrial planets, the density of the gas giants is slightly greater than that of water (1 g/cm³). The one exception to this is Saturn, where the mean density is actually lower than water (0.687 g/cm3). In all cases, temperature and pressure increase dramatically the closer one ventures into the core.

Atmospheric Conditions:

Much like their structures and compositions, the atmospheres and weather patterns of the four gas/ice giants are quite similar. The primary difference is that the atmospheres get progressively cooler the farther away they are from Sun. As a result, each Jovian planet has distinct cloud layers who’s altitudes are determined by their temperatures, such that the gases can condense into liquid and solid states.

In short, since Saturn is colder than Jupiter at any particular altitude, its cloud layers occur deeper within it’s atmosphere. Uranus and Neptune, due to their even lower temperatures, are able to hold condensed methane in their very cold tropospheres, whereas Jupiter and Saturn cannot.

The presence of this methane is what gives Uranus and Neptune their hazy blue color, where Jupiter is orange-white in appearance due to the intermingling of hydrogen (which gives off a red appearance), while the upwelling of phosphorus, sulfur, and hydrocarbons yield spotted patches areas and ammonia crystals create white bands.

Shortly after forming, Jupiter was slowly pulled toward the sun. Saturn was also pulled in and eventually, their fates became linked. When Jupiter was about where Mars is now, the pair turned and moved away from the sun. Scientists have referred to this as the "Grand Tack," a reference to the sailing maneuver. Credit: NASA/GSFC
Jupiter and Saturn have similar appearances, owing to their similar compositions and atmospheres. Credit: NASA/GSFC

The atmosphere of Jupiter is classified into four layers based on increasing altitude: the troposphere, stratosphere, thermosphere and exosphere. Temperature and pressure increase with depth, which leads to rising convection cells emerging that carry with them the phosphorus, sulfur, and hydrocarbons that interact with UV radiation to give the upper atmosphere its spotted appearance.

Saturn’s atmosphere is similar in composition to Jupiter’s. Hence why it is similarly colored, though its bands are much fainter and are much wider near the equator (resulting in a pale gold color). As with Jupiter’s cloud layers, they are divided into the upper and lower layers, which vary in composition based on depth and pressure. Both planets also have clouds composed of ammonia crystals in their upper atmospheres, with a possible thin layer of water clouds underlying them.

Uranus’ atmosphere can be divided into three sections – the innermost stratosphere, the troposphere, and the outer thermosphere. The troposphere is the densest layer, and also happens to be the coldest in the solar system. Within the troposphere are layers of clouds, with methane clouds on top, ammonium hydrosulfide clouds, ammonia and hydrogen sulfide clouds, and water clouds at the lowest pressures.

Next is the stratosphere, which contains ethane smog, acetylene and methane, and these hazes help warm this layer of the atmosphere. Here, temperatures increase considerably, largely due to solar radiation. The outermost layer (the thermosphere and corona) has a uniform temperature of 800-850 (577 °C/1,070 °F), though scientists are unsure as to the reason.

Uranus and Neptune, the Solar System’s ice giant planets. (Images from Wikipedia.)
Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons

This is something that Uranus shares with Neptune, which also experiences unusually high temperatures in its thermosphere (about 750 K (476.85 °C/890 °F). Like Uranus, Neptune is too far from the Sun for this heat to be generated through the absorption of ultraviolet radiation, which means another heating mechanism is involved.

Neptune’s atmosphere is also predominantly hydrogen and helium, with a small amount of methane. The presence of methane is part of what gives Neptune its blue hue, although Neptune’s is darker and more vivid. Its atmosphere can be subdivided into two main regions: the lower troposphere (where temperatures decrease with altitude), and the stratosphere (where temperatures increase with altitude).

The lower stratosphere is believed to contain hydrocarbons like ethane and ethyne, which are the result of methane interacting with UV radiation, thus producing Neptune’s atmospheric haze. The stratosphere is also home to trace amounts of carbon monoxide and hydrogen cyanide, which are responsible for Neptune’s stratosphere being warmer than that of Uranus.

Weather Patterns:

Like Earth, Jupiter experiences auroras near its northern and southern poles. But on Jupiter, the auroral activity is much more intense and rarely ever stops. These are the result of Jupiter’s intense radiation, it’s magnetic field, and the abundance of material from Io’s volcanoes that react with Jupiter’s ionosphere.

Reprocessed view by Bjorn Jonsson of the Great Red Spot taken by Voyager 1 in 1979 reveals an incredible wealth of detail.
Reprocessed view by Bjorn Jonsson of the Great Red Spot taken by Voyager 1 in 1979 reveals an incredible wealth of detail. Credit: NASA/JPL

Jupiter also experiences violent weather patterns. Wind speeds of 100 m/s (360 km/h) are common in zonal jets, and can reach as high as 620 kph (385 mph). Storms form within hours and can become thousands of km in diameter overnight. One storm, the Great Red Spot, has been raging since at least the late 1600s.

The storm has been shrinking and expanding throughout its history; but in 2012, it was suggested that the Giant Red Spot might eventually disappear. Jupiter also periodically experiences flashes of lightning in its atmosphere, which can be up to a thousand times as powerful as those observed here on the Earth.

Saturn’s atmosphere is similar, exhibiting long-lived ovals now and then that can be several thousands of kilometers wide. A good example is the Great White Spot (aka. Great White Oval), a unique but short-lived phenomenon that occurs once every 30 Earth years. Since 2010, a large band of white clouds called the Northern Electrostatic Disturbance have been observed enveloping Saturn, and is believed to be followed by another in 2020.

The winds on Saturn are the second fastest among the Solar System’s planets, which have reached a measured high of 500 m/s (1800 km/h). Saturn’s northern and southern poles have also shown evidence of stormy weather. At the north pole, this takes the form of a persisting hexagonal wave pattern measuring about 13,800 km (8,600 mi) and rotating with a period of 10h 39m 24s.

Saturn makes a beautifully striped ornament in this natural-color image, showing its north polar hexagon and central vortex (Credit: NASA/JPL-Caltech/Space Science Institute)
Saturn makes a beautifully striped ornament in this natural-color image, showing its north polar hexagon and central vortex. Credit: NASA/JPL-Caltech/Space Science Institute

The south pole vortex apparently takes the form of a jet stream, but not a hexagonal standing wave. These storms are estimated to be generating winds of 550 km/h, are comparable in size to Earth, and believed to have been going on for billions of years. In 2006, the Cassini space probe observed a hurricane-like storm that had a clearly defined eye. Such storms had not been observed on any planet other than Earth – even on Jupiter.

Uranus’s weather follows a similar pattern where systems are broken up into bands that rotate around the planet, which are driven by internal heat rising to the upper atmosphere. Winds on Uranus can reach up to 900 km/h (560 mph), creating massive storms like the one spotted by the Hubble Space Telescope in 2012. Similar to Jupiter’s Great Red Spot, this “Dark Spot” was a giant cloud vortex that measured 1,700 kilometers by 3,000 kilometers (1,100 miles by 1,900 miles).

Because Neptune is not a solid body, its atmosphere undergoes differential rotation, with its wide equatorial zone rotating slower than the planet’s magnetic field (18 hours vs. 16.1 hours). By contrast, the reverse is true for the polar regions where the rotation period is 12 hours. This differential rotation is the most pronounced of any planet in the Solar System, and results in strong latitudinal wind shear and violent storms.

Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL
Reconstruction of Voyager 2 images showing the Great Dar Spot (top left), Scooter (middle), and the Small Dark Spot (lower right). Credit: NASA/JPL

The first to be spotted was a massive anticyclonic storm measuring 13,000 x 6,600 km and resembling the Great Red Spot of Jupiter. Known as the Great Dark Spot, this storm was not spotted five later (Nov. 2nd, 1994) when the Hubble Space Telescope looked for it. Instead, a new storm that was very similar in appearance was found in the planet’s northern hemisphere, suggesting that these storms have a shorter life span than Jupiter’s.

Exoplanets:

Due to the limitations imposed by our current methods, most of the exoplanets discovered so far by surveys like the Kepler space observatory have been comparable in size to the giant planets of the Solar System. Because these large planets are inferred to share more in common with Jupiter than with the other giant planets, the term “Jovian Planet” has been used by many to describe them.

Many of these planets, being greater in mass than Jupiter, have also been dubbed as “Super-Jupiters” by astronomers. Such planets exist at the borderline between planets and brown dwarf stars, the smallest stars known to exist in our Universe. They can be up to 80 times more massive than Jupiter but are still comparable in size, since their stronger gravity compresses the material into an ever denser, more compact sphere.

Artist's concept of "hot Jupiter" exoplanet HD 149026b (NASA/JPL-Caltech)
Artist’s concept of the “Hot Jupiter” exoplanet HD 149026b. Credit: NASA/JPL-Caltech

Those Super-Jupiters that have distant orbits from their parent stars are known as “Cold Jupiters”, whereas those that have close orbits are called “Hot Jupiters”. A surprising number of Hot Jupiters have been observed by exoplanet surveys, due to the fact that they are particularly easy to spot using the Radial Velocity method – which measures the oscillation of parent stars due to the influence of their planets.

In the past, astronomers believed that Jupiter-like planets could only form in the outer reaches of a star system. However, the recent discovery of many Jupiter-sized planets orbiting close to their stars has cast doubt on this. Thanks to the discovery of Jovians beyond our Solar System, astronomers may be forced to rethink our models of planetary formation.

Since Galileo first observed Jupiter through his telescope, Jovian planets have been an endless source of fascination for us. And despite many centuries of research and progress, there are still many things we don’t know about them. Our latest effort to explore Jupiter, the Juno Mission, is expected to produce some rather interesting finds. Here’s hoping they bring us one step closer to understanding those darn Jovians!

We have written many interesting articles about gas giants here at Universe Today. Here’s the Solar System Guide, The Outer Planets, What’s Inside a Gas Giant?, and Which Planets Have Rings?

For more information, check out NASA’s Solar System Exploration page and Science Daily’s the Jovian planets.

Astronomy Cast has a number of episodes on the Jovian planets, including Episode 56: Jupiter.

The Moon Occults Jupiter This Weekend

The Moon occults Jupiter
The Moon occults Jupiter on July 15th, 2012. Image credit and copyright: Ziad el Zaatari.

So, are you catching sight of the waxing crescent Moon returning this week to the early PM sky? The start of lunation 1157 gives folks observing Ramadan here in Morocco a reason to celebrate, as it marks the end of dawn-to-dusk fasting. Follow that Moon, as it’s about to meet up with the king of the planets this weekend.

On July 9th, the 5-day old waxing crescent Moon will pass Jupiter. You can see ’em both Saturday night, high in the western sky at dusk. For a very few observers in the southern Indian Ocean and Antarctica, the Moon will actually occult (pass in front of) Jupiter, centered on 10:11 Universal Time (UT). The Moon will be 32% illuminated crescent during the pass, and Jupiter will present a disk 34” across, just over a month past quadrature on June 4th with a current elongation of 60 degrees east of the Sun. Jupiter just passed opposition for 2016 on March 8th, and is now headed towards solar conjunction on the far side of the Sun on September 26th.

The occultation footprint for the July 9th event. Image credit: Occult 4.2 software.
The occultation footprint for the July 9th event. Image credit: Occult 4.2 software.

2016 Planetary Occultations

This is the first of four occultations of Jupiter by the Moon in 2016; the next occur over subsequent lunations on August 6th, September 2nd and 30th before the relative motions of the Moon and Jupiter carry them apart, not to meet again until October 31st, 2019. And though most observers will miss this weekend’s occultation, we’ll all get a good view of the pairing worldwide. Unfortunately, the view gets successively worse (though more central) for the next few lunations, as the occultations of Jupiter by the Moon occur close to the Sun.

Looking west on the evening of July 9th. Image credit: Stellarium.
Looking west on the evening of July 9th. Image credit: Stellarium.

Here’s another reason to celebrate and show off Jupiter at this weekend’s star party: NASA’s Juno spacecraft has just entered orbit around the gas giant world. This is only the second time a mission has orbited Jupiter (the first was Galileo) though lots have performed brief flybys, using the enormous pull of the planet for a gravitational boost en route to elsewhere. Juno is currently the only spacecraft in operation around Jove, and will conduct 36 looping science orbits around the planet before meeting its fiery end in February 2018.

A montage of daytime planets. Image credit and copyright: Shahrin Ahmad (@shahgazer).
A montage of daytime planets (and one Moon and one star). Image credit and copyright: Shahrin Ahmad (@shahgazer).

Yay, humans. Here’s another feat of visual athletics you can attempt this weekend: can you spy Jupiter near the waxing crescent Moon… in the daytime? It’s not that tough, if you know exactly where to look. Deep blue skies for maxim contrast are key, and don’t be afraid to cheat a bit and use binoculars or a wide-field DSLR shot to tease bashful Jupiter out of the daytime sky. Your best bet might be to start hunting for Jupiter 30 minutes prior to local sunset. Hey, if the Sun is still above the local horizon, it still counts! We’ve actually managed to nab Jupiter and Venus before sundown at public star parties on occasion, kicking things off a bit early.

Hunting for Jupiter in the daytime on July 9th. Image credit: Starry Night
Hunting for Jupiter in the daytime on July 9th. Image credit: Starry Night

Now for the ‘wow’ factor. The Moon is 3,474 kilometers across, and on average, 400,000 kilometers or 1.25 light seconds distant. Jupiter, at 140,000 kilometers across, is currently 5.9 Astronomical Units (AU) or 880 million kilometers away, 2,200 times more distant at 49 light minutes away. You could fit Jupiter and all of the other planets in the solar system – excluding Saturn’s rings — between the Earth and the Moon… not that you’d want such mayhem, of course. Hey; then, for the very first time in the history of human astronomy, Jupiter could occult our puny Moon…

Occultations are abruptly swift affairs in a glacially slow universe. The leading edge of the Moon moves about 30” a minute, taking 17 seconds to cover the disk of Jove. Follow Jupiter this summer, as it’ll pass just 4′ from Venus in the dusk sky on August 27th.

More to come on that soon. Here’s a final thought: has anyone ever tried to observe a radio occultation of Jupiter by the Moon? It’s certainly possible, as Jupiter is a prominent amateur radio source, crackling in the sky. And hey, the daytime sky thing wouldn’t be an issue…

We’d be thrilled to hear that, against all odds, someone on a remote windswept island or on a ship in the distant Indian Ocean actually managed to catch this weekend’s occultation!